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Renal fibrosis is one of the most characterized pathological features in chronic kidney
disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or
allograft transplantation the only clinical option for CKD patients. Transforming growth
factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal
inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce
fibrosis but may risk promoting renal inflammation and other side effects due to the
diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA
transcripts with more than 200 nucleotides and have been regarded as promising
therapeutic targets for many diseases. This review focuses on the importance of TGF-β
and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-
β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD
are highlighted.
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INTRODUCTION

Chronic kidney disease (CKD) has become a significant public health problem with the rising
mortality and morbidity over the past three decades (Provenzano et al., 2019). Renal fibrosis is
one of the most prominent pathogenic features and the best predictor for CKD progression (Majo
et al., 2019). Triggered by the initial renal insults, the fibrotic process evokes to establish repairs.
However, as severe or persistent injuries prolong, renal resident cells, together with infiltrating
cells, may contribute to the initiation and progression of fibrosis with excessive deposition of
extracellular matrix (ECM) in the glomerulus, tubulointerstitium, and vasculature (Glassock et al.,
2017). Moreover, unresolved renal inflammation could also trigger the fibrotic process by releasing
pro-fibrotic growth factors, cytokines, and chemokines (Chung and Lan, 2011; Meng et al., 2014).
Injuries from mesangial cells, endothelial cells (ECs), podocytes, tubular epithelial cells (TECs),
and inflammatory cells could also lead to renal glomerular and interstitial fibrosis (Figure 1).
Progressive renal fibrosis and inflammation can then impair the function of nephrons and results
in albuminuria and the reduction of eGFR. Renal fibrosis culminates in renal failure, well known
as end-stage renal disease (ESRD) (Liu, 2011).
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FIGURE 1 | Renal intrinsic and inflammatory cells in glomerular and interstitial fibrosis during kidney injury. Damaged mesangial cells (MCs), endothelial cells (ECs),
and podocytes are essential in the glomerular fibrosis. The mesangial cell may produce pro-fibrotic and pro-inflammatory growth factors and cytokines and enhance
proliferation to cause deposition of the mesangial matrix. Damages on endothelial cells and podocytes may lead to albuminuria and endothelial dysfunction in
chronic kidney disease (CKD). Injured tubular epithelial cells (TECs) may produce pro-fibrotic and pro-inflammatory factors, resulting in the accumulation of
extracellular matrix (ECM) and inflammatory cells in the tubulointerstitium area. Immune cells, including macrophages and T cells, may participate in renal fibrosis by
producing growth factors and becoming collagen-producing myofibroblasts under the regulation of transforming growth factor-β (TGF-β)/Smad3 signaling.

Transforming growth factor-β (TGF-β) is a primary
pathophysiologic cytokine that instigates the process of
fibrosis (Meng et al., 2016a). TGF-β can induce transcription of
fibrotic products such as α-SMA and collagens by canonical and
non-canonical signaling pathways. Fibrotic mediators include
angiotensin II (Ang II), reactive oxygen species (ROS), as well
as advanced glycation end products (AGEs) that may activate
individual pathways to crosstalk with TGF-β/Smad signaling to
regulate renal fibrosis and inflammation (Chung et al., 2010;
Lan, 2011). However, current anti-fibrotic therapies by targeting
TGF-β are ineffective with unexpected side effects, underscoring
the complexities of the TGF-β signaling pathway (Yoshimura
and Muto, 2011; Gu et al., 2020a).

With the new technologies of high-throughput assays, we
can now update our understanding of the genomes. The
transcriptomic studies have demonstrated that the vast majority
of the genomes in mammals produce large numbers of non-
protein-coding RNAs (ncRNAs) (Quinn and Chang, 2016). These
ncRNAs are classified into long non-coding RNAs (lncRNAs),
microRNAs (miRNAs), small interfering RNAs (siRNAs), small
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and
PIWI-interacting RNAs (piRNAs) (Van der Hauwaert et al.,

2019). Of these ncRNAs, lncRNAs are characterized as RNAs
being transcribed over 200 nucleotides in length. They have been
considered the major players in fibrotic diseases’s pathogenesis
due to their tissue and cell-type specificity and the regulations
on DNAs, RNAs, and proteins (Jiang and Zhang, 2017). Of note,
many TGF-β/Smad3-regulated lncRNAs have been reported
as essential mediators in the process of renal fibrosis and
inflammation (Tang et al., 2017, 2018a,b).

In this review, the underlying mechanistic signaling pathways
by which TGF-β and lncRNAs drive renal fibrosis are to be
discussed. The developments of biomarkers and therapeutic
potential for renal inflammation and fibrosis by targeting TGF-
β/Smad signaling and lncRNAs are also described.

DIVERSE ROLES OF TGF-β/SMAD
SIGNALING PATHWAY IN RENAL
INFLAMMATION AND FIBROSIS

Transforming growth factor-β is a pleiotropic cytokine that plays
diverse roles in a wide range of biological and pathological
processes. Indeed, TGF-β acts as either deleterious or protective
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functions in kidney diseases (Lopez-Hernandez and Lopez-
Novoa, 2012). TGF-β may induce renal fibrosis by canonical and
non-canonical signaling pathways (Lan and Chung, 2012; Isaka,
2018). Besides, TGF-β promotes renal fibrosis by stimulating
ECM accumulation and alternatively activating the pro-fibrotic
immune cells, facilitating the transitions from various cell types
into pro-fibrotic cells (Gu et al., 2020b). Therefore, understanding
the diverse roles of TGF-β is of utmost importance in the
development of anti-fibrotic therapies.

Transforming growth factor-β is a well-characterized member
that belongs to the TGF-β superfamily. Among three isoforms
of TGF-β, TGF-β1 is considered the pro-fibrotic molecule that
drives the fibrotic process via canonical and non-canonical
signaling pathways (Lodyga and Hinz, 2019). In particular,
high expression of TGF-β1 is observed in most, not all
progressive forms of human and rodent kidney diseases
(Kopp et al., 1996; Fan et al., 1999; Lan, 2012b; Lan and
Chung, 2012), demonstrating the pathogenic role for TGF-
β1 in CKD. To induce transcriptions of target genes, likely
as α-SMA and collagens, the latent TGF-β1 becomes active
and binds to TGF-β receptors, promoting the transduction of
a series of Smad proteins to regulate fibrogenesis (Derynck
and Zhang, 2003). Regarding the downstream TGF-β/Smad
signaling, although the functions of Smad2 and Smad4 have
been well studied (Tsuchida et al., 2003; Ju et al., 2006; Meng
et al., 2012; Morishita et al., 2014; Loeffler et al., 2018),
their mechanistic roles are diverse and unclear due to the
limited availability of animal models, which still warranted for
further exploration.

It is widely acknowledged that Smad3 is pro-fibrotic, while
Smad2 and Smad7 are anti-fibrotic. Smad3 is highly activated
in a wide range of renal disease; evidence on animal models
suggest that the inhibition or blockade of Smad3 may reduce
the fibrotic response (Wang et al., 2006; Yang et al., 2009,
2010; Li et al., 2010; Zhou et al., 2010; Liu et al., 2012;
Zhang et al., 2018). By contrast, the function of Smad2 and
Smad7 is protective, which negatively regulates the TGF-
β/Smad3 signaling in renal fibrosis and inflammation (Lan,
2008, 2012a; Chen et al., 2011). Many studies support this
finding, showing that overexpression of Smad7 improves renal
fibrogenesis in obstructive, diabetic, hypertensive, toxin-induced
nephropathy and autoimmune crescentic glomerulonephritis (Li
et al., 2002; Lan et al., 2003; Hou et al., 2005; Ng et al.,
2005; Ka et al., 2007; Chung et al., 2009; Liu et al., 2013,
2014; Dai et al., 2015) by inhibiting the TGF-β/Smad3 and
NF-κB signaling pathways. However, the contradictory findings
have also reported that the overexpression of Smad7 could
promote TGF-β-driven apoptosis in podocytes (Schiffer et al.,
2001, 2002). Collectively, although restoring the imbalance
between Smad3 and Smad7 may serve as an ideal therapy
to halt the fibrotic process (Nie et al., 2014; Zhao et al.,
2014, 2016; Meng et al., 2015; Du et al., 2018b), Smad3
and Smad7 also serve as the vital downstream molecules
in other signaling pathways. Therefore, new specific targets
should be sought.

Transforming growth factor-β may also be produced by
damaged renal intrinsic cells or immune cells in acute and

CKDs, thus promoting the transition of tubular cells into
myofibroblasts (Mack and Yanagita, 2015). Myofibroblasts
produce fibronectin and collagens and contribute to ECM
accumulation (Yuan et al., 2019). Based on current studies,
the sources of myofibroblast origins include pericytes (Wu
et al., 2013), renal resident fibroblasts, tubular epithelial cell-
myofibroblast transition (EMT) (Iwano et al., 2002), endothelial
cell-myofibroblast transition (EndoMT) (Zeisberg et al.,
2008) and bone marrow-derived macrophage-myofibroblast
transition (MMT) (Fan et al., 1999; Meng et al., 2016b; Wang
et al., 2017). TGF-β/Smad signaling pathway tightly regulates
these transitions.

To halt the fibrotic process, strategies to inhibit the function
of TGF-β include the utilization of neutralizing antibodies
(Border et al., 1990), small molecule inhibitors against TGF-β
receptors (Bonafoux and Lee, 2009), latent form of TGF-β
(Huang et al., 2008a,b) and antisense oligonucleotides to TGF-
β1 (March et al., 2018). These findings have conferred a vital
pathological role of TGF-β in renal inflammation and fibrosis,
implying the urgent need for anti-TGF-β therapy.

THERAPEUTIC EFFECT OF ANTI-TGF-β
TREATMENT ON KIDNEY DISEASES

Anti-TGF-β therapy is an issue of considerable debate. On the
one hand, TGF-β is the crucial mediator that regulates fibrosis
in all organs, especially in kidneys (Györfi et al., 2018). On
the other hand, TGF-β regulates a wide range of biological and
pathological processes and acts as essential roles in the immune
cells, such as macrophages, conventional and unconventional T
cells (Meng, 2019; Gu et al., 2020a). Over the past decades, a
number of therapeutic drugs and clinical trials for the treatment
of CKD targeting TGF-β have further revealed the underlying
mechanisms and renewed our understanding of TGF-β signaling
(Ruiz-Ortega et al., 2020).

Targeting on the TGF-β family, LY2382770 and fresolimumab
have proven no efficacy on improvements in neither
proteinuria, eGFR, nor serum creatinine in focal and segmental
glomerulosclerosis (FSGS) and diabetic nephropathy (DN)
(Trachtman et al., 2011; Vincenti et al., 2017; Voelker et al.,
2017). Besides, various side effects induced by blocking
TGF-β, including herpes zoster, skin lesions, pustular rash,
bleeding events, and cancers, have demonstrated the awkward
situation of the anti-TGF-β therapies. Hopefully, with the
rapid development of pharmacology, a promising synthetic
anti-TGF-β agent, pirfenidone, is proven to improve the eGFR
decline in patients with DN and FSGS (Cho et al., 2007; Sharma
et al., 2011). Further studies and clinical trials on pirfenidone’s
renal protective effects are still ongoing (NCT02689778,
NCT02408744, and NCT00001959).

Nevertheless, the by-effects such as gastrointestinal disorders
and photosensitive dermatitis of pirfenidone are inevitable,
raising safety concerns to the clinical application of anti-
TGF-β therapies. Current anti-TGF-β therapies have limited
effectiveness, underscoring the urgent need to develop specific
therapeutic targets to halt the progression of renal fibrosis.

Frontiers in Physiology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 684236

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-684236 May 10, 2021 Time: 16:44 # 4

Gu et al. TGF-β-Related LncRNA in Kidney Disease

THE EMERGING ROLE OF LONG
NON-CODING RNAs IN RENAL
INFLAMMATION AND FIBROSIS

The genomic and transcriptional landscape is far more
complicated than we previously appreciated. With the
development of large-scale transcriptome analyses, we have
now acknowledged that the vast majority of genomic sequence
is transcribed into a group of lncRNAs (Hangauer et al., 2013).
However, these lncRNAs were initially ignored as “transcriptional
noise” or “evolutionary debris,” dating from the 1970s (Ohno,
1972). In the 1990s, the functions of some classically defined
lncRNAs are discovered, such as X inactive specific transcript
(XIST) in X chromosome inactive specific, raising the possibility
that lncRNAs may play an essential role in cellular biology and
disease (Brockdorff et al., 1991; Brown et al., 1991). Of note,
the number of identified lncRNAs is rapidly rising to date.
Based on the GENCODE1 (version 33), 17952 lncRNA and
19957 protein-coding genes have been identified in the human
genome, but the functions of lncRNAs in renal development
and diseases remain largely unknown. In the context of lncRNA
function in kidney diseases, lncRNAs may act as scaffolds,
decoys, or guides to control the recruitment or dismissal of
chromatin-modifying complexes.

Although lncRNAs produce in deficient amounts, their
expression patterns are highly restricted to specific cell types,
tissue, developmental stage, or disease state, suggesting the
distinctive roles of lncRNAs in different physiological or
pathological contexts (Batista and Chang, 2013; Flynn and
Chang, 2014). Pathologically, the fibrotic and inflammatory
processes in the kidneys may be triggered by a wide
range of renal injuries in the attempt to establish tissue
repair. Pathological hallmarks include TGF-β activation,
myofibroblast differentiation and transition, ECM deposition,
and inflammatory responses. Of note, TGF-β is a master
regulator of immune cell trades that it correlates closely with the
development, homeostasis, and differentiation of immune cells
such as T cells (Li and Flavell, 2008). T cells are the predominant
players in TGF-β-driven renal fibrosis and inflammation (Kinsey
and Okusa, 2014; Ludwig-Portugall and Kurts, 2014; Hu
et al., 2016). The hematopoietic-specific TGF-β and cytokines
produced by inflammatory immune cells may activate innate and
acquired immune response (Gu et al., 2020b). These may well be
associated with the functions of lncRNAs in renal inflammation.
For instance, lncRNAs may act as mediators in lupus nephritis
pathogenesis to regulate inflammation and apoptosis of renal
cells (Xue et al., 2017; Liao et al., 2019; Chen et al., 2020).

Nevertheless, lncRNAs take part in the fibrotic or
inflammatory transcriptional regulation by direct interactions
with RNA polymerase II (Pol II), transcription factors (TFs),
and other regulators. Furthermore, some lncRNAs may act
as competing endogenous RNAs (ceRNAs), which play the
competitive role as the sponges to bind with miRNAs and
reduce the concentration of fibrotic or inflammatory miRNAs,

1http://www.gencodegenes.org

therefore competing with these miRNAs in binding to their
target mRNA transcripts.

As previously mentioned, the group of lncRNAs identified in
kidneys is highly specific to cell type or disease state. Studies
carried out over these years have identified a group of anti- or
pro-fibrotic and inflammatory lncRNAs in diabetic, acute and
chronic renal diseases (Tang et al., 2017, 2018a; Ren et al., 2019;
Gu et al., 2020c) (Table 1).

For example, hyperglycemia is one of the most driving forces
in renal fibrosis. Zhang et al. has revealed the anti-fibrotic
effect of lncRNA growth arrest-specific transcript (GAS5) in
the progression of DN. lncRNA GAS5 may downregulate the
expression of pro-inflammatory MMP9 by recruiting EZH2 to
the MMP9 promoter region, therefore inhibiting renal interstitial
fibrosis and inflammatory (Zhang et al., 2020a). lncRNA
CRNDE also interacts with miR-181a-5p to to protect sepsis-
induced AKI from apoptosis (Wang et al., 2020a). Moreover,
overexpression of lncRNA CCAT1 may down-regulate miR-155,
thus inhibiting inflammation and promoting proliferation (Lu
et al., 2020). LncRNA zinc finger E-box binding homeobox1-
antisense RNA 1 (ZEB1-AS1) provides a binding site in its
promoter region for p53. It may promote H3K4me3 histone
modification on ZEB1 promoter to exhibit anti-fibrotic effect
(Wang et al., 2018a). In the context of fibrosis, the function of
lncRNA metastasis-associated lung adenocarcinoma transcript
1 (MALAT1) has been well-studied in cardiac and in hepatic
fibrosis (Jiang et al., 2019; Riaz and Li, 2019; Che et al., 2020).
MALAT1 has caught much attention in renal diseases for its
anti-inflammatory effect in AKI. The expression of LncRNA
1700020I14Rik tends to decrease under high glucose conditions,
but the overexpression of LncRNA 1700020I14Rik exerts an anti-
fibrotic effects by inhibiting cell proliferation and regulating the
miR-34a-5p/Sirt1/HIF-1α pathway (Li et al., 2018). Moreover,
lncRNA CYP4B1-PS1-001 significantly reduces in the early stage
of DN; the proliferation and fibrosis of mesangial cells are
reversed as the overexpression of CYP4B1-PS1-001 regulates the
ubiquitination and degradation of Nucleolin (Wang et al., 2016a,
2018c). ENSMUST00000147869 is significantly downregulated
in the DN model. Overexpression of ENSMUST00000147869
may inhibit fibrosis and proliferation of mesangial cells by the
possible regulation of the Cyp4a12a gene (Wang et al., 2016b).
To interact with miRNAs and proteins in podocytes, pericytes,
or TECs, lncRNAs such as taurine upregulated gene 1 (TUG1)
(Zhao et al., 2019; Cao et al., 2020a,b), Rian (Bijkerk et al., 2019),
3110045C21Rik (Arvaniti et al., 2016) also function as anti-
fibrotic lncRNA to participate in the pathogenesis of systematic
erythematosus lupus (SLE), ischemia-reperfusion injury and
obstructive nephropathy, respectively.

Studies on pro-fibrotic lncRNAs are shown in Table 2.
LncRNA myocardial infarction-associated transcript (Miat) has
been identified to function as miRNA sponges in TECs and
pericytes, thus regulating their transitions into myofibroblast
(Bijkerk et al., 2019; Wang et al., 2020b). In diabetes-induced
renal injury, lncRNA nuclear enriched abundant transcript 1
(NEAT1) is found to be increased in the serum of DN patients.
A further mechanistic study has revealed that lncRNA NEAT1
may progress the development of DN by sponging miR-23c.
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TABLE 1 | Anti-fibrotic or anti-inflammatory long non-coding RNAs (lncRNAs) in renal diseases.

lncRNA Model Mechanism/target Pathological output(s) Year References

GAS5 STZ-induced DN and rat Recruits EZH2 to the promoter region
of MMP9

Anti-fibrotic;
anti-inflammatory

2020 Zhang et al., 2020a

CRNDE Sepsis-induced AKI, rat, and TECs Regulation of miR-181a-5p/PPARα

pathway
Anti-inflammatory 2020 Wang et al., 2020a

CCAT1 LPS-induced AKI mice and TECs Overexpression of CCAT1 sequesters
miR-155 and leads to upregulation of
SIRT1 and TECs damage

Anti-inflammatory 2020 Lu et al., 2020

TUG1 SLE patient serum and SLE mouse / Anti-fibrotic;
anti-inflammatory

2020 Cao et al., 2020a,b

LPS-induced podocyte injury Targets miR-197/MAPK1 Anti-inflammatory 2019 Zhao et al., 2019

Rian/RIAN UUO mouse, AKI mouse, and pericytes Possible interactions with 14q32
miRNA cluster

Anti-fibrotic 2019 Bijkerk et al., 2019

Malat1/MALAT1 AKI; mice; and TECs Regulates HIF-1α expression through
NF-κB signaling

Anti-inflammatory 2018 Tian et al., 2018

ZEB1-AS1 DN mouse and DN patient Binds to H3K4 methyltransferase
myeloid and MLL1 to promote ZEB1
expression
Provides a binding site for p53

Anti-fibrotic 2018 Wang et al., 2018a

1700020I14Rik DN mouse and MCs Interacts with miR-34a-5p,
Sirt1/HIF-1α

Anti-fibrotic 2018 Li et al., 2018

CYP4B1-PS1-001 DN mouse and MCs Regulates Nucleolin to inhibit
proliferation and fibrosis of MCs

Anti-fibrotic 2018
2016

Wang et al., 2016a,
2018c

3110045C21Rik UUO mouse and TECs Contains binding sites for Pol II and
H3K4m3

Anti-fibrotic 2016 Arvaniti et al., 2016

ENSMUST00000147869 DN mouse and MCs Possibly targets on Cyp4a12a gene Anti-fibrotic 2016 Wang et al., 2016b

Moreover, studies from Yang et al. and Huang et al. have
drawn similar conclusions. At the same time, they further
demonstrated that lncRNA NEAT1 might promote fibrosis in
TECs and MCs by regulating the ERK1/2 or Akt/mTOR signaling
pathways (Huang et al., 2019; Yang et al., 2020). It is reported
that NEAT1 may also promote renal inflammation in lupus
nephritis by upregulating the expression of TRAF6 and activating
the NF-κB signaling in lupus nephritis (Zhang et al., 2020b).
lncRNA LOC105375913 is upregulated in the TECs of FSGS
patients and functions to promote tubulointerstitial fibrosis by
regulating C3a/p38/XBP signaling pathway and by increasing
the expression of Snail and binding to miR-27b (Han et al.,
2019). lncRNA LINC00667 is also upregulated in kidney tissues
related to the proliferation of TECs. A further mechanistic
study has revealed that LINC00667 promotes renal fibrosis by
regulating the miR-19b-3p/LINC00667/CTGF signaling pathway
(Chen et al., 2019). lncRNA TapSAKI is reported as a biomarker
with pro-inflammation and pro-apoptosis in injured TECs and
can predict mortality in AKI patients (Lorenzen et al., 2015a).

In diabetic kidney disease, ribonuclease P RNA component
H1 (Rpph1) (Zhang et al., 2019b)and Blnc1 are marked
as pro-inflammatory lncNRAs (Feng et al., 2019). Moreover,
studies on DN have observed the upregulation of lncRNA
MALAT1 in TECs and podocytes under high glucose-induced
conditions. Induced by TGF-β1, MALAT1 facilitates EMT and
promotes fibrosis by acting as a sponge for miR-145 or as
a feedback regulator of the Wnt/β-catenin signaling pathway
(Hu et al., 2017; Liu et al., 2019a; Zhang et al., 2019a). However,
the pathogenic role of lncRNA MALAT1 in hypoxia-induced

AKI remains unclear. Kölling et al. have identified an increased
level of lncRNA MALAT1 in renal biopsies and plasma of
AKI patients; in vitro study has also shown a decreased
number and proliferation in MALAT1-inhibited ECs. The
mechanistic study has discovered that it is transcriptionally
activated by hypoxia-inducible factor 1α (HIF-1α). However, no
significant differences in inflammation and fibrosis were shown
on MALAT1 knockout and wild-type mice in hypoxia-induced
AKI (Kölling et al., 2018).

Also, microarray data have shown a pro-fibrotic role
of lncRNA LINC00963 by targeting on FoxO3 gene to
regulate the FoxO signaling pathway (Chen et al., 2018). Pro-
inflammatory cytokines, together with NLRP3 inflammasome,
may also drive the progression of fibrosis under diabetic
conditions. Furthermore, lncRNA Gm4419 is increased in DN
and promotes renal fibrosis and inflammation by activating
the NF-κB/NLRP3 inflammasome signaling pathway in MCs
(Yi et al., 2017). However, the functional roles of lncRNA
ENSRNOG00000037522 and CHCHD4P4 are remained to be
further investigated (Zhang et al., 2017a; Ling et al., 2018).

TRANSFORMING GROWTH
FACTOR-β/SMAD3-DEPENDENT
LNCRNA IN RENAL INFLAMMATION
AND FIBROSIS

Fibrotic responses triggered by TGF-β/Smad3 signaling are of
importance in renal fibrogenesis. However, generally blocking the
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TABLE 2 | Pro-fibrotic or pro-inflammatory lncRNAs in renal diseases.

lncRNA Model Mechanism/function Pathological output(s) Year References

Miat/MIAT UUO mouse and TECs Sponge for miR-145 Pro-fibrotic 2020 Wang et al., 2020b

UUO mouse, IRI mouse, and pericytes Possible interactions with miR-150 Pro-fibrotic 2019 Bijkerk et al., 2019

Neat1/NEAT1 DN mouse and TECs Regulates the Klotho/ERK1/2
signaling

Pro-fibrotic 2020 Yang et al., 2020

Plasma from DN patient, DN mouse,
and MCs

Sponge for miR-23c Pro-fibrotic 2020 Li et al., 2020

DN rat and MCs Possible regulation of Akt/mTOR Pro-fibrotic 2019 Huang et al., 2019

MCs Targets miR-146b to promote TRAF6
expression

Pro-inflammatory 2019 Zhang et al., 2020b

LOC105375913 FSGS patient and TECs Regulated by C3a/p38/XBP-1s
signaling and binds to miR-27b

Pro-fibrotic 2019 Han et al., 2019

LINC00667 CKD patient, CKD rat, and TECs Promotes fibrosis via
miR-19b-3p/LINC00667/CTGF
signaling

Pro-fibrotic 2019 Chen et al., 2019

TapSAKI Sepsis-induced AKI; rats; and TECs Promotes apoptosis and
inflammation of TECs via
TaqSAKI/miR-22/TLR4/NF-κB
signaling pathway

Pro-inflammatory 2019 Shen et al., 2019

Rpph1 db/db mice and MCs Promotes inflammation and MCs
proliferation through Gal-3/Mek/Erk
signaling

Pro-inflammatory 2019 Zhang et al., 2019b

Blnc1 DN patient, STZ-induced DN, and TECs Interaction with NRF2/HO-1 and
NF-κB signaling

Pro-fibrotic;
Pro-inflammatory

2019 Feng et al., 2019

Malat1/MALAT1 DN and TECs Regulation of Wnt/β-catenin signaling Pro-fibrotic 2019 Zhang et al., 2019a

DN mouse and TECs Sponge for miR-145 Pro-fibrotic 2019 Liu et al., 2019a

Plasma, renal biopsies from AKI
patients, IRI mouse, TECs, and ECs

Regulated by HIF-1α No significant effect 2018 Kölling et al., 2018

DN mouse and podocytes Binds to SRSF1, interacts with
β-catenin

Pro-fibrotic 2017 Hu et al., 2017

STZ-induced mice and ECs Upregulated IL-6, TNF-α by activating
SAA3

Pro-inflammatory 2015 Puthanveetil et al.,
2015

ENSRNOG00000037522 DN rat and podocytes / Pro-fibrotic 2018 Ling et al., 2018

NR_033515 Serum from DN patient and MCs Negatively regulates miR-743b-5p Pro-fibrotic 2018 Gao et al., 2018

LINC00963 5/6 nephrectomy and rat Activates the FoxO signaling Pro-fibrotic 2018 Chen et al., 2018

CHCHD4P4 Kidney stone, mouse and TECs / Pro-fibrotic 2017 Zhang et al., 2017a

ASncmtRNA-2 DN mouse and MCs Upregulated by ROS Pro-fibrotic 2017 Gao et al., 2017

Gm4419 DN mouse and MCs Activates NF-κB/NLRP3-mediated
inflammation and interacts with p50

Pro-fibrotic;
pro-inflammatory

2017 Yi et al., 2017

PVT1 AKI; and LPS-induced TECs Binds to TNF-α and inhibits JNK/
NF-κB signaling pathway

Pro-inflammatory 2017 Huang et al., 2017

RP23-45G16.5 UUO mouse and TECs Shows positive correlation with
cdkn1b gene

Pro-fibrotic 2016 Arvaniti et al., 2016

upstream TGF-β signaling may risk promoting inflammation and
other side effects. We are beginning to learn that the involvement
of TGF-β in many other biological processes has been the main
obstacle for anti-TGF-β therapy. Nevertheless, the majority of
studies continue to seek therapeutic targets for anti-fibrotic
treatments. miRNA targeting downstream TGF-β signaling has
been one of the optimal options.

However, the off-target effects and cytotoxicity of miRNA
therapies have caught the attention of their specificity and
safety. Encouragingly, it has been reported that a group of
characterized lncRNAs is involved in TGF-β/Smad3-mediated
renal fibrosis and inflammation (Zhou et al., 2014, 2015b)
(Table 3). These emerging studies should provide possibilities
for lncRNA treatment in the future. Ptprd-IR is a novel lncRNA

that promotes inflammatory response on TECs in the UUO
model. It contains a binding site for Smad3 in its promoter
region and is downregulated by deleting Smad3. In contrast, the
overexpression of Ptprd-IR enhances inflammatory response by
upregulating TGF-β1-, interleukin-1β (IL-1β)-induced NF-κB-
driven production of pro-inflammatory cytokines but shows no
effect on the TGF-β1-induced renal fibrosis (Pu et al., 2020).
Other novel lncRNA, lncRNA Erbb4-IR, of which expression
is induced by TGF-β1 via Smad3-dependent mechanism, is
significantly increased in the fibrotic UUO model (Feng et al.,
2018). Erbb4-IR binds to the inhibitory Smad7 and blocks TGF-
β/Smad3-induced renal fibrosis, while overexpression of Erbb4-
IR may promote fibrosis by downregulating the expression of
Smad7. Of note, Erbb4-IR may also be induced by advanced
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glycosylation end products (AGEs) in DN. It promotes the
expression of collagens by binding to miR-29b and hence
transcriptionally suppresses miR-29b. Silencing renal Erbb4-IR
leads to the upregulation of protective miR-29b and prevents
fibrosis (Sun et al., 2018; Xu et al., 2020). Besides, lncRNA AT-
rich interactive domain 2-IR (Arid2-IR) also contains a Smad3
binding site in the promoter region. Further in vivo study
has shown that deletion of Smad3 may abolish upregulation
of Arid2-IR in the diseased kidney. Arid2-IR shares a similar
mechanism with Ptprd-IR that overexpression of Arid2-IR may
promote TGF-β1-, IL-1β-induced NF-κB-driven inflammation
without affecting TGF-β/Smad3-mediated renal fibrosis (Zhou
et al., 2015a). Nevertheless, the study from Yang et al. (2019)
has demonstrated the upregulation and pro-fibrotic effect of
Arid2-IR on MCs in DN, that Arid2-IR may be positively
regulated by the early growth response protein-1 (Egr1) and
promote ECM production.

A novel Smad3-dependent lncRNA, LRNA9884, is induced
by AGEs and tightly regulated by Smad3 in the development

and progression of DN. Mechanistically, LRNA9884 directly
binds to MCP-1 and enhances the promoter activity of MCP-
1 at the transcriptional level, thus aggravating the renal injury
driven by progressive inflammation (Zhang et al., 2019c). The
kidney-enriched TGF-β/Smad3-interacting lncRNA, term as Inc-
TSI, is another novel lncRNA that serves as a potential target
for renal fibrosis (Wang et al., 2018b). lnc-TSI inhibits renal
fibrosis by binding to the MH2 domain of Smad3, therefore
blocking the interaction of Smad3 and TβRI and inhibiting
the phosphorylation of Smad3. Meanwhile, the overexpression
of lnc-TSI prevents the nuclear translocation of Smad2/3/4,
resulting in the decreased expression of fibrotic proteins. The
anti-fibrotic role of lnc-TSI has further confirmed that the
fibrosis index of IgAN patients is negatively correlated with the
expression of lnc-TSI.

Collectively, the TGF-β/Smad3-mediated lncRNAs may act
as anti-fibrotic or pro-fibrotic mediators in the fibrotic process
by binding to Smad3, Smad7, or inflammatory molecules
to inhibit or enhance renal fibrosis and inflammation. It

TABLE 3 | TGF-β/Smad3-dependent lncRNAs in renal fibrosis and inflammation.

ncRNA Model Mechanism/function Pathological output(s) Year References

Ptprd-IR (np_4334) UUO mouse and TECs Contains a binding site for Smad3
and promotes NF-κB-driven
inflammation

Pro-inflammatory 2020 Pu et al., 2020

Erbb4-IR (np_5318) DN mouse, TECs, and MCs Binds to miR-29b to downregulate
miR-29b expression

Pro-fibrotic 2020
2018

Sun et al., 2018; Xu
et al., 2020

UUO mouse and TECs Binds to Smad7 to downregulate
Smad7 expression

Pro-fibrotic 2018 Feng et al., 2018

Arid2-IR (np_28496) DN mouse and MCs Upregulated by Egr-1-induced ECM
production

Pro-fibrotic 2019 Yang et al., 2019

UUO mouse, anti-GBM mouse, and
TECs

Contains a binding site for Smad3
and promotes NF-κB-driven
inflammation

Pro-inflammatory 2015 Zhou et al., 2015a

LRNA9884 DN mouse, TECs, and MCs Directly triggers the MCP-1
production

Pro-inflammatory 2019 Zhang et al., 2019c

NONHSAG053901 DN mouse and MCs Directly binds to Egr-1 Pro-fibrotic;
pro-inflammatory

2019 Peng et al., 2019

HOTAIR UUO rat and TECs Regulation of miR-124 /Notch1 Pro-fibrotic 2019 Zhou et al., 2019

lncRNA-ATB UUO rat and TECs Regulated by Livin to promote EMT Pro-fibrotic 2019 Zhou and Jiang,
2019

MEG3 TECs Regulated by miR-185/DNMT1 axis
to inhibit fibrosis

Anti-fibrotic 2019 Xue et al., 2019

TECs; acute renal allograft; and mice Function as target of miR-181b-5p to
regulate the expression of TNF-α

Pro-inflammatory 2019 Pang et al., 2019

ENST00000453774.1 Human renal fibrotic tissue, UUO
mouse, and TECs

Activates autophagy by promoting
ROS defense activates Nrf2/HO-1
signaling

Anti-fibrotic 2019 Xiao et al., 2019

lnc-TSI IgAN patient and UUO mouse Binds with Smad3 to block the
interaction between Smad3 and TβR1

Anti-fibrotic 2018 Wang et al., 2018b

TCONS_00088786 UUO mouse and TECs Possible regulation of miR-132 Pro-fibrotic 2018 Zhou et al., 2018

UUO rat and TECs / Pro-fibrotic 2017 Sun et al., 2017

TCONS_01496394 UUO rat and TECs / Pro-fibrotic 2017 Sun et al., 2017

H19 UUO mouse, DN mouse, and TECs Stimulated by TGF-β2 and serves as
a sponge for miR-17

Pro-fibrotic 2016 Xie et al., 2016

CKD, chronic kidney disease; FSGS, focal and segmental glomerulosclerosis; STZ, streptozotocin; DN, diabetic nephropathy; SLE, systematic erythematosus lupus;
IgAN, IgA nephropathy; anti-GBM, anti-glomerular basement membrane; LPS, lipopolysaccharides; UUO, unilateral ureteral obstruction; AKI, acute kidney injury; IRI,
ischemia-reperfusion injury; MCs, mesangial cells; TECs, tubular epithelial cells; ECs, endothelial cells; SAA3, serum amyloid antigen 3.
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has been demonstrated by a large number of studies that
lncRNAs act like an endogenous RNA to compete for miRNA
to regulate the target transcripts at the transcriptional or
post-transcriptional level during renal fibrosis. In the early
stage of DN, the expression of lncRNA NONHSAG053901 is
highly increased in DN mice and MCs. The functional study
has revealed that the overexpression of NONHSAG053901
promotes fibrosis, inflammation, and proliferation in MCs.
Mechanistically, NONHSAG053901 directly binds to Egr-1,
which later interacts with TGF-β to upregulate the release of pro-
inflammatory cytokines to promote Egr-1/ TGF-β mediated renal
inflammation (Peng et al., 2019). In addition, the pro-fibrotic
lncRNA HOTAIR is significantly upregulated in TGF-β1-induced
TECs and UUO rat kidney. Depletion on HOTAIR upregulates
miR-124 to block the Notch1 signal pathway, therefore improving
the EMT and reducing the accumulation of fibrotic proteins such
as fibronectin and α-SMA (Zhou et al., 2019).

lnc-ATB has also been proven to be the critical regulator
stimulated by TGF-β that mediates the EMT process. The
expression of lncRNA-ATB is significantly increased in TECs and
the UUO kidney under TGF-β and Livin regulation (Zhou and
Jiang, 2019). Another lncRNA regulated by TGF-β is maternally
expressed gene 3 (MEG3), inhibited in TGF-β-stimulated
TECs. DNA methyltransferases 1 (DNMT1), regulated by miR-
185, can positively modulate the methylation state of CpG
islands in the promoter region of MEG3. Overexpression
of lncRNA MEG3 reverses TGF-β-induced fibrosis in TECs.
Thus, lncRNA MEG3 exerts an anti-fibrotic effect in TGF-
β-promoted EMT and is regulated by the miR-185/DNMT1
signaling pathway (Xue et al., 2019). However, one study
had investigated the pro-inflammatory effect of MEG3 in the
acute renal allograft model (Pang et al., 2019). The anti-
fibrotic lncRNA, ENST00000453774.1, is also downregulated
in TGF-β-induced TECs and UUO model, especially in the
fibrotic renal biopsies from patients. ENST00000453774.1 may
regulate the Nrf2-keap1/Nrf2 nuclei translocation/HO-1 and
NQO-1 signaling to activate the pro-survival autophagy of
TECs, therefore promoting ROS defense and reducing the
production of ECM markers such as fibronectin and collagen I
(Xiao et al., 2019).

Nevertheless, the mechanism of some pro-fibrotic lncRNAs
is still obscure. Based on the transcriptome sequencing study,
a group of lncRNAs that contain Smad3 binding motifs in the
promoter region has been identified. Among these lncRNAs,
TCONS_00088786 and TCONS_01496394 are confirmed to be
regulated by TGF-β in a time and dose-dependent manner.
Knockdown of TCONS_00088786 may inhibit the mRNA
expression profile of the gene Acta1, Col1a1, and Col3a1,
while knockdown of TCONS_01496394 decreases the mRNA
expression of Ctgf and Fn1, suggesting their potential in
promoting renal fibrosis (Sun et al., 2017). Although a functional
study has shown a positive regulation of TCONS_00088786 on
miR-132, the underlying mechanism is unclear (Zhou et al.,
2018). Interestingly, the expression of lncRNA H19 is also
increased in TECs and the UUO model. lncRNA H19 is activated
in embryonic cells, but its expression is significantly decreased
after birth. Under the renal fibrotic condition, H19 is upregulated

by TGF-β2 to promote the production of ECM-related proteins.
Knockdown of H19 restores the renal functions and inhibits
TGF-β2-induced fibrosis. It is demonstrated that H19 serves as a
sponge for miR-17 and negatively regulates miR-17 in the process
of fibrogenesis (Xie et al., 2016). However, further evidence on
how H19 and miR-17 contribute to the network of renal fibrosis
remains unclear.

FUTURE PERSPECTIVES: LNCRNA AS A
NOVEL THERAPEUTIC TARGET FOR
KIDNEY DISEASE

The activation of TGF-β/Smad signaling is one of the most
characterized features in fibrosis. Although TGF-β is the crucial
driver of fibrotic response, it also acts as an anti-inflammatory
cytokine and essential mediator that regulates a wide range
of biological processes in different cell types and disease
conditions. Numerous studies reveal that lncRNAs participate in
the emergence and progression of kidney diseases. An outline is
becoming manifest in the contribution of TGF-β/Smad-mediated
lncRNAs in renal fibrogenesis.

We are now getting better closer to understand how these
lncRNAs regulate fibrosis. They can bind to the Smads proteins
to exert either anti- or pro-fibrotic effects. They can also
serve as miRNA sponges and interact with other signaling
pathways to regulate ECM accumulation, EMT, MMT, or other
fibrotic processes.

Based on the cell type-, tissue- and disease stage-dependent
specialties, lncRNA may also present as biomarkers for clinical
diagnosis in renal diseases (Brandenburger et al., 2018; Cheng
et al., 2019; Li et al., 2019; Liu et al., 2019b; Loganathan
et al., 2020). Interestingly, lncRNAs are relevant biomarkers for
disease due to their existence with proteins or in vesicles in
the extracellular space under pathological conditions (Teng and
Ghoshal, 2015; Ellinger et al., 2016; Zhang et al., 2017c; E, S.,
Costa et al., 2018; Sarfi et al., 2019). Studies have demonstrated
that circulating lncRNAs in body fluid, lncRNA GAS8-AS1,
H19, metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), and HOTAIR may be used as promising biomarkers
to predict the early progression of cancers (Zhang et al., 2016,
2017b; Du et al., 2018a). Notably, the lncRNA expression profiles
in urine also contribute to the early detection of acute T cell-
mediated rejection of renal allografts (Lorenzen et al., 2015b),
highlighting the importance of lncRNAs in T cell-mediated
immune response during renal injuries (Hu et al., 2013).

The modulation of lncRNAs on renal fibrosis is a promising
therapeutic target for fibrosis. However, it remains largely
unexplored. The low expression amounts, the less conservation
between species, the functional complexity, and the difficulty
in modifying structures and locations of lncRNA in nuclear
or cytoplasmic compartments have halted the development of
lncRNA therapies.

Nevertheless, new technologies such as CRISPR/Cas9 editing
(Wang et al., 2019; Horlbeck et al., 2020), Gapmer antisense
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oligonucleotide-mediated lncRNA silencing (Castanotto et al.,
2015; Kuespert et al., 2020), plasmid/vector-delivery short
hairpin RNAs (shRNAs) (Zhu et al., 2019; Yao et al., 2020)
and ultrasound-mediated gene transfer method (Zhou et al.,
2015a; Feng et al., 2018; Sun et al., 2018; Zhang et al.,
2019c) may represent the novel strategies to modulate the
expression and function of lncRNA in kidney diseases in
the future.
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