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ABSTRACT

Multi-drug resistant pathogens have become a ma-
jor threat to human health and new antibiotics are
urgently needed. Most antibiotics are derived from
secondary metabolites produced by bacteria. In or-
der to avoid suicide, these bacteria usually encode
resistance genes, in some cases within the biosyn-
thetic gene cluster (BGC) of the respective antibi-
otic compound. Modern genome mining tools en-
able researchers to computationally detect and pre-
dict BGCs that encode the biosynthesis of secondary
metabolites. The major challenge now is the priori-
tization of the most promising BGCs encoding an-
tibiotics with novel modes of action. A recently de-
veloped target-directed genome mining approach al-
lows researchers to predict the mode of action of
the encoded compound of an uncharacterized BGC
based on the presence of resistant target genes. In
2017, we introduced the ‘Antibiotic Resistant Tar-
get Seeker’ (ARTS). ARTS allows for specific and
efficient genome mining for antibiotics with inter-
esting and novel targets by rapidly linking house-
keeping and known resistance genes to BGC prox-
imity, duplication and horizontal gene transfer (HGT)
events. Here, we present ARTS 2.0 available at http:
//arts.ziemertlab.com. ARTS 2.0 now includes op-
tions for automated target directed genome mining
in all bacterial taxa as well as metagenomic data.
Furthermore, it enables comparison of similar BGCs
from different genomes and their putative resistance
genes.

INTRODUCTION

Due to the continuous increase of drug-resistant bacteria,
antibiotic resistance is regarded as a global public health
threat (1). The lack of new antibiotics with novel modes
of action in the current drug development pipeline, makes
finding new compounds to fight off resistant pathogens a
critical task (2). Since the discovery of penicillin, secondary
metabolites (SMs) produced by various living organisms
have been foundational to the development of antimicro-
bial drugs (3). The majority of antibiotic compounds are
isolated as natural products, from fungi and bacteria (4).
For many decades, screening biological samples for desired
bioactivity has been the traditional methodology for natu-
ral product discovery (5). Due to the high rediscovery rates
and labor-intensive nature of the process, in silico methods
have become a promising way to guide modern drug discov-
ery efforts (6,7). Gene-centered methods, such as genome
mining, enable researchers nowadays to computationally
detect the biosynthetic gene clusters (BGCs) encoding en-
zymes necessary for the biosynthesis of antibiotics and pre-
dict encoded compounds (8). Over the last decade, greatly
improved genome mining tools such as antiSMASH (9),
EvoMining (10), PRISM (11) or DeepBGC (12) use meth-
ods like Hidden Markov Models, phylogeny or deep learn-
ing to highlight a variety of natural product classes. Com-
bined with databases such as MIBiG (13), Natural Product
Atlas (14) and the antiSMASH database (15), these tools al-
low for fast and efficient mining and dereplication of thou-
sands of bacterial genomes and BGCs. According to the
latest version of the Atlas of Biosynthetic Gene Clusters
(IMG-ABC) (16) there currently are ∼400 000 predicted
BGCs sequenced. Moreover, <1% of total clusters are ex-
perimentally verified, which leads to an important question:
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Which of these clusters should be further examined with wet
lab experiments?

Recently, researchers adopted a prioritization approach
for antibiotic discovery that is based on the observation that
antibiotic producers have to be resistant against their own
products to avoid suicide (17). This so called target-directed
or self resistance based genome mining approach allows the
prediction of the mode of action of the encoded compound
of an uncharacterized BGC based on resistance genes, in
some cases co-located within the antibiotic BGC (18). Mul-
tiple resistance mechanisms exist, such as inactivation and
export of antibiotics as well as target modification. In the
latter case, a duplicated and antibiotic-resistant homologue
of an essential housekeeping gene is detectable within the
antibiotic BGC and allows the prediction of the mode of
action of the encoded compound even without knowing a
chemical structure (19–21). Moore et al., for example, were
able to identify a fatty acid synthase inhibiting antibiotic
by screening for duplicated fatty acid synthase genes within
orphan BGCs (22).

In 2017, we introduced the first version of the ‘Antibi-
otic Resistant Target Seeker’ (ARTS) (23), a user-friendly
web server that automates target-directed genome mining
to prioritize promising strains that produce antibiotics with
new mode of actions. Since a resistant copy of the antibi-
otic target gene is typically detectable in the genome, can
be observed within the BGC of the antibiotic and horizon-
tally acquired with the BGC (23), ARTS automatically de-
tects possible resistant housekeeping genes based on three
criteria: duplication, localization within a biosynthetic gene
cluster, and evidence of Horizontal Gene Transfer (HGT).
One previous limitation of the ARTS pipeline was its fo-
cus on actinobacterial genomes. Although natural product
discovery historically was highly focusing on the phylum
Actinobacteria, prominent families from other phyla such
as Proteobacteria or Firmicutes are known to have high nat-
ural product biosynthetic potential (24–26). Here, we intro-
duce a greatly improved version 2 of the ARTS webserver,
now allowing the analysis of the entire kingdom of bac-
teria, metagenomic data, and the comparison of multiple
genomes. This update therefore will facilitate natural prod-
uct prioritization and antibiotic discovery efforts beyond
actinomycetes.

NEW FEATURES AND UPDATES

The workflow of the ARTS pipeline involves a few key
steps: First, query genomes are screened for BGCs using
antiSMASH (9). At the same time essential housekeeping
(core) genes within the genome are determined using TIGR-
FAM models that have been identified by comparing a ref-
erence set of similar genomes (27) (Figure 1B). During the
next steps the identified core and known resistance genes
are screened for their location within BGCs. Duplication
thresholds are determined for each core gene model, based
on their respective frequencies among the reference set. Fi-
nally, possible HGT events are detected via phylogenetic
screening with the help of constructed species trees and gene
trees. All the results are summarized into interactive output
tables.

Reference sets of organisms and core genes

Since the determination of core gene content and the con-
struction of phylogenetic trees is more specific and accurate
when query genomes are compared with genomes from sim-
ilar organisms, we aimed to generate phylum specific refer-
ence sets. However, since the number of genomes in the dif-
ferent phyla varied significantly, reference sets were some-
times also created by class or a group of closely related phyla
(Supplementary Table S1).

In a first step, sequences of all classified bacteria were
downloaded through NCBI’s RefSeq database (28) for fur-
ther evaluation (Figure 1A). Redundant sequences were
filtered with MASH (29) with a +95% similarity cut off.
Where applicable, only complete genomes were used in
a reference set. If the number and diversity of complete
genomes within a phylum was not sufficient (distributed
among a genus or two with <100 sequences), contig-level
assemblies were also taken into consideration to expand the
particular reference. Around 330 genome sequences were
used for the creation of each individual reference set, which
sum up to 4936 genomes in total.

Based on the number of genomes for each reference set,
different boundaries were then selected for phyla with dif-
ferent levels of diversity. Given the diversity and large num-
ber of proteobacterial genomes deposited in Refseq (30),
four different reference sets were created for proteobacterial
genomes (Alpha, Beta, Gamma, Delta-Epsilon). In cases
where a phylum does not comprise sufficient sequenced
genome sequences (less than 100 genomes), multiple phyla
were grouped into one reference set. In that way, 22 phyla
were grouped into three reference sets. Groupings were
based on phylogenetic distances in the tree of life (31) and
the NCBI Lifemap (32). Another feature of the grouped
sets is the high coverage of bacteria from harsh environ-
ments, allowing the analysis of extremophiles. For example,
group 2, which was created from 214 organisms, is mainly
comprised of the phyla Thermotogae and Chloroflexi (Sup-
plementary Table S1), which are known to be mostly ther-
mophilic (33,34).

Reference set and core gene analysis

Determination of core genes. Core genes were determined
for each reference set using the method developed for the
previous version of ARTS (23). Subsequently, the core genes
from each set were compared with sequences from the
Database of Essential Genes (DEG)v 1.5 (46). On average,
85% of genes had a match to one or more records (Sup-
plementary Table S2). The majority of the genes that are
not found in DEG belong to the gene categories ’unclassi-
fied’, ’unknown function’ or ’energy metabolism’. Further-
more, functional classification of each reference set revealed
that, on average, genes with functions such as protein and
amino acid synthesis, energy and metabolism were the most
abundant as would be expected from essential genes (Sup-
plementary Figure S1). The importance of individual refer-
ence sets is highlighted by the fact that one set only accounts
for ∼40% of the total unique core genes from all sets (Sup-
plementary Table S4).

Additionally, the reliability of the generated gene trees for
each reference set were estimated by branch support (Sup-
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Figure 1. Outline representation of the ARTS pipeline. (A) Basic machinery of creating reference sets. Housekeeping core genes and duplication thresholds
are detected per clade of organisms and gene alignments and trees are created for fast HGT detection. (B) Workflow with multi-genome comparative
analysis. Input data is screened for ARTS selection criteria. All found BGCs are then subjected to BiG-SCAPE clustering algorithm. Finally, interactive
output tables are presented for comparative analysis.

plementary Figure S2) and comparison to taxonomically
correct species trees generated by the Accurate Species TRee
ALgorithm (ASTRAL) (47) (Supplementary data).

Positive controls and detection frequencies. In order to
test ARTS’ ability to detect resistant targets in non-
actinobacterial genomes using the new reference sets, we
analyzed known examples of self-resistance mechanisms.
We identified several known non-actinobacterial examples
as positive controls (Table 1). Out of 11 antibiotic natural
products with identified resistance mechanisms, five of them
had available genome sequences regarding specific isolates
that contained respective BGCs. All of these cases showed
at least two ARTS hits when run in normal mode with de-
fault cutoffs. To detect the accA gene, a known transferase,
exploration mode had to be used. Otherwise, ARTS 2.0 pre-
dicted resistance genes in almost all control BGCs except
one. The CoA reductase resistant gene was not detected be-
cause specific CoA reductase models were missing in both
the core and known resistance set. We also analyzed ∼5000
genomes belonging to all reference sets for statistical evalu-
ation (Supplementary Table S3). On average, only one gene
model shows positive hits for three or more ARTS criteria.
Also, most of the core genes from the respective sets are
found in each analyzed genome. Around 2–5% of core genes
are highlighted for each criterion. The percent of core genes

that went through HGT is in conformity with the HGT es-
timate levels in the literature (48,49).

Reference sets for metagenomic data

Since metagenomic approaches are becoming increasingly
popular in natural product research (50,51), submissions
of whole metagenomes to the ARTS webserver are also
showing a significant increase. Therefore, we have built an
additional reference set available for metagenome analysis,
which does not include phylogeny and duplications. Given
that metagenomes are usually quite diverse and comprise
more than one single phylum, core genes are defined as
genes belonging to the Database of Essential Genes (DEG)
(Supplementary Table S3).

Comparative analysis

ARTS 2.0 now makes it easier for users to analyze mul-
tiple genomes and applies a comparative analysis of pro-
vided organisms (Figure 2). Throughout the analysis, in-
dividual ARTS results are accessible upon completion of
each run. Once all the sequences of interest are analyzed,
an interactive summary table representing all genomes with
each resulting criterion is provided. In addition, shared core
genes with their respective hits and their observed frequen-
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Table 1. Default ARTS analysis for positive examples of genomes and BGCs with known self-resistance mechanisms

Product Resistance gene Organism ARTS hits
Criteria hits (>2,

>3)
Genes

(core, total)

Thiocillin ribosomal protein L11(35) Bacillus cereus ATCC 14579 D,B,P 9,1 472, 5231
Myxovirescin lspa: signal peptidase II(36) Myxococcus xanthus DK 1622 D,B,P 15,2 372, 7267

Thailandamide
accA: acetyl-CoA
carboxylase(37)

Burkholderia thailandensis
E264

D,B,P,R* 42, 5 838, 6347

Indolmycin trypS: tryptophan-tRNA
synthetase(38)

Pseudoalteromonas
luteoviolacea

D,B 13, 2 540, 4963

Agrocin 84 leu tRNA synthase(39) Agrobacterium radiobacter
K84

D,P 41, 2 470, 6876

Bengamide methionine
aminopeptidase(40)

Myxococcus virescens DSM
15898

Core N/A 1, 18

Mupirocin Ile-tRNA synthetase(41) Pseudomonas fluorescens
NCIMB 10586

Core N/A 1, 36

Andrimid accD: acetyl-CoA
carboxylase(42)

Pantoea agglomerans Eh335 Core N/A 1, 18

Cystobactamid
Pentapeptide repeat
protein(43)

Cystobacter sp. Cbv34 R* N/A 0, 24

Phaseolotoxin ornithine
carbamoyltransferase(44)

Pseudomonas savastanoi pv.
phaseolicola

Core, R* N/A 3, 26

Kalimantacin fabl: enoyl reductase(45) Pseudomonas fluorescens
BCCM ID9359

No hits N/A 3, 29

Hits to ARTS criteria are shown as; D: duplication, B: BGC proximity, P: phylogeny, R: resistance model. Rows in gray indicate only complete gene cluster
as input rather than whole genome. Stars indicate exploration mode.

Figure 2. Example output of multi-genome ARTS analysis. Top part of the page represents the summaries of individual arts runs and shared core genes
throughout the whole analysis with respective ARTS hits. At the bottom, shared BGCs and resistance models can easily be navigated and an interactive
BiG-SCAPE graph output can also be found via ‘Open BiG-SCAPE overview” option.
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cies among all genomes can be inspected via dynamic out-
put tables. This aids in further prioritizing ARTS hits for
those that are detected in multiple contexts or related BGCs
and therefore are more likely to be involved in resistance.
For example, users can now narrow HGT hits by inspecting
those that are shared across multiple organisms. In addi-
tion to these data, the BiG-SCAPE algorithm (52) is ap-
plied on all detected BGCs, allowing users to investigate
similar BGCs from multiple sources by constructing gene
cluster sequence similarity networks and identifying gene
cluster families inside these networks. Furthermore, each of
the BGCs in a gene cluster family can be examined in or-
der to assess whether they have core or resistance models
as shared hits, as well as whether a cluster stands out with
unique hits compared to its relatives from other species.

Server-side updates and speed up

In order to keep the ARTS pipeline at high standards, third
party tools used in the workflow were updated. ARTS 2.0
now uses antiSMASH v5 and is able to analyze antiSMASH
results from their newest JSON format. The most time con-
suming part of the ARTS pipeline is the creation of species
and gene trees for phylogenetic analysis via ASTRAL. By
updating antiSMASH and ASTRAL, the average runtime
of the whole pipeline could now be cut down to half. Also,
in order to satisfy the increasing demand, ARTS 2.0 is now
hosted at the highly scalable de.NBI cloud system with
seven times the computational power. With these hardware
and software updates, the ARTS 2.0 webserver is now capa-
ble of analyzing multiple inputs up to 100MB and depend-
ing on the genomes and selected parameters, 3-8 times faster
than the previous version.

CONCLUSIONS AND FUTURE PERSPECTIVES

Currently, ARTS is the only platform to automate resis-
tance and putative drug-target based genome mining in bac-
teria via a user-friendly webserver. By design, ARTS aims to
survey a wide scope of potential genes as drug targets while
minimizing manual inspection by using the dynamic out-
put and multiple screening criteria for more confident tar-
get predictions. Thus it is incumbent on the user to examine
potential hits with provided metadata and contextual fram-
ing. Some of the ARTS hits might be more likely involved in
biosynthesis and not associated with resistance. Although
we removed common biosynthesis genes from the core gene
sets to avoid false positives (23), it is currently not possi-
ble to automatically distinguish if genes are more likely in-
volved in biosynthesis or resistance, for example fatty acid
synthases are involved in both (22). The occasional high
counts of positive hits in exploration mode, largely due to
undefined cluster boundaries, can be easily and rapidly fil-
tered in the interactive output page. As shown previously,
this inspection can even serve to help define the true bound-
aries of clusters, which remains a largely unresolved chal-
lenge when dealing with bacterial BGCs (23). Newly intro-
duced features now make ARTS 2.0 a fast and comprehen-
sive pipeline allowing users to: analyze sequences from all
bacterial genomes as well as metagenomic samples, apply
comparative analysis on multiple genomes, and interrogate

similar BGCs for shared resistant genes. For future appli-
cations, we are working on increasing ARTS’ availability
by making it directly accessible through other webservers
such as antiSMASH. This will enable researchers to eas-
ily apply target-directed genome mining approaches on se-
quences from different databases as a plugin. Furthermore,
we are currently in process of creating the ARTS database,
which will contain preanalyzed ARTS results for all bac-
terial genomes within the Refseq database, and will allow
global analysis and comparisons of resistant targets within
BGC. We hope that with this update, ARTS 2.0 will now
provide an even broader access to resistance based genome
mining methods and facilitate the discovery of competitive
antibiotics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Tübingen; State of Baden-Württemberg through bwHPC
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