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ABSTRACT The aim of this study was to develop a population pharmacokinetic
(PK) model for teicoplanin across childhood age ranges to be used as Bayesian prior
information in the software constructed for individualized therapy. We developed a
nonparametric population model fitted to PK data from neonates, infants, and older
children. We then implemented this model in the BestDose multiple-model Bayesian
adaptive control algorithm to show its clinical utility. It was used to predict the dos-
ages required to achieve optimal teicoplanin predose targets (15 mg/liter) from day
3 of therapy. We performed individual simulations for an infant and a child from the
original population, who provided early first dosing interval concentration-time data.
An allometric model that used weight as a measure of size and that also incorporated
renal function using the estimated glomerular filtration rate (eGFR), or the ratio of post-
natal age (PNA) to serum creatinine concentration (SCr) for infants �3 months old, best
described the data. The median population PK parameters were as follows: elimination
rate constant (Ke) � 0.03 · (wt/70)�0.25 · Renal (h�1); V � 19.5 · (wt/70) (liters); Re-
nal � eGFR0.07 (ml/min/1.73 m2), or Renal � PNA/SCr (�mol/liter). Increased teico-
planin dosages and alternative administration techniques (extended infusions and
fractionated multiple dosing) were required in order to achieve the targets safely by
day 3 in simulated cases. The software was able to predict individual measured con-
centrations and the dosages and administration techniques required to achieve the
desired target concentrations early in therapy. Prospective evaluation is now needed
in order to ensure that this individualized teicoplanin therapy approach is applicable
in the clinical setting. (This study has been registered in the European Union Clinical
Trials Register under EudraCT no. 2012-005738-12.)

KEYWORDS children, individualized therapy, population pharmacokinetics,
teicoplanin

The pharmacokinetics (PK) of teicoplanin are highly variable in children and neo-
nates (1, 2). Weight-based dosing is advocated (3). Weight affects estimates of

clearance and has been incorporated into structural PK models using linear and
allometric scaling functions (2, 4–7). Different levels of renal function (quantified in
terms of the serum creatinine concentration (SCr) and estimated glomerular filtration
rate [eGFR]) also explain a portion of PK variability in adults and children (7, 8).
However, most of the interpatient variability in PK remains unexplained (7, 9). Conse-
quently, nomograms based on simple covariates cannot be used to adjust dosages to
achieve therapeutic targets that are safe and maximally effective.
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The ratio of the area under the concentration-time curve (AUC) to the MIC is the
pharmacodynamic index that best links teicoplanin drug exposure with the observed
effect against methicillin-resistant Staphylococcus aureus (MRSA) (38). Nevertheless, the
measure of drug exposure most widely used to guide therapeutic drug monitoring
(TDM) is the predose concentration (Cmin [measured in milligrams per liter] or trough
concentration) (10). A Cmin target of �15 mg/liter by days 3 to 5 of therapy is
recommended for most clinical indications (11). This target has recently been increased
in the eMC’s Summary of Product Characteristics (SPC) to 20 mg/liter for the treatment
of deep-seated infections (bone and joint infections) and 30 to 40 mg/liter for infective
endocarditis (11). Currently recommended targets are based on small retrospective
studies in adults that have explored the relationship between teicoplanin drug expo-
sure and clinical outcomes (12, 13). More recently, daily AUCs of �750 to 800 mg ·
h/liter by day 3 of therapy have been linked to microbiological cure of adults with MRSA
infections (14, 15).

In this study, we report the development of a nonparametric population PK model
of teicoplanin in hospitalized neonates, infants, and older children (up to the age of 16
years). We then describe the application of this model for the construction of software
that provides support for individualizing the dose of teicoplanin. Such an approach
enables the achievement of desired drug exposure targets in an optimally precise
manner and at any time during the therapeutic course. This approach constitutes a
further extension of our broad goal of developing the tools and knowledge to deliver
optimized antimicrobial therapy for neonates and children.

RESULTS
Demographics. The demographics and clinical characteristics of the 57 patients

used in the population PK model are summarized in Table 1. The total population (n �

57) was comprised of neonates (n � 18), infants and toddlers 1 to 23 months old (n �

16), children 2 to 11 years old (n � 20), and children 11 to 16 years old (n � 3). The
majority of patients (n � 23 [40.35%]) were recruited from the intensive-care unit (ICU),
in most cases after cardiac surgery. Other subjects included oncologic patients with
febrile neutropenia (n � 17 [29.8%]) and patients with general medical (n � 8 [28.1%])
and cardiac (n � 1 [1.75%]) conditions. A total of 394 PK samples were available for
analysis; each patient contributed a mean of 5.3 observations (neonates) or 7.6 obser-
vations (older children).

Population PK of teicoplanin in neonates and children. Figure 1 shows the
relationships between the posterior median estimates of the PK parameters for each
patient from the base model and potentially relevant covariates. Relationships were

TABLE 1 Demographics and clinical characteristics of patients

Demographic or clinical
characteristica

Median value (range)

Children >1 mo old Neonates Total

No. of patients 39 18 57
Mean no. of observations/

patient
7.6 5.3 6.9

Sex (male:female) 21:18 12:6 33:24
Wt (kg) 14.8 (3–62.2) 2.04 (0.69–5.08) 7.5 (0.69–62.2)
Ht (cm)b 97.9 (45–170) 48 (36–52) 72 (36–170)
Age (yr) 3.3 (0.12–15.8) 0.05 (0.01–0.19) 0.88 (0.01–15.82)
PMA (wk) NAc 37 (26–44) NA
PNA (days) 1,204.5 (43.8–5,774.3) 17 (4–69) 321.2 (4–5,774.3)
eGFR (ml/min/1.73 m2) 78.94 (6.43–160.3) 42.8 (5.4–95.2) 62.06 (5.4–160.3)
Serum creatinine concn

(�mol/liter)
41 (27–308) 44.5 (21–265) 41 (21–308)

aPMA, postmenstrual age; PNA, postnatal age; eGFR, estimated glomerular filtration rate.
bData on height were provided for 30 children above the age of 1 month. For the rest of these children and
all the neonates, the median value for height (or length) corresponding to each patient’s gender and age,
obtained from the UK pediatric growth charts, was used.

cNA, not applicable.
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FIG 1 Relationships between covariates and the Bayesian posterior estimates for clearance (Cl) and volume (V) obtained from the
base model. (A and B) Linear (A) and log10-log10 (B) relationships between Cl and weight (wt). The continuous line shows the linear
regression. (C and D) Linear (C) and log10-log10 (D) relationships between volume and weight. (E and F) Linear relationships

(Continued on next page)
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apparent between both clearance (Cl) (Fig. 1A and B) and volume (Fig. 1C and D) and
weight. Linear relationships between clearance and age (Fig. 1E) and volume and age
(Fig. 1F) were also apparent. There was an exponential relationship between eGFR and
clearance (Fig. 1G), with progressively higher estimates of clearance as eGFR increased.
There were two distinct periods of change in eGFR as a function of age, which formed
the basis for using separate functions that described the effect of changes in renal
function on the elimination of teicoplanin (Fig. 1H and I). For neonates and young
infants �3 months old, the postnatal age (PNA)/serum creatinine concentration ratio
was used as a measure of renal function. For infants �3 months old and children,
eGFRpw was used (where pw is a constant). There was no relationship between serum
albumin levels and the Bayesian estimates of clearance and volume; thus, albumin was
not included as a covariate in the final model.

A comparison between the standard model without covariates and the final model
is shown in Table 2. A number of candidate models that examined the impact of age
on the weight-standardized elimination rate constant (Ke0) and weight-standardized
volume using both linear scaling functions and sigmoidal functions were developed
but did not describe the data better than allometric scaling using weight as a measure
of size.

The parameter values (means, medians, and standard deviations) for the final model
are summarized in Table 3. For the final model, the linear regression of observed versus
Bayesian-predicted values had a coefficient of determination (r2) of 0.92, with measures
of bias and precision of �0.15 mg/liter and 0.9 mg2/liter2, respectively (Table 2). The
population and individual observed-versus-predicted plots of the final model are
shown in Fig. 2. Normalized distribution prediction error (NPDE) results (Q-Q plot and
histogram) are summarized graphically in Fig. 3. The weighted residual error distribu-
tions are shown in Fig. 4. Both the NDPE and the weighted residual error distributions
suggest that the fit of the model to the data was acceptable.

Performance and simulations to demonstrate the clinical utility of the teico-
planin dose optimization software. The dose optimization software predicted the PK
profiles of the individual patients and achieved a target with minimal bias and
imprecision. Table 4 shows the bias, percentage of bias, imprecision, percentage of
imprecision, and the coefficient of determination (r2) of the linear regression of the
observed-versus-predicted concentrations for an infant and an older child. Individual

FIG 1 Legend (Continued)
between clearance and age (in years) (E) and volume and age (in years) (F). (G and H) Relationships between clearance and eGFR
(G) and eGFR and age (in years) (H). (I) The plotting of eGFR against age for infants �12 months old shows two distinct periods
of change in eGFR with age (i.e., �0.25 and �0.25 years). The dashed line shows the LOWESS (locally weighted scatter plot
smoothing), or local regression, which highlights a clearance-versus-eGFR relationship compatible with a power function, where
GFR is the independent variable raised to a constant (pw) in panel G. (J) The relationship between eGFR and PMA (in weeks) is
less informative than age (in years) for young infants.

TABLE 2 Model comparison and model diagnostics with and without covariates for
models

Parametera

Value for:

Standard model
(without covariates)

Final model
(allometric without age)

No. of variables 4 7
Log-likelihood value �1,262 �1,180
AIC 2,533 2,376
Pop/post bias (mg/liter) 3.8/�0.02 1.1/�0.15
Pop/post imprecision mg2/liter2 72.2/1.5 12.3/0.9
Pop r2 0.12 0.9
Post r2 0.8 0.92
aAIC, Akaike information criterion; Pop/post bias, population and posterior mean weighted error, respectively;
Pop/post imprecision, population and posterior mean bias-adjusted weighted squared error, respectively;
Pop r2 and Post r2, coefficient of determination for the linear regression of the observed-versus-predicted
plots for the population and posterior fits, respectively.
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weighted mean PK parameter values were obtained. The median (range) AUC from 0 to
24 h (AUC0 –24) for each patient is shown.

Figures 5 and 6 show representative plots from the dose controller for the infant and
the older child, respectively. They represent the software-predicted PK profiles with
their respective measured concentrations (circles) and the target concentration
(squares). In the case of the infant, all optimized doses on the first two days of therapy
to achieve a day 3 predose target of 15 mg/liter were 1.8 to 2.2 times higher than the
currently recommended maintenance dose (10 mg/kg of body weight) for 12-h ex-
tended infusions and a 24-hourly bolus administration, respectively (Fig. 5). The regi-
men with daily 24-h infusions required slightly smaller dosages (Fig. 5B). In the case of
the 5-year-old child, a higher bolus administration of 18.4 mg/kg (as opposed to the
10-mg/kg maintenance dose) was required to achieve the day 3 predose 15-mg/liter
target, although this produced peaks of �60 mg/liter (Fig. 6A). For this patient,
extended 12- and 24-h infusions, and even a multiple fractionated 12-hourly dose,
would have been safer alternatives (Fig. 6B). Increased predicted and optimal dosages
ranged from 13.9 mg/kg (1.4 times higher than the recommended maintenance dose)
to 3.7, 2.6, and 2.2 mg/kg with the multiple fractionated doses to achieve a predose
target of 15 mg/liter. There was no significant impact on dosages when the simulated
patients had an average age-related eGFR higher than actual estimates. In these
particular cases, they both required slightly increased dosages (�2%).

The Monte Carlo simulations suggested that the best-performing regimen (3 load-
ing doses of 25 mg/kg followed by a daily maintenance dose of 10 mg/kg) achieved
Cmin values of 15 to 60 mg/liter for only 30% of patients, and 13% had potentially toxic
levels (�60 mg/liter).

DISCUSSION

An improved understanding of the PK-pharmacodynamics (PD) of teicoplanin is
fundamental to the optimal use of this agent (16). In this study, we developed a
population PK model in neonates, infants, and older children to identify sources of PK
variability and its explanatory covariates. The final pharmacokinetic model accounts for
only 28% of the observed PK variability (Fig. 2, top), which is consistent with other
population PK studies of children and adults (7, 9). The high and largely unexplained
variability is a strong argument for the use of TDM to minimize both suboptimal and
potentially toxic antimicrobial exposures (1, 2). The combination of a pharmacokinetic
model with measurements from an individual patient and software-guided dosage
adjustment provides a way in which future target concentrations can be achieved in a
timely and optimally precise manner.

For teicoplanin, no relationship between the plasma drug concentration and toxicity
has been established (10, 17–19), a situation that may reduce the incentive for clinicians
to routinely monitor the drug. However, exposure control to maximize efficacy should
not be neglected. The British National Formulary for Children (BNFC) suggests a
therapeutic window of �15 to 60 mg/liter for children and adults (3). These recom-
mendations are largely based on retrospective studies of MRSA infection (12, 13, 17, 20).

TABLE 3 Population PK parameter estimates from the final model

Value

Parametera

Ke0 (h�1) V0 (liters)

Kcp (h�1) Kpc (h�1) pwKe01 Ke02 V01 V02

Mean 0.038 0.036 22.636 22.472 0.490 0.214 0.125
Median 0.03 0.025 19.52 22.7 0.23 0.12 0.07
SD 0.04 0.03 14.23 7.95 0.48 0.27 0.15
aKe0, weight-standardized elimination rate constant. The elimination rate constant (Ke) � Ke0 · (wt/70)�0.25 ·
Renal (where Renal is the PNA/creatinine ratio if the patient is �0.25 year old and as eGFRpw otherwise);
V0, weight-standardized volume of the central compartment. Volume � V0 · (wt/70); Kcp and Kpc, first-
order intercompartmental rate constants; pw, power function. The suffixes 1 and 2 denote the occasion,
which referred to samples collected �96 h and �96 h, respectively, after treatment initiation.
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Low drug exposures increase the probability of clinical failure and potentially promote
the development of drug resistance (16, 21). This is the predominant argument for the
routine monitoring of teicoplanin concentrations and active dosage adjustment.

Teicoplanin dosages that are adjusted by weight and/or renal function improve the
achievement of target concentrations in adults (8, 22). However, high and unexplained
PK variability makes this approach less effective in children and neonates. Hence, an
alternative dosing strategy is required. Bayesian tools offer a way to achieve target

FIG 2 Scatter plots of observed-versus-predicted concentrations (in milligrams per liter) for the final PK
model before (population) (top) and after (individual posteriors) (bottom) the Bayesian step using the
median parameter values.
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concentrations in a timely and optimally precise manner (23). A number of Bayesian
forecasting tools can be used to deliver dosage adjustment. In this study, the multiple-
model algorithm embedded in the BestDose software package was used.

The following steps are required to achieve dosage individualization using the
multiple-model algorithm. First, the entire patient population is described by a matrix
of support points, which consist of individual sets of parameter values. Each support
point has an associated probability, which reflects how well it describes individual

FIG 3 Normalized distribution predicted error (NPDE). (A) Q-Q plot of the distribution of the NPDE versus the theoretical normal [N (0, 1)]
distribution. (B) Histogram of the distribution of the NPDE with the density of the standard Gaussian distribution overlaid. The results
suggest an acceptable fit of the final model to the data.

FIG 4 Weighted residual error (predicted � observed) distributions. (A) Weighted residuals versus predictions; (B) weighted residuals versus time; (C) histogram
of residuals with a superimposed normal curve.
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patients within the population. The population is described by multiple support points,
because there are both multiple patients and, typically, considerable interindividual
pharmacokinetic variability. The set of support points constitutes the Bayesian prior
probability distribution and is a mathematical summary of drug behavior in the
population. In the next step, pharmacokinetic measurements are obtained from the
patient whose dosage needs to be individualized. The probabilities of support points
that best describe the PK of that patient are then revised. Those points that poorly
describe the observed pharmacokinetics have their probability revised downward.
Other points that perform better have their probability increased. Hence, each individ-
ual patient has the same set of support points as the total population, but with a
revised probability distribution. In the final step, the dosage required to achieve the
target concentration for the individual patient is calculated. This is achieved by calcu-
lating the dose that is required for each support point to achieve the desired target
concentration. These dosages are then weighted by the probability of each support
point and are summed to obtain a mean weighted dose.

The approach used in this study has several attractive features. First, dosage
individualization can commence immediately, without waiting for steady state. Second,
patients can be controlled without an explicit understanding of the sources or causes
of pharmacokinetic variability. The control of critically ill patients who are clinically
unstable (24, 25) represents an ongoing challenge. One limitation of current ap-
proaches (including this study) is that a patient’s PK are assumed to be invariant. This
can lead to poor fitting if the PK change and ultimately leads to suboptimal control. The
only way to circumvent this problem at present is to use the most recent PK data to
estimate a patient’s PK and updated covariate information. In this case, the probability
for each support point describing the PK for the new episode is recalculated, and these
probabilities are then used to control subsequent dosing. The incorporation of the
interacting multiple-model approach into dosage adjustment algorithms potentially
provides a way to control unstable patients, but this has yet to be done (23).

Another interesting aspect of our work was the use of postnatal age (PNA) divided
by the serum creatinine concentration (SCr) as a novel marker of renal function. In
modeling and controlling drug behavior, it is not necessary to describe renal function
using traditional equations that estimate GFR, although we did use the Schwartz
equation for infants �3 months old. The goal in pharmacometrics is to find the best
descriptors of drug behavior, which, in this case, are related to renal function and
maturation. We believe that the PNA/SCr ratio has advantages over any other estima-
tion of renal function, including the Schwartz equation, in that it does not use length
(height), which can be notoriously inaccurate in infants. We have previously found the
PNA/SCr ratio to be a useful predictor for both vancomycin (26) and gentamicin (27) PK
in infants.

In conclusion, we present a tool to rapidly and accurately predict teicoplanin

TABLE 4 Summary of the individual prediction diagnostics from the dosing optimization
software for the two patientsa

Parameterb

Value for:

Patient 1 (infant) Patient 2 (child)

r2 1 0.97
Bias �0.42 0.4
% bias �2.54 8.46
Imprecision 0.3 1.64
% imprecision 0.05 1.54
Median (range) 24-h AUC (mg · h/liter) along

the treatment course
493.8 (355.8–574) 368.1 (318.9–388.4)

aReal data from the past were used in order to obtain a target of 15 mg/liter from day 3 of therapy.
br2, coefficient of determination of the linear regression of the observed-versus-predicted concentrations;
bias, mean weighted predicted-observed error; % bias, 100 � (mean weighted predicted-observed error/
observation); imprecision, bias-adjusted mean squared error; % imprecision, 100 � (bias-adjusted mean
squared error/observation).
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FIG 5 Representative plots from an infant patient receiving teicoplanin for a predose target of 15 mg/liter from day 3 of therapy following bolus
administration (A) or a 12-h infusion (B). Red circles, measured concentrations; green squares, target concentration. (A) Bolus administration. Dose
required on day 2, 143.4 mg (22.3 mg/kg); on day 3, 97.22 mg (15.4 mg/kg); on day 4, 87.74 (13.9 mg/kg). (B) Twelve-hour infusion. Dose required
on day 2, 112.02 mg (17.8 mg/kg); on day 3, 81.72 mg (12.97 mg/kg); on day 4, 74.64 mg (11.8 mg/kg).

Individualized Therapy of Teicoplanin for Children Antimicrobial Agents and Chemotherapy

October 2017 Volume 61 Issue 10 e00707-17 aac.asm.org 9

http://aac.asm.org


FIG 6 Representative plots from an older child receiving teicoplanin for a predose target of 15 mg/liter from day 3 of therapy following bolus
administration (A) or a 12-h infusion (B). Red circles, measured concentrations; green squares, target concentration. (A) Bolus administration. Dose
required on day 2, 300.62 mg (18.4 mg/kg); on day 3, 78.64 mg (4.8 mg/kg); on day 4, 61.75 mg (3.8 mg/kg). (B) Twelve-hour infusion. Dose required
on day 2, 276.5 mg (17 mg/kg); on day 3, 83.71 mg (5.1 mg/kg); on day 4, 62.38 mg (3.8 mg/kg).
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concentrations and thus to calculate doses that optimally achieve the desired concen-
trations in pediatrics. We further validate the PNA/SCr ratio as a novel predictor of renal
drug elimination in neonates and young infants. A number of prospective clinical
studies can now be considered. At the simplest level, these may consist of studies that
have drug exposure as the primary endpoint. More-complex studies that have clinical
outcomes and/or toxicity as primary endpoints will require a significantly larger number
of patients and a multicenter design.

MATERIALS AND METHODS
Pharmacokinetic study of teicoplanin in children and neonates. Pharmacokinetic data from 57

children (39 children aged 1 month to 16 years old and 18 neonates with a postmenstrual age [PMA]
between 26 and 44 weeks) were available for model building. Patients were prospectively enrolled from
two different hospitals in Liverpool (Alder Hey NHS Children’s Foundation Trust and Liverpool Women’s
Hospital) over a 21-month period (April 2013 and January 2015). These PK data have been reported
previously in two separate population models (1, 2). In this study, we combined these data sets to
develop a joint population PK model fitted to data from neonates and older children that can be used
for dosage individualization. Such an approach avoids the problem of having multiple pharmacokinetic
models for the same drug, each with an arbitrarily chosen cutoff value for age or size.

The study was approved by the Medicines and Healthcare Products Regulatory Agency (clinical trial
authorization no. 21362/00003/001-0001) and the National Research Ethics Service and Regional Com-
mittee (13/NW/0023). The trial was registered with the European Clinical Trials Database Registry under
EudraCT no. 2012-005738-12. Written informed consent was obtained from parents and/or legal guard-
ians.

Neonates with a PMA of �44 weeks received a loading dose of 16 mg/kg, followed by 8 mg/kg once
daily via a 30-min intravenous (i.v.) infusion. Children �1 month old received three loading dosages of
10 mg/kg every 12 h, followed by 10 mg/kg once daily via an i.v. bolus infusion (2 to 5 min), according
to the dosages currently recommended by the SPC (11). Plasma samples were collected during the first
dosage interval and then at steady state (1, 3, 6, and 24 h postdose) on days 3 to 7 of therapy. Neonates
weighing �1,000 g contributed two samples per dosing interval because of constraints on sample
volume. The duration of the treatment course was at the discretion of the treating physician. All patients
received teicoplanin for proven or suspected methicillin-resistant staphylococcal sepsis (due to either
coagulase-negative staphylococci [CoNS] or MRSA) and/or central-line-associated bloodstream infection.
Demographic variables included weight, height, age in years, PMA in weeks, postnatal age (PNA) in days,
serum albumin concentration (in grams per liter), and serum creatinine concentration. The estimated
glomerular filtration rate (eGFR) (Schwartz-Haycock) (28) was also available for each patient.

Teicoplanin concentrations were measured using a commercially available fluorescence polarization
immunoassay (FPIA; Thermo Fisher Scientific, Germany). The limit of quantification (LOQ) was �3.0
mg/liter. The dynamic range was 3 to 100 mg/liter, and overall precision (intra- and interday variability)
was �6%.

Development of a population PK model. A PK model was fitted to the data using Pmetrics, version
1.4.2 for R, statistical package 3.2.2, which utilizes the nonparametric adaptive grid (NPAG) algorithm (29).
The inverse of the estimated assay variance was used to weight the data. Initially, a standard two-
compartment model with time-delimited zero-order i.v. input and first-order elimination from the central
compartment was developed. The standard model is described by differential equations 1a and 1b
below:

dX�1�
dt

� R�1� � �Kcp � Cl ⁄ V� · X�1� � �Kpc · X�2�� (1a)

dX�2�
dt

� Kcp · X�1� � Kpc · X�2� (1b)

where X(1) and X(2) represent the amounts of teicoplanin (in milligrams) in the central (c) and peripheral
(p) compartments, respectively; R(1) is the rate of infusion of the drug into the central compartment (in
milligrams per hour); clearance (Cl) from the central compartment is measured in liters per hour; volume
(V) is measured in liters; and the central and peripheral compartments are connected by the first-order
rate constants Kcp and Kpc (measured per hour).

Once the standard model was developed, the potential effects of growth (size) and development
(maturity) on the PK of teicoplanin were investigated. This investigation was conducted using clinical
measures that are readily accessible, such as weight and age. We also examined the relationships
between other potentially relevant covariates (e.g., serum albumin concentration) and the PK. The
Bayesian individual posterior median estimates for clearance and volume of distribution were obtained
from the standard model for each patient. These were then plotted against the covariates of interest in
order to interrogate any possible relationships.

In neonates and children, clearance generally scales with size in a nonlinear manner that is best
described using a power function. A scaling exponent of 0.75 is most frequently used (i.e., clearance is
proportional to weight0.75). In addition, physiological maturation may also affect clearance, and this is
especially important for neonates and young infants (30, 31). In the model-building process, we switched
from using clearance to using Ke (measured per hour) as the first-order elimination rate constant, where
Ke is calculated as Cl/V and is proportional to weight�0.25. While it is possible to estimate the scaling
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exponents directly, we chose to fix these values as previously described by others (24, 30, 31). There is
a theoretical basis for using fixed scaling exponents that is related to fundamental relationships between
size and a range of biological functions. The parameters Ke0 and V0 are weight-standardized parameters
for the elimination rate constant and volume, respectively (31, 32). Since size was standardized to a 70-kg
adult, Ke0 and V0 approximate adult values.

The potential impact of development (or maturation) on teicoplanin elimination was studied by
using age (in years) for older children and PMA (in weeks) and/or PNA (in days) for neonates and younger
infants. The effect of age (in years) was explored linearly with Ke and by using a sigmoidal maturation
factor driven by PMA, as described previously (24). Ultimately, none of these functions were incorporated
into the final model.

Finally, we also explored the impact of renal function on the PK of teicoplanin. Before doing this, we
inspected the relationship between renal function and age in all patients to ensure that appropriate
estimates of renal function were used in the model-building process. GFR was estimated (eGFR) using the
Haycock-Schwartz formula (k · height/serum creatinine concentration), where k is the proportionality
constant (33). A k value of 0.33, 0.45, and 0.41 was used for preterm neonates, term neonates, and older
children, respectively. The different values of k reflect the smaller percentage of muscle mass in preterm
infants than in term infants and older children (28, 34). If height (or length) was not directly recorded,
values from UK pediatric growth charts for age and gender were used. We also considered the use of the
PNA/SCr ratio as an alternative measure to eGFR for estimating renal function in relation to age in
neonates and young infants.

The final structural model took the form defined by equations 2a and 2b:

dX�1�
dt

� R(1) � �Kcp � �Ke0 · �wt

70	�0.25
 · Renal� · X�1� � �Kpc · X�2�� (2a)

dX�2�
dt

� Kcp · X�1� � Kpc · X�2� (2b)

with the output equation Y(1) � X(1)/V, which describes the time course of teicoplanin concentrations.
In these equations, Ke is calculated as [Ke0 · (wt/70)(�0.25)] · Renal [the exponent is �0.25 because

Ke0 · (wt/70)�0.25 is algebraically equivalent to (Cl/V) · (wt/70)0.75]; V is calculated as V0 · (wt/70); and wt
is the patient=s weight (in kilograms). A cutoff age in the maturation of renal function was apparent when
eGFR was plotted against age (Fig. 1H and I) with an inflection point at 3 months (0.25 year). Hence, renal
function (“Renal”) for infants and children �3 months old was described as the estimated glomerular
filtration rate (eGFR) (measured in milliliters per minute per 1.73 m2) to an estimated power function
(pw). If the patient’s age was �0.25 year (i.e., �3 months), “Renal” was the PNA (in years) divided by the
serum creatinine concentration (in micromoles per liter). Ke0 and V0 are the weight-standardized
parameters for the elimination rate constant and volume, respectively.

There were two sampling periods, distinguished by an interoccasion variability (IOV) of 1 or 2 for
concentrations collected at �96 h or �96 h, respectively. For the first sampling period (i.e., IOV � 1), Ke0
was designated Ke01 and V0 was designated V01. For the second sampling period (i.e., IOV � 2), Ke0 was
designated Ke02 and V0 was designated V02.

The fit of each exploratory model to the data was assessed using a combination of the following: (i)
the log-likelihood value, (ii) the Akaike information criterion (AIC), (iii) the coefficients of determination
(r2) from the linear regression of the observed-predicted plots before and after the Bayesian step, (iv)
minimization of bias and imprecisions of the observed-predicted plots, (v) the NPDE, and (vi) the
distribution of the weighted residual errors. A model comparison was made using the above-named
diagnostics in order to choose the best final model.

Building the teicoplanin dose optimization software. We incorporated the final population PK
model into a teicoplanin multiple-model Bayesian adaptive dosing controller (the software “cartridge”).
The controller is based on the concepts and software (BestDose) developed by the University of Southern
California Laboratory for Applied Pharmacokinetics and Bioinformatics (LAPKB) (http://www.lapk.org) (35,
36). The teicoplanin cartridge included the final structural model equations relating input (dosing
information) to output (concentrations of the drug in plasma) and the discrete joint probability
distribution of the values of the equation variables (PK parameters) in the population, consisting of a
discrete number of support points and their associated probabilities (the Bayesian prior). The cartridge
was implemented in BestDose, version 0.2.4 for R, which used the cartridge and each patient’s weight,
age, PNA, serum creatinine level, eGFR, and teicoplanin dosing-concentration data to find the least
biased and most precise dosage regimen relative to a target concentration, as described previously (35).

Simulations to demonstrate the utility of the dose optimization software. To demonstrate the
potential value of the dose optimization software as a clinical tool, the software was used to predict the
required dosage by day 2 of therapy to achieve a predetermined teicoplanin concentration (15 mg/liter)
from day 3 in two representative subjects selected from the study population on the basis of age: (i) a
critically ill infant (age, 5 months [0.46 year]; weight, 6.3 kg; eGFR, 63.84 ml/min/1.73 m2) and (ii) a
critically ill older child (age, 5.78 years; weight, 16.3 kg; eGFR, 108.41 ml/min/1.73 m2). We used the real
past concentration-time and dosing data from these two patients during the first dosing interval plus a
48-h trough (n, 4 observations) to predict the optimized dose and infusion time for achieving the desired
target concentration safely (i.e., avoiding peaks of �60 mg/liter, regarded as potentially toxic levels [3]).
A “past” data file contained the observed concentrations for each patient. A “future” data file, containing
the required timings of future dosages and the target, an initial guess of the likely future dose(s) that
would be required, and the infusion time, was prepared. The same patients were also investigated with
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different simulated age-related average eGFRs (77 and 127 ml/min/1.73 m2, respectively) in order to
evaluate the impact of renal function on the patient’s PK profile (37).

The dose optimization software was tested by comparing the estimated predicted PK profile plot
against the observations, as well as by the linear regression of the observed-versus-predicted concen-
trations for each individual patient. From the predicted concentrations based on the median individual
Bayesian posterior parameter distribution, we calculated the bias, which is equal to the mean weighted
predicted error (� wpe/N), where wpe is (predicted concentration � actual concentration)/(SD for each
prediction/observation), N is the number of observations, and the percentage of bias. We also computed
the imprecision, which is the mean bias-adjusted weighted squared error (� wspe/N-mwpe2), and its
respective percentage for each patient and each experimental run. The weighted mean individual PK
parameter values and an average 24-h AUC, estimated by trapezoidal approximation to hourly predic-
tions for each subject, were also computed by the software.

Monte Carlo simulations were performed to assess the proportion of patients receiving fixed
regimens with a trough concentration (Cmin) of 15 to 60 mg/liter by day 3 of therapy and the proportion
with potentially toxic concentrations (�60 mg/liter). Four candidate regimens were examined: (i) 3
loading dosages consisting of 30 mg/kg every 12 h (q12h), followed by 20 mg/kg q24h; (ii) 3 loading
dosages consisting of 20 mg/kg q12h, followed by 15 mg/kg q24 h; (iii) 3 loading dosages consisting of
25 mg/kg q12 h, followed by 10 mg/kg q24 h; and (iv) 2 loading dosages consisting of 30 mg/kg q12 h,
followed by 10 mg/kg q24 h. One hundred concentration-time profiles were simulated for each regimen.
The range of the covariates used in the simulations (i.e., weight, age, and the renal function descriptor)
was the same as for the original population. The simulations were performed using Pmetrics.

ACKNOWLEDGMENTS
We thank all the patients and families who participated in the teicoplanin PK study.

We thank the NIHR Alder Hey Clinical Research Facility (CRF) and Alder Hey NHS
Foundation Trust Business Unit for supporting the PK study.

We thank the Laboratory of Applied Pharmacokinetics and Bioinformatics (LAPKB),
led by Michael Neely, Associate Professor of Pediatrics and Infectious Diseases at The
University of Southern California, Keck Medical School and The Children’s Hospital of
Los Angeles, CA. We thank each and every member of the team for supporting V.R.-M.’s
training visit during February and March 2016: Aida Bustad, Walter Yamada, Mike Van
Guilder, and Founder and Director Emeritus Roger Jelliffe.

We thank ESCMID and the ESCMID Study Group “PK-PD of Anti-Infectives” (EPASG)
Executive Committee for awarding a study grant (2016) that supported V.R.-M.’s
training visit to the LAPKB, The Saban Research Institute, University of Southern
California, Los Angeles, CA. The PK study and V.R.-M. were supported by the NIHR Alder
Hey Clinical Research Facility for Experimental Medicine and the Alder Hey NHS
Foundation Trust Business Unit. M.N.N. is supported by National Institutes of Health
Research (NIHR) study grants NIH R01 HD070886 and R01 GM068968. W.W.H. is
supported by a National Institutes of Health Research (NIHR) Clinician Scientist Fellow-
ship.

W.W.H. has received research funding from Pfizer, Gilead, Astellas, AiCuris, Amplyx,
Spero Therapeutics, and F2G and has acted as a consultant and/or given talks for Pfizer,
Basilea, Astellas, F2G, Nordic Pharma, Medicines Company, Amplyx, Mayne Pharma,
Spero Therapeutics, Auspherix, Cardeas, and Pulmocide.

REFERENCES
1. Ramos-Martin V, Paulus S, Siner S, Scott E, Padmore K, Newland P, Drew

RJ, Felton TW, Docobo-Perez F, Pizer B, Pea F, Peak M, Turner MA,
Beresford MW, Hope WW. 2014. Population pharmacokinetics of teico-
planin in children. Antimicrob Agents Chemother 58:6920 – 6927.
https://doi.org/10.1128/AAC.03685-14.

2. Ramos-Martín V, Neely MN, McGowan P, Siner S, Padmore K, Peak M,
Beresford MW, Turner MA, Paulus S, Hope WW. 2016. Population phar-
macokinetics and pharmacodynamics of teicoplanin in neonates: mak-
ing better use of C-reactive protein to deliver individualized therapy. J
Antimicrob Chemother 71:3168 –3178. https://doi.org/10.1093/jac/
dkw295.

3. British Medical Association, Royal Pharmaceutical Society, Royal Col-
lege of Paediatrics and Child Health, Neonatal and Paediatric Phar-
macists Group. 2015–2016. Antibacterial drugs—teicoplanin, p
289 –290. In British National Formulary for Children. BMJ Group,
London, United Kingdom.

4. Pea F, Viale P, Candoni A, Pavan F, Pagani L, Damiani D, Casini M,
Furlanut M. 2004. Teicoplanin in patients with acute leukaemia and
febrile neutropenia. Clin Pharmacokinet 43:405– 415. https://doi.org/10
.2165/00003088-200443060-00004.

5. Dufort G, Ventura C, Olivé T, Ortega JJ. 1996. Teicoplanin pharmacoki-
netics in pediatric patients. Pediatr Infect Dis J 15:494 – 498. https://doi
.org/10.1097/00006454-199606000-00005.

6. Sánchez A, López-Herce J, Cueto E, Carrillo A, Moral R. 1999. Teicoplanin
pharmacokinetics in critically ill paediatric patients. J Antimicrob Che-
mother 44:407– 409. https://doi.org/10.1093/jac/44.3.407.

7. Zhao W, Zhang D, Storme T, Baruchel A, Declèves X, Jacqz-Aigrain E.
2015. Population pharmacokinetics and dosing optimization of teicopla-
nin in children with malignant haematological disease. Br J Clin Phar-
macol 80:1197–1207. https://doi.org/10.1111/bcp.12710.

8. Yamada T, Nonaka T, Yano T, Kubota T, Egashira N, Kawashiri T, Oishi R.
2012. Simplified dosing regimens of teicoplanin for patient groups

Individualized Therapy of Teicoplanin for Children Antimicrobial Agents and Chemotherapy

October 2017 Volume 61 Issue 10 e00707-17 aac.asm.org 13

https://doi.org/10.1128/AAC.03685-14
https://doi.org/10.1093/jac/dkw295
https://doi.org/10.1093/jac/dkw295
https://doi.org/10.2165/00003088-200443060-00004
https://doi.org/10.2165/00003088-200443060-00004
https://doi.org/10.1097/00006454-199606000-00005
https://doi.org/10.1097/00006454-199606000-00005
https://doi.org/10.1093/jac/44.3.407
https://doi.org/10.1111/bcp.12710
http://aac.asm.org


stratified by renal function and weight using Monte Carlo simulation. Int
J Antimicrob Agents 40:344 –348. https://doi.org/10.1016/j.ijantimicag
.2012.05.025.

9. Byrne CJ, Egan S, Fennell JP, O’Byrne P, Enright H, Deasy E, Ryder SA,
D’Arcy DM, McHugh J. 2015. Teicoplanin use in adult patients with
haematological malignancy: exploring relationships between dose,
trough concentrations, efficacy and nephrotoxicity. Int J Antimicrob
Agents 46:406 – 412. https://doi.org/10.1016/j.ijantimicag.2015.05.019.

10. Tobin CM, Lovering AM, Sweeney E, MacGowan AP. 2010. Analyses of
teicoplanin concentrations from 1994 to 2006 from a UK assay service. J
Antimicrob Chemother 65:2155–2157. https://doi.org/10.1093/jac/
dkq266.

11. The Electronic Medicines Compendium. 2014. Targocid 200 mg. Sum-
mary of product characteristics. Datapharm Communications Limited,
Leatherhead, Surrey, United Kingdom. https://www.medicines.org.uk/
emc/medicine/27319.

12. Ueda T, Takesue Y, Nakajima K, Ichki K, Wada Y, Tsuchida T, Takahashi Y,
Ishihara M, Tatsumi S, Kimura T, Ikeuchi H, Uchino M. 2012. Evaluation of
teicoplanin dosing designs to achieve a new target trough concentra-
tion. J Infect Chemother 18:296 –302. https://doi.org/10.1007/s10156
-011-0325-z.

13. Harding I, MacGowan A, White PLO, Darley ES, Reed V. 2000. Teicoplanin
therapy for Staphylococcus aureus septicaemia: relationship between
pre-dose serum concentrations and outcome. J Antimicrob Chemother
45:835– 841. https://doi.org/10.1093/jac/45.6.835.

14. Kanazawa N, Matsumoto K, Fukamizu T, Shigemi A, Yaji K, Shimodozono
Y, Takeda Y, Yamada K, Ikawa K, Morikawa N. 2011. An initial dosing
method for teicoplanin based on the area under the serum concentra-
tion time curve required for MRSA eradication. J Infect Chemother
17:297–300. https://doi.org/10.1007/s10156-010-0105-1.

15. Hagihara M, Umemura T, Kimura M, Mori T, Hasegawa T, Mikamo H.
2012. Exploration of optimal teicoplanin dosage based on pharmacoki-
netic parameters for the treatment of intensive care unit patients in-
fected with methicillin-resistant Staphylococcus aureus. J Infect Che-
mother 18:10 –16. https://doi.org/10.1007/s10156-011-0272-8.

16. Drusano GL. 2004. Antimicrobial pharmacodynamics: critical interactions
of “bug and drug.” Nat Rev Microbiol 2:289 –300. https://doi.org/10
.1038/nrmicro862.

17. Matthews PC, Chue AL, Wyllie D, Barnett A, Isinkaye T, Jefferies L,
Lovering A, Scarborough M. 2014. Increased teicoplanin doses are asso-
ciated with improved serum levels but not drug toxicity. J Infect 68:
43– 49. https://doi.org/10.1016/j.jinf.2013.08.018.

18. Yamada T, Kubota T, Yonezawa M, Nishio H, Kanno S, Yano T, Kobayashi
D, Egashira N, Takada H, Hara T, Masuda S. 2017. Evaluation of teicopla-
nin trough values after the recommended loading dose in children with
associated safety analysis. Pediatr Infect Dis J 36:398 – 400. https://doi
.org/10.1097/INF.0000000000001456.

19. Yamada T, Kubota T, Nakamura M, Ochiai M, Yonezawa M, Yano T,
Kawashiri T, Egashira N, Hara T, Masuda S. 2014. Evaluation of teicopla-
nin concentrations and safety analysis in neonates. Int J Antimicrob
Agents 44:458 – 462. https://doi.org/10.1016/j.ijantimicag.2014.07.005.

20. Strenger V, Hofer N, Rodl S, Honigl M, Raggam R, Seidel MG, Dornbusch
HJ, Sperl D, Lackner H, Schwinger W, Sovinz P, Benesch M, Urlesberger
B, Urban C. 2013. Age- and gender-related differences in teicoplanin
levels in paediatric patients. J Antimicrob Chemother 68:2318 –2323.
https://doi.org/10.1093/jac/dkt176.

21. Chang H-J, Hsu P-C, Yang C-C, Siu L-K, Kuo A-J, Chia J-H, Wu T-L, Huang
C-T, Lee M-H. 2012. Influence of teicoplanin MICs on treatment out-
comes among patients with teicoplanin-treated methicillin-resistant
Staphylococcus aureus bacteraemia: a hospital-based retrospective
study. J Antimicrob Chemother 67:736 –741. https://doi.org/10.1093/jac/
dkr531.

22. Niwa T, Imanishi Y, Ohmori T, Matsuura K, Murakami N, Itoh Y. 2010.

Significance of individual adjustment of initial loading dosage of teico-
planin based on population pharmacokinetics. Int J Antimicrob Agents
35:507–510. https://doi.org/10.1016/j.ijantimicag.2009.12.018.

23. Macdonald I, Staatz CE, Jelliffe RW, Thomson AH. 2008. Evaluation and
comparison of simple multiple model, richer data multiple model, and
sequential interacting multiple model (IMM) Bayesian analyses of gen-
tamicin and vancomycin data collected from patients undergoing car-
diothoracic surgery. Ther Drug Monit 30:67–74. https://doi.org/10.1097/
FTD.0b013e318161a38c.

24. Holford N, Heo Y-A, Anderson B. 2013. A pharmacokinetic standard for
babies and adults. J Pharm Sci 102:2941–2952. https://doi.org/10.1002/
jps.23574.

25. Blot SI, Pea F, Lipman J. 2014. The effect of pathophysiology on phar-
macokinetics in the critically ill patient— concepts appraised by the
example of antimicrobial agents. Adv Drug Deliv Rev 77:3–11. https://
doi.org/10.1016/j.addr.2014.07.006.

26. Yamada Y, Schaiquevich P, Neely M. 2015. AUC-targeted vancomycin
dosing in term and pre-term neonates, abstr. 347, poster 048. 4th Int
Congr Ther Drug Monit Toxicol, Rotterdam, Netherlands, 11 to 15 Oc-
tober 2015.

27. Neely M, Floyd R. 2015. Schwartz creatinine clearance is not the best
description of infant gentamicin elimination. Clin Pharmacol Drug Dev
4(S1):1– 60.

28. Schwartz GJ, Feld LG, Langford DJ. 1984. A simple estimate of glomer-
ular filtration rate in full-term infants during the first year of life. J Pediatr
104:849 – 854. https://doi.org/10.1016/S0022-3476(84)80479-5.

29. Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. 2012.
Accurate detection of outliers and subpopulations with Pmetrics, a
nonparametric and parametric pharmacometric modeling and simula-
tion package for R. Ther Drug Monit 34:467– 476. https://doi.org/10
.1097/FTD.0b013e31825c4ba6.

30. Anderson BJ, Holford NHG. 2008. Mechanism-based concepts of size and
maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332.
https://doi.org/10.1146/annurev.pharmtox.48.113006.094708.

31. Germovsek E, Barker C, Sharland M, Standing JF. 2017. Scaling clearance
in paediatric pharmacokinetics: all models are wrong, which are useful?
Br J Clin Pharmacol 83:777–790. https://doi.org/10.1111/bcp.13160.

32. West GB, Brown JH, Enquist BJ. 1999. The fourth dimension of life: fractal
geometry and allometric scaling of organisms. Science 284:1677–1679.
https://doi.org/10.1126/science.284.5420.1677.

33. Martini S, Prévot A, Mosig D, Werner D, van Melle G, Guignard JP. 2003.
Glomerular filtration rate: measure creatinine and height rather than
cystatin C! Acta Paediatr 92:1052–1057.

34. Brion LP, Fleischman AR, McCarton C, Schwartz GJ. 1986. A simple
estimate of glomerular filtration rate in low birth weight infants during
the first year of life: noninvasive assessment of body composition and
growth. J Pediatr 109:698 –707. https://doi.org/10.1016/S0022-3476
(86)80245-1.

35. Hope WW, Van Guilder M, Donnelly JP, Blijlevens NM, Brüggemann RJM,
Jelliffe RW, Neely MN. 2013. Software for dosage individualization of
voriconazole for immunocompromised patients. Antimicrob Agents
Chemother 57:1888 –1894. https://doi.org/10.1128/AAC.02025-12.

36. Neely M, Margol A, Fu X, Van Guilder M, Bayard D, Schumitzky A, Orbach
R, Liu S, Louie S, Hope W. 2015. Achieving target voriconazole concen-
trations more accurately in children and adolescents. Antimicrob Agents
Chemother 59:3090 –3097. https://doi.org/10.1128/AAC.00032-15.

37. Heilbron DC, Holliday MA, al-Dahwi A, Kogan BA. 1991. Expressing
glomerular filtration rate in children. Pediatr Nephrol 5:5–11. https://doi
.org/10.1007/BF00852829.

38. Ramos-Martín V, Johnson A, McEntee L, Farrington N, Padmore K, Cojutti
P, Pea F, Neely M, Hope W. 2017. Pharmacodynamics of teicoplanin
against MRSA. J Antimicrob Chemother https://doi.org/10.1093/jac/
dkx289.

Ramos-Martín et al. Antimicrobial Agents and Chemotherapy

October 2017 Volume 61 Issue 10 e00707-17 aac.asm.org 14

https://doi.org/10.1016/j.ijantimicag.2012.05.025
https://doi.org/10.1016/j.ijantimicag.2012.05.025
https://doi.org/10.1016/j.ijantimicag.2015.05.019
https://doi.org/10.1093/jac/dkq266
https://doi.org/10.1093/jac/dkq266
https://www.medicines.org.uk/emc/medicine/27319
https://www.medicines.org.uk/emc/medicine/27319
https://doi.org/10.1007/s10156-011-0325-z
https://doi.org/10.1007/s10156-011-0325-z
https://doi.org/10.1093/jac/45.6.835
https://doi.org/10.1007/s10156-010-0105-1
https://doi.org/10.1007/s10156-011-0272-8
https://doi.org/10.1038/nrmicro862
https://doi.org/10.1038/nrmicro862
https://doi.org/10.1016/j.jinf.2013.08.018
https://doi.org/10.1097/INF.0000000000001456
https://doi.org/10.1097/INF.0000000000001456
https://doi.org/10.1016/j.ijantimicag.2014.07.005
https://doi.org/10.1093/jac/dkt176
https://doi.org/10.1093/jac/dkr531
https://doi.org/10.1093/jac/dkr531
https://doi.org/10.1016/j.ijantimicag.2009.12.018
https://doi.org/10.1097/FTD.0b013e318161a38c
https://doi.org/10.1097/FTD.0b013e318161a38c
https://doi.org/10.1002/jps.23574
https://doi.org/10.1002/jps.23574
https://doi.org/10.1016/j.addr.2014.07.006
https://doi.org/10.1016/j.addr.2014.07.006
https://doi.org/10.1016/S0022-3476(84)80479-5
https://doi.org/10.1097/FTD.0b013e31825c4ba6
https://doi.org/10.1097/FTD.0b013e31825c4ba6
https://doi.org/10.1146/annurev.pharmtox.48.113006.094708
https://doi.org/10.1111/bcp.13160
https://doi.org/10.1126/science.284.5420.1677
https://doi.org/10.1016/S0022-3476(86)80245-1
https://doi.org/10.1016/S0022-3476(86)80245-1
https://doi.org/10.1128/AAC.02025-12
https://doi.org/10.1128/AAC.00032-15
https://doi.org/10.1007/BF00852829
https://doi.org/10.1007/BF00852829
https://doi.org/10.1093/jac/dkx289
https://doi.org/10.1093/jac/dkx289
http://aac.asm.org

	RESULTS
	Demographics. 
	Population PK of teicoplanin in neonates and children. 
	Performance and simulations to demonstrate the clinical utility of the teicoplanin dose optimization software. 

	DISCUSSION
	MATERIALS AND METHODS
	Pharmacokinetic study of teicoplanin in children and neonates. 
	Development of a population PK model. 
	Building the teicoplanin dose optimization software. 
	Simulations to demonstrate the utility of the dose optimization software. 

	ACKNOWLEDGMENTS
	REFERENCES

