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A B S T R A C T   

Coronary heart disease (CHD) is a leading cause of mortality globally and poses a significant 
threat to public health. Coronary angiography (CAG) is a gold standard for the clinical diagnosis 
of CHD, but its invasiveness restricts its widespread application. In this study, we utilized a pulse 
diagnostic device equipped with pressure and photoelectric sensors to synchronously and non- 
invasively capture wrist pressure pulse waves and fingertip photoplethysmography (FPPG) of 
patients undergoing CAG. The extracted features were utilized in constructing random forest- 
based models to assessing the severity of coronary artery lesions. Notably, Model 3, incorpo-
rating both wrist pulse and FPPG features, surpassed Model 1 (solely utilizing wrist pulse fea-
tures) and Model 2 (solely utilizing FPPG features). Model3 achieved an Accuracy, Precision, 
Recall, and F1-score of 78.79%, 78.69%, 78.79%, and 78.70%, respectively. Compared to Model1 
and Model2, Model 3 exhibited improvements by 4.55%, 5.25%, 4.55%, and 5.12%, and 6.06%, 
6.58%, 6.06%, and 6.54% respectively. This fusion of wrist pulse and FPPG features in Model 3 
highlights the advantages of multi-source information fusion for model optimization. Addition-
ally, this research provides invaluable insights into the novel development of diagnostic devices 
imbued with TCM principles and their potential in managing cardiovascular diseases.   

1. Introduction 

Coronary heart disease (CHD), marked by the occlusion and stenosis of coronary arteries, which leads to myocardial ischemia and 
related heart conditions, remains a primary cause of global mortality [1]. Its prevalence is concerning, affecting approximately 20.1 
million Americans aged 20 or older according to the NHANES data from 2015 to 2018, indicating an overall prevalence of 7.2% among 
U.S. adults [2]. Similarly, the mortality rate of CHD among Chinese residents has rising since 2012, reaching 130.14 per 100,000 in 
2019, as reported by the China Health Statistical Yearbook 2020 [3]. The rising prevalence of CHD presents a significant public health 
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challenge worldwide, resulting in substantial economic and healthcare burdens. Consequently, the urgency for accurate diagnosis and 
effective prevention strategies cannot be overstated. 

Abnormal changes in coronary artery function and structure have been identified as the primary causes of clinical cardiovascular 
risk events in previous studies [4–6], emphasizing the importance of identifying coronary artery lesions. However, coronary angi-
ography (CAG) [7], considered the gold standard for diagnosing CHD, has limitations due to its invasive nature, risk of allergic re-
actions, and potential complications, making it unsuitable for early screening of patients with suspected CHD and mild symptoms. 
Similarly, while other clinical examinations such as intravascular ultrasound (IVUS) [8] and coronary computed tomography angi-
ography (CCTA) [9] are available for diagnosing coronary lesions, their high cost, operational complexity or invasiveness hinder their 
broad application in disease surveillance and prevention. 

Pulse diagnosis is a unique diagnostic method in traditional Chinese medicine, wherein doctors can gather pathological infor-
mation from patients by feeling the pulsations at the radial artery using their fingers, aiding in diagnosis. In fact, this pulse-taking 
method, based on the rhythmic contractions of the heart, conveys critical information about the cardiovascular system [10,11]. 
The arterial pulse wave embodies pulsatile fluctuations of blood vessel pressure, velocity, and diameter. Alterations in these pulse 
wave characteristics can indicate a spectrum of cardiovascular diseases, including arterial stiffness, hypertension, atherosclerosis, and 
other anomalies. Furthermore, during circulation, blood traverses through peripheral micro-arteries, capillaries, and micro-venules, 
leading to pulsatile changes in blood volume within these microvessels due to cardiac pulsations. This volume pulse wave, 
measured at the fingertip using photoplethysmography, reflects essential cardiovascular data, such as cardiac function, blood flow, 
peripheral vessels, and microcirculation. This information is vital for the diagnosis, monitoring, and management of cardiovascular 
diseases. 

Research has demonstrated the feasibility of identifying and diagnosing diseases using wrist pressure pulse wave and PPG (pho-
toplethysmography) blood volume pulse wave signals, which offers advantages such as convenience, effectiveness, and non- 
invasiveness. For example, Amjed S. Al Fahoum et al. [12] achieved an accuracy rate of 89.37% in identifying 160 patients with 
five different cardiovascular diseases using PPG signals and feature selection-based classifiers. Technological advancements have 
catalyzed development of pulse diagnostic devices incorporating multiple sensors [13]. In a study by Jianjun YAN et al. [14], a 
multi-sensor pulse diagnostic device (as shown in Fig. 1) were employed to capture wrist pressure pulse wave and fingertip photo-
plethysmography (FPPG) signals. From these,82-dimensional features were extracted and a blood pressure assessment model was 
developed using the gradient boosting decision tree regression algorithm. The evaluation results adhered to performance standards of 
the Association for the Advancement of Medical Instrumentation and British Hypertension Society. These findings emphasized the 
potential advantages of non-invasive and convenient diagnostic methods, showcasing the benefits of pulse diagnostic devices with 
multiple sensors. These devices capture multi-channel physiological signals simultaneously, facilitating comprehensive pathophysi-
ological information collection, thereby enhancing health assessments and disease identification accuracy. 

This study introduced a novel method to assess the severity of coronary artery obstruction in CHD patients and those suspected CHD 
using a non-invasive technology. The proposed approach utilize a pulse diagnostic device equipped with pressure and photoelectric 
sensors to synchronously collect wrist pressure pulse waves and FPPG of patients undergoing CAG. Features extracted from these 
signals are employed in constructing random forest-based models to assess the severity of coronary artery lesions. Additionally, this 
study explored the potential value of wearable pulse diagnostic devices that integrated multi-source information fusion technology for 
comprehensive and real-time out-of-hospital health monitoring, This capability facilitates, early detection, prediction and warning. 
Utilizing wearable devices with multi-source information fusion technology presented a promising pathway for personalized 
healthcare and proactive disease management. 

Fig. 1. The wearable hardware component of ZY-I type pulse diagnostic device.  
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2. Data and methods 

2.1. Participants 

In this study, a total of 133 participants were recruited from the Yueyang Hospital of Integrated Traditional Chinese and Western 
Medicine, and Shuguang Hospital, both are affiliated with Shanghai University of Traditional Chinese Medicine, between December 
2020 and July 2021. 

Participants were considered for inclusion if they (1) presented clinically with CHD and were scheduled for coronary angiography, 
(2) were aged 40 or above, and (3) provided written informed consent. 

Participants were excluded if they (1) experienced chest pain resulting from heart diseases other than CHD, severe neurosis, 
menopausal syndrome, or cervical spondylosis, (2) had significant primary diseases of the liver, kidney, or hematopoietic system, (3) 
suffered from psychiatric disorders, (4) had a history of coronary artery intervention or bypass surgery, (5) were unable to complete 
pulse data collection, or (6) had incomplete medical records. 

Diagnostic criteria for CHD were based on the guidelines provided by the American College of Cardiology/American Heart As-
sociation (ACC/AHA) (2007) [15]. The confirmation of CHD required the presence of coronary angiography, which identified stenosis 
of at least one coronary vessel, including the left main branch, left anterior descending branch (including diagonal branch), left 
circumflex branch (including obtuse marginal branch), and right coronary artery (including posterior descending branch and left 
posterior ventricular branch), with a severity of≥50% at the most severe point. 

Ethical approval for this study was obtained from Ethics Committee of the Shanghai University of Traditional Chinses Medicine. All 
participants voluntarily agreed to take part in the study and provided informed consent. The confidentiality of personal information 
was strictly maintained. 

2.2. Grouping 

The patients were categorized into three groups based on the severity of stenosis in the primary coronary vessel with the most 
severe coronary artery stenosis.  

Group 1 :Stenosis in the primary coronary vessel <50%  
Group 2 :Stenosis in the primary coronary vessel ranging from 50% to <70%  
Group 3 :Stenosis in the primary coronary vessel ≥70%. 

2.3. Participant data 

2.3.1. Participant demographics 
Participant demographics were collected, including information on their sex, age, blood pressure, height and weight. Height and 

weight measurements were taken in an upright position with shoes off using a Height and Weight Measurement Instrument. To 
determine each participant’s body mass index (BMI), the following formula was applied: BMI = weight (kg)/[height (m)]2. 

2.3.2. Acquisition of wrist pulse and FPPG signals 
The ZY-I type pulse diagnostic device, featuring multiple sensors including pressure and photoelectric sensors, was developed 

jointly by the Shanghai University of Traditional Chinese Medicine and the East China University of Science and Technology. This 
advanced device was used for the acquisition and analysis of wrist pulse and FPPG signals, providing valuable insights into 

Fig. 2. Overall structure of the wearable hardware system.  
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cardiovascular health. The wearable hardware component of ZY-I type device is illustrated in Fig. 1. 
The wristband hardware system of pulse diagnosis device with multiple sensors, is depicted in Fig. 2. It comprises two primary 

components: the upper computer (Host) and the lower wearable device (Slave). The upper computer, which includes devices such as 
computers and smartphones, is equipped with a pulse waveform acquisition and analysis program. It enables functions such as in-
struction control, data reception and storage, as well as signal processing and analysis for the wearable pulse diagnosis wristband. The 
lower wearable device serves as the pulse diagnosis wristband itself, responsible for signal acquisition, data communication, pressure 
application, and comfortable wearing. 

Prior to signals acquisition, participants were instructed to sit in a quiet environment for a minimum of 3 min, maintaining calm 
breathing and relaxation. They were instructed to extend their forearms and palms facing up. 

The wrist pulse acquisition terminal of the ZY-I-type pulse diagnostic device was securely positioned at the styloid process of left 
radius. Additionally, the fingertip photoelectric splint was firmly attached to the tip of the middle finger on the left hand (Fig. 3). The 
wrist pulse and FPPG signals were recorded for 60 s at a sample rate of 4000 Hz when the wrist pulse signal reached its peak amplitude 
and remained stable. 

2.4. Processing of wrist pulse and FPPG signals 

The flowchart illustrating the processing of wrist pulse and FPPG signals is presented in Fig. 4. Initially, the concurrently collected 
original pulse wave signals undergo preprocessing, which includes filtering, baseline drift removal, and the extraction of single-cycles. 
Following this, during the feature engineering stage, time-domain features of wrist pressure pulse wave and FPPG signals, along with 
Pulse Wave Transit Time (PWTT), are extracted to form the feature set for model prediction. Subsequently, these features are employed 
to establish a prediction model based on the random forest algorithm. The detailed process is outlined as follows. 

2.4.1. Signals preprocessing 
In process of collection data from wearable hardware of pulse diagnostic device, the sensors are susceptible to various external 

environmental factors, such as patient limb tremors, breathing, instrument mechanical vibrations, and power frequency interference. 
These factors result in a varying degree of baseline drift and high/low-frequency noise in the output signals. Additionally, the raw pulse 
wave signals obtained contain multiple cycles, necessitating the extraction of individual cycles for detailed analysis. Hence, pre-
processing is essential before analyzing the pulse wave signals, primarily involving filtering, baseline drift removal, and single-cycle 
extraction. 

2.4.1.1. Signal filtering. To achieve zero-phase filtering while preserving the temporal characteristics of the signal, we adopt a 
combination of bidirectional filtering and Butterworth digital filtering. This approach effectively removes frequency components 
within the range of 0.5–20Hz. 

2.4.1.2. Removing baseline drift. The filtered pulse wave signal exhibits a noticeable fluctuating trend, as shown in Fig. 5. To remove 
baseline drift, we employed a method involving the fitting of cubic spline curves. The process begins by locating the trough points of 
each cycle. These points are then used to fit the baseline. Finally, the overall signal fluctuation is corrected by calculating the difference 
between the signal and the baseline. 

Due to the prominence of the main wave peak, we first located the peak points. Subsequently, we identified the trough points by 
searching for the points of minimum values. A window segmentation method was introduced for the positioning of peak points, 
detailed as follows.  

(1) Divide the filtered pulse wave into n segments with a window length W for each waveform. 

Fig. 3. Distribution scheme for pulse sensors.  
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(2) Identify the maximum point in each segment window waveform and record its position.  
(3) Starting from the first window, compare the maximum value within the window with the maximum values in the adjacent left 

and right 10 windows. If the point is the maximum value, mark it as a peak point. Then, slide to the next window and repeat this 
process until the last window. 

In this process, W is set based on the sampling frequency (fs), where W = fs/32. The total number of segments (n) is the total length 
of the pulse wave divided by W. Considering that the sampling frequency of the pulse diagnostic device is 4000Hz, and a single cycle of 
the pulse wave has approximately 2000–3000 sampling points, W is set to 150. Compared to the traditional window sliding algorithm, 
which moves one sampling point at a time, the window segmentation method designed in this study offers a faster processing speed for 
high-sampling-frequency pulse wave signals. As illustrated in Fig. 5, precise positioning of the peak points has been achieved for 
different pulse waves. Fig. 6 demonstrates the fitting of a cubic spline curve through the marked trough points and the effect of 
removing the baseline, showing that each pulse wave cycle has been aligned to the same horizontal line. 

2.4.1.3. Single-cycle signal extraction. The pulse wave signal is a quasi-periodic signal. Due to the potential influence of external 
factors, each single-cycle signal may exhibit subtle waveform differences. To preserve the representative characteristics of these 

Fig. 4. Flowchart of data processing.  

Fig. 5. Filtered pulse wave signals: wrist pressure pulse wave, FPPG pulse wave.  

Fig. 6. The effect of baseline drift removal.  
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signals, it is necessary to average all extracted cycles. The specific extraction process is as follows.  

(1) Segment multiple single-cycle waveforms based on the pulse wave trough point identified in the previous section, as illustrated 
in Fig. 7(a).  

(2) Exclude abnormal single-cycle waveforms potentially caused by body movements. This is mainly applicable in cases where the 
waveform length is excessively long or short, or the amplitude is too large.  

(3) Calculate the maximum length of each single-cycle waveform and apply zero-padding to values below this length.  
(4) Compute the average value of all cycles at each sampling point. Subsequently, remove the excess zero-mean sampling points at 

the end, resulting in the single-cycle waveform depicted in Fig. 7(b). 

2.4.2. Features extraction of wrist pulse and FPPG signals 

2.4.2.1. A representative cycle of pulse waveform and its characteristic points. The Time-Domain Analysis Method (TDM) primarily 
focuses on analyzing the waveform of a representative cycle of a pulse signal [16]. It involves defining characteristic points with 
physiological and pathological significance and extracting corresponding feature parameters. In this study, we primarily employed the 
feature point locating method [17] to accurately identify seven feature points within a cardiac cycle of the pulse waveform. These are 
marked as A-G in Fig. 8 and their physiological significance is detailed in Table 1. 

2.4.2.2. Extraction methods of time-domain features of a cycle of pulse waveform. Pulse diagnostic instruments commonly output three 
types of pulse waveforms: Type I (with one peak) as shown in Fig. 9(a), Type II (with two peaks) as depicted in Fig. 9(b), and Type III 
(with three peaks), illustrated in Fig. 9(c). 

The flowchart illustrating the seven feature points for these three types of pulse waveforms is presented in Fig. 10. To locate the 
three peaks and two troughs in the waveform, digital signal processing methods such as plane geometry and differential diagrams are 
utilized. For a Type I waveform (with one peak), points D and E are extracted to convert it to the Type II pulse waveform. Similarly, for 
a Type II waveform (with two peaks), points B and C are extracted to convert it to a Type III pulse waveform. 

For a Type III pulse waveform, see Fig. 11(a), which distinctly exhibits three peaks and two troughs, the extraction of the seven 
feature points proceeds as follows.  

(1) Obtain the first-order differential signal of the pulse signal, as shown in Fig. 11(b) and the second-order differential signal of the 
pulse signal, as illustrated in Fig. 11(c).  

(2) Identify the set of zero points in the first-order differential signal. The horizontal coordinate of each point in this set corresponds 
to the horizontal coordinate of an extremum point of the pulse waveform. Determine whether each point is a local minimum or 
maximum based on the positive or negative value of the corresponding horizontal coordinate in the second-order differential 
signal.  

(3) Determine points B, C, D, E, and F based on the relative order of the horizontal coordinates of the points in the set and finally 
compute the time-domain features. 

2.4.2.3. Extracted time-domain feature of wrist pulse and FPPG signals. The amplitudes and phases of these identified peaks and troughs 
provide essential information about physiological and pathological conditions [18]. By precisely these seven features points in Fig. 8 
we can effectively describe the temporal variations of the waveform. 

Based on the amplitudes and phases of these seven features points, we extracted 21 time-domain features, including 7 amplitude 
features, 5 time features, and 9 proportion features from wrist pressure pulse wave, shown in Table 2.Similarly, the same processing 
was applied to extract time-domain features from FPPG signals, including following features such as h1_ppg, h2_ppg, h3_ppg, h4_ppg, 
h5_ppg, h2/h1_ppg, h3/h1_ppg, h4/h1_ppg, h5/h1_ppg, t1_ppg, t2_ppg, t3_ppg, t4_ppg, t5_ppg, T_ppg, t1/T_ppg, t4/T_ppg, t1/t4_ppg, 
t5/t4_ppg, w1_ppg, w2_ppg, w1/T_ppg, w2/T_ppg. 

Fig. 7. (a) Multiple single-cycle waveforms in the original pulse wave signal. (b) Average waveform of the single-cycle pulse wave.  
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2.4.2.4. Calculating PWTT. Pulse Wave Transit Time (PWTT) is a physiological parameter indicating the duration required for a pulse 
wave to traverse the distance between two arterial sites within the human body. The calculation involves measuring the time delay 
between the pulse wave’s initiation at one arterial site to its arrival at another. In the context of this investigation, “PWTT” refers to the 
pulse wave transit time from the radial artery at the wrist to the vessels located at the fingertip. 

The step-by-step calculation process for PWTT is outlined as follows.  

(1) Record the position of peak point of each cycle of the wrist pulse and FPPG signals.  
(2) Determine the number of sample points ‘n’ between the peak points of the two types of signals in the same cycle. Calculate the 

time difference ‘t’ based on the sampling frequency ’fs’ by applying the formula t = n/fs.  
(3) Compute the average time difference for each cycle between the two types of signals, ultimately obtaining the PWTT value. 

Fig. 8. One cardiac cycle of pulse waveform with X-axis and Y -axis representing time and amplitude, respectively.  

Table 1 
Physiological significance of pulse signal reference points.  

Reference point Meaning 

A Start point 
B Main wave crest 
C Main wave gap 
D Tidal wave peak 
E Dicrotic notch 
F Dicrotic wave peak 
G End point  

Fig. 9. Pulse waveforms with different peaks.  
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2.5. Statistical analysis 

Statistical analysis was performed using SPSS 25.0 (IBM, Armonk, NY, USA) to compare the clinical data, wrist pulse features and 
FPPG features among different groups of patients. The Wilcoxon-Mann-Whitney nonparametric test was employed to compare 
continuous variables, with the results presented as median values and quartile ([M (Q1, Q3)]). Categorical variables were compared 
using the chi-squared test, and the results were expressed as percentages. All reported P values were two-tailed, and those less than 
0.05 were considered statistically significant. 

2.6. Modeling method 

The random forest (RF) algorithm is a widely used ensemble method for classification and regression in biomedical applications. It 
is an improvement over the decision tree algorithm, as it constructs multiple decision trees (or regression functions) and combines their 
predictions to get the final result [19]. Each decision tree is established independently on a randomly extracted sample subset of the 
data, and all the trees in the random forest are uniformly distributed. While an individual tree may have limited classification 
capability, the random forest makes predictions by aggregating the results of a large number of randomly generated decisions and 
performing statistical analysis on their classification outcomes. The process of RF classification process is showed in Fig. 12. 

In this study, machine learning (ML) was performed by MATLAB 2015(Math Works Co.) and the RF algorithm was employed to 
develop a model for assessing the severity of coronary occlusion. A 5-fold cross validation was performed on dataset, which 80% of 
data randomly assigned as the training set and the remaining 20% as the test set. The models were retested five times, and the mean 
value was calculated for prediction. 

The confusion matrix is a visual tool used to assess a model’s performance by comparing its predicted values with actual mea-
surements. Table 3 illustrates the confusion matrix, where the Actual Positive row represents the instances that are truly positive in the 
dataset. The Actual Negative row represents the instances that are truly negative. The Predicted Positive column represents the in-
stances predicted as positive by the model and the Predicted Negative column represents the instances predicted as negative. To 
evaluate the model’s performance, we calculated Accuracy, Precision, Recall, and F1-score using formulas (1)-(4). 

Accuracy is a fundamental metric that provides a comprehensive assessment of the model’s correctness, quantifying the proportion 
of correctly classified instances relative to the total number of instances. We calculated accuracy using formula (1): 

Accuracy=
TP + TN

TP + FN + FP + TN
(1) 

Precision is a crucial metric that evaluates the model’s ability to accurately identify positive instances, measuring the proportion of 
correctly predicted positive instances relative to all instances predicted as positive. Precision was computed using formula (2): 

Fig. 10. Flow chart of feature point positioning.  
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Precision=
TP

TP + FN
(2) 

Recall, also known as sensitivity or true positive rate, is a vital metric that assesses the proportion of correctly predicted positive 
instances relative to all actual positive instances. We calculated recall according to formula (3): 

Recall=
TP

TP + FP
(3) 

The F1-score is a comprehensive metric that combines precision and recall into a single measure, providing a balanced assessment 
of the model’s performance. It takes into account both the Precision, which measures the accuracy of positive predictions, and the 
Recall, which measures the ability to capture positive instances. F1-score was computed using formula (4): 

F1 − score=
2 × Precision × Recall

Precision + Recall
(4)  

3. Results 

3.1. Comparison of participant demographics 

The demographic information of 133 patients with different degrees of coronary artery occlusion was shown in Table 4. The 

Fig. 11. Time domain feature extraction of Type III pulse waveform.  
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Table 2 
Time domain features of the pulse signal.  

Feature type Feature parameter Feature name 

Magnitude h1 Main wave amplitude  
h2 Main wave gorge amplitude  
h3 Wave front dicrotic amplitude  
h4 Dicrotic notch amplitude  
h5 Dicrotic wave amplitude  
w1 the width of main wave in its 1/3 height position  
w2 he width of main wave in its 1/5 height position 

Time t1 Main wave phase  
t2 Main wave gorge phase  
t3 Wave front dicrotic phase  
t4 Dicrotic notch phase  
t5 Dicrotic wave phase  
T Pulse cycle 

Proportion h2/h1 Main wave gorge main Wave amplitude ratio  
h3/h1 Wave front dicrotic amplitude Main wave amplitude  
h4/h1 Dicrotic notch main wave amplitude ratio  
h5/h1 Dicrotic wave main wave amplitude ratio  
t1/T Time ratio  
t1/t4 Time ratio  
t5/t4 Time ratio  
w1/T Pulse width cycle ratio  
w2/T Pulse width cycle ratio  

Fig. 12. Classification process based on the RF algorithm.  

Table 3 
Confusion matrix.   

Predicted Positive Predicted Negative 

Actual Positive TP FP 
Actual Negative FN TN  
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analysis revealed no statistically significant differences in gender composition and age among different groups (P > 0.05). This in-
dicates that the distribution of gender and age was similar across the participant groups, ensuring a balanced representation of par-
ticipants in this study. 

3.2. Comparison of wrist pulse and FPPG features 

The time-domain features of the wrist pulse and FFPG signals were compared among the three groups and presented in this section. 
The analysis aims to reveal the differences and similarities in these features among the different degrees of coronary artery occlusion. 

The Kruskal-Wallis test results for patients with different degrees of coronary artery occlusion are shown in Table 5. Specifically, t4 
and T values were found to be significantly lower in Group 2 compared to Group 1 (P < 0.05). No statistically significant differences 
were found in other parameters. In this context, t4 represents the systolic time value of the heart, while T represents the cardiac cycle. 
Notably, the T demonstrated a consistent downward trend from the Group1 to Group2 and further to Group 3. These findings suggest 
potential associations between the degree of coronary artery occlusion and changes in t4 and T values. 

3.3. Development and evaluation of models for assessing the severity of coronary artery occlusion 

In this study, RF algorithms were employed to establish three distinct models for assessing the severity of coronary artery occlusion. 
Model 1 was based on the time-domain features of wrist pulse, Model 2 utilized time-domain features of FPPG, and Model 3 combined 
time-domain features of both wrist pulse and FPPG, along with PWTT. The assessment and comparison of the performance of these 
models were conducted using confusion matrices, Accuracy, Precision, Recall, and F1-score. 

The confusion matrices of the different models were presented as the ratio of correctly predicted positive samples to all positive 
sample predictions, facilitating visual comparison. Figs. 13-15 depicted the confusion matrices for the classification results of Model 1, 
Model 2, and Model 3, respectively. Additionally, Tables 6–8 provided the four-evaluation metrics for each model. Table 9 showcased 
comparisons of Accuracy, Precision, Recall, and F1-score for the three models, providing a comprehensive overview of the perfor-
mance measures for each model. Analysis of these figures and tables indicates that Model 3 exhibits superior performance. 

4. Discussion 

CHD is closely associated with endothelial damage in the coronary arteries, which can be caused by various factors including high 
blood pressure, hyperlipidemia, smoking, diabetes, and inflammation. The accumulation of lipid plaques in the damaged arteries can 
lead to partial or complete vascular blockage, resulting in alterations in hemodynamic parameters. These alterations are directly 
reflected in the pulse wave. Therefore, analyzing changes in the pulse wave’s features, such as shape, intensity, speed, and rhythm, can 
detect variations in the function and state of human arteries. 

In this research, we simultaneously acquired radial pressure pulse waves and FPPG. Time-domain features were extracted 
respectively, and based on these, the PWTT was calculated. This methodology enables the acquisition of multi-dimensional cardio-
vascular data, providing a breadth and depth of information that surpasses conventional single-source signal collection methods. The 
comparison among different groups revealed that the values of “t4” and “T” were lower in Group 2 (50%≤stenosis in a major coronary 
vessel<70%) compared to Group 1 (stenosis in a major coronary vessel<50%). This indicates a shortened left ventricular systolic 
period, a shortened pulse cycle, and an increased heart rate in Group 2 and Group3. These phenomena may potentially be due to 
compensatory mechanisms of cardiac blood supply in response to coronary artery occlusion: In the event of arterial lumen damage, the 

Table 4 
A comparison of demographical information among groups with different degrees of coronary artery occlusion.  

Group N Gender Age(‾x ± s) 

Male Female 

Group1 66 29 37 66.181 ± 9.062 
Group2 27 11 16 68.592 ± 8.266 
Group3 40 22 18 66.000 ± 8.846 
x2/F – 1.694 0.851 
P – 0.429 0.429  

Table 5 
A comparison of wrist pulse features among groups with different degrees of coronary artery occlusion.  

Group N t4 T 

Group1 66 0.350 (0.322,0.365) 0.903 (0.826, 1.022) 
Group2 27 0.339 (0.309,0.354) ▴ 0.860 (0.771,0.902) ▴ 
Group3 40 0.339 (0.318,0.359) 0.855 (0.782, 0.985) 
H  6.698 7.789 
P – 0.035 0.020 

Note: ▴, compared with Group 1, P < 0.05. 
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heart may adapt by adjusting the duration of the cardiac cycle (T) to accommodate reduced blood flow, an adjustment that is critical 
for myocardial blood supply. This adaptation may manifest as an increase in heart rate, with the objective of maintaining a balance 
between myocardial oxygen demand and supply. The elevation in heart rate is key to maintaining adequate cardiac output and 
myocardial oxygenation, reflecting the cardiovascular system’s ability to maintain a complex equilibrium during the progression of 
coronary artery disease. 

Multi-source information fusion is a process of comprehensive processing and utilization of information from different sources, 
aimed at addressing complex pattern recognition or improving classification performance [20]. It can be divided into data-level fusion, 
feature-level fusion, and decision-level fusion [21]. In this study, we employed data-level fusion and feature-level fusion methods to 

Fig. 13. Confusion matrices for Model 1.  

Fig. 14. Confusion matrices for Model 2.  
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Fig. 15. Confusion matrices for Model 3.  

Table 6 
Evaluation metrics for the Model 1 (%).  

Group Group1(N = 66) Group2(N = 27) Group3(N = 40) 

Precision 66.67 82.89 70.77 
Recall 57.58 95.45 69.70 
F1-score 61.79 88.73 70.23 
Average Precision 73.44 
Average Recall 74.24 
Average F1-score 73.58 
Accuracy 74.24  

Table 7 
Evaluation metrics for the Model 2 (%).  

Group Group1(N = 66) Group2(N = 27) Group3(N = 40) 

Precision 65.45 79.45 71.43 
Recall 54.55 87.88 75.76 
F1-score 59.50 83.45 73.53 
Average Precision 72.11 
Average Recall 72.73 
Average F1-score 72.16 
Accuracy 72.73  

Table 8 
Evaluation metrics for the Model 3 (%).   

Group1(N = 66) Group2(N = 27) Group3(N = 40) 

Precision 73.85 82.86 79.37 
Recall 72.73 87.88 75.76 
F1-score 73.28 85.29 77.52 
Average Precision 78.69 
Average Recall 78.79 
Average F1-score 78.70 
Accuracy 78.79  

M.A. Xiaotian et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e28652

14

process the collected multi-dimensional cardiovascular data. The research results show that Model 3, which incorporates both wrist 
pulse and FPPG features, surpassed Model 1 (solely utilizes wrist pulse features) and Model 2 (relies solely on FPPG features). Model 3 
achieved an Accuracy, Precision, Recall, and F1-score of 78.79%, 78.69%, 78.79%, and 78.70%, respectively. Compared to Model 1, 
Model 3 exhibited a 4.55% higher Accuracy, 5.25% higher Precision, 4.55% higher Recall, and 5.12% higher F1-score. Similarly, it 
outperformed Model 2 with a 6.06% higher Accuracy, 6.58% higher Precision, 6.06% higher Recall, and 6.54% higher F1-score. The 
wrist pressure pulse wave has the capability to indicate arterial stiffness, hypertension, atherosclerosis, and other anomalies. Addi-
tionally, as blood traverses peripheral micro-arteries, capillaries, and micro-venules during circulation, it causes pulsatile changes in 
blood volume within these microvessels. These changes, as exemplified by FPPG, can reflect essential cardiovascular information, such 
as cardiac function, blood flow, peripheral vessels, and microcirculation. The synergy of pressure and photoelectric sensors enables 
cross-verification or mutual supplementation of the collected information, enhancing the reliability of the captured signals. This 
approach, by compensating for the limitations of individual sensors, acquires enough important information and thereby improves the 
reliability, robustness, and generalization ability of the identification model. 

5. Conclusions 

The fusion of wrist pulse features and FPPG features has demonstrated practical value in detecting the degree of coronary artery 
obstruction in CHD patients. It improves the accuracy of diagnosis and monitoring, making it applicable to research and development 
of wearable pulse diagnostic devices. Notably, this technology offers an effective and non-invasive approach in the early detection and 
management of the condition. To further advance the analysis and application of this method, future efforts should focus on utilizing 
larger datasets, incorporating additional types of pulse features, and exploring new AI technologies such as deep learning and ensemble 
learning. 
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