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Disease development and progression are often associated with aberrant glycosylation, indicating that changes in biological fluid
glycome may potentially serve as disease signatures. The corona virus disease-2019 (COVID-19) pandemic caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a significant threat to global human health. However, the effect of SARS-
CoV-2 infection on the overall serum N-glycomic profile has been largely unexplored. Here, we extended our 96-well-plate-based high-
throughput, high-sensitivity N-glycan profiling platform further with the aim of elucidating potential COVID-19-associated serum N-
glycomic alterations. Use of this platform revealed both similarities and differences between the serum N-glycomic fingerprints of
COVID-19 positive and control cohorts. Although there were no specific glycan peaks exclusively present or absent in COVID-19 positive
cohort, this cohort showed significantly higher levels of glycans and variability. On the contrary, the overall N-glycomic profiles for
healthy controls were well-contained within a narrow range. From the serum glycomic analysis, we were able to deduce changes in
different glycan subclasses sharing certain structural features. Of significance was the hyperbranched and hypersialylated glycans and
their derived glycan subclass traits. T-distributed stochastic neighbor embedding and hierarchical heatmap clustering analysis were
performed to identify 13 serum glycomic variables that potentially distinguished the COVID-19 positive from healthy controls. Such
serum N-glycomic changes described herein may indicate or correlate to the changes in serum glycoproteins upon COVID-19 infection.
Furthermore, mapping the serum N-glycome following SARS-CoV-2 infection may help us better understand the disease and enable
“Long-COVID” surveillance to capture the full spectrum of persistent symptoms.
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Introduction

The corona virus disease-2019 (COVID-19) pandemic caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (Huang et al. 2020; Yang et al. 2020) has represented
the most significant threat to global human health. As of
1 June 2022, more than 530 million confirmed cases with
more than 6.29 million death were recorded according to
data from John Hopkins University (https://coronavirus.jhu.e
du/map.html) (Dong et al. 2020). Knowledge about SARS-
CoV-2 has increased substantially since it was first reported,
including its emergence, genome and structure, detection and
characterization, transmission, receptor recognition, cell entry,
replication, pathogenesis, vaccine development, recent ther-
apeutic strategies, and even post-acute sequelae (termed as
“Long-COVID”) (Doykov et al. 2020; Harrison et al. 2020;
Seyed Hosseini et al. 2020; Shang et al. 2020; Al-Aly et al.
2021; Boopathi et al. 2021; Mandal et al. 2021; V’Kovski et al.
2021).

As one of the most abundant and structurally diverse post-
translational modifications, protein glycosylation is involved
in numerous cellular mechanisms that contribute to health
and disease, and has been found to regulate protein folding,
cell recognition and adhesion, molecular trafficking and clear-
ance, receptor activation, signal transduction and endocytosis
(Ohtsubo and Marth 2006; Reily et al. 2019). Therefore, gly-
cosylation is highly sensitive to the pathological environment
and has been implicated in various diseases, such as cancer,
genetic diseases, autoimmunity, and chronic inflammation

(Freeze 2013, Wiederschain 2022). More relevant to virus
infection, protein glycosylation has been recognized to play
a critical role in facilitating virus evasion from the innate and
adaptive immune responses (Casalino et al. 2020; Grant et al.
2020; Zhao et al. 2021). It has been well known that the gly-
cosylation of viral envelop proteins is essential for infectivity
and affects immune recognition (Vigerust and Shepherd 2007;
Bagdonaite and Wandall 2018; Watanabe et al. 2019; Li et al.
2021). Therefore, glycomics has gradually gained extensive
interest in biomedical research and drug discovery (Turnbull
and Field 2007; Hart and Copeland 2010). Additionally,
both the trimeric spike protein (S) of SARS-CoV-2 and its
human angiotensin converting enzyme 2 (hACE2) receptor
are heavily glycosylated, including at sites near their binding
interface (Lan et al. 2020; Watanabe et al. 2020; Yan et al.
2020; Shajahan et al. 2021). Binding of the spike protein to
the hACE2 receptor triggers the translocation of the virus
into host cells (Letko et al. 2020). Consequently, serum-based
glycomic profiles may well be altered following SARS-CoV-2
infection. Such glycomic profiles have often been valuable as
signatures of various diseases and may enable a better under-
standing of how vaccination affects immunogen processing
and presentation, and eventually for therapeutic strategies
development (An et al. 2009, Lebrilla and An 2009, Varki
2022). However, the effect of SARS-CoV-2 infection on the
overall serum glycomic profiles has been largely unexplored.

The structural complexity of glycans has hampered the
analysis of glycomic profiles, as the conventional hydrophilic
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interaction liquid chromatography coupled with fluorescence
detection (HILIC-FLD) method after 2-aminobenzamide (2-
AB) derivatization are labor-intensive, time-consuming, with
poor analytical resolution and reproducibility (Li 2010;
Everest-Dass et al. 2018). Therefore, the development of
high-throughput and high-sensitivity technologies for reliable
analysis of human serum glycomic profile can be a valuable
tool in the study of disease or viral infection. In the current
study, we extended our previously developed 96-well-plate-
based high-throughput, high-sensitivity glycan preparation
platform (Xie et al. 2021), and related serum N-glycan iden-
tification and analytical method (Xie and Butler 2022) even
further to COVID-19 research with the aim of elucidating any
potential COVID-19-associated serum N-glycomic changes
and consequently gain better understand of this disease. This
N-glycan preparation and analysis platform allows highly
accurate serum N-glycomic profiling with minimum sample
preparation. The entire preparation for up to 96 serum
samples (1 μL of serum) per plate takes a maximum of only
1 h to completion. The method is sufficiently sensitive to
profile up to 100 N-glycan structures, 46 major glycan peaks
(GPs), and 16 glycan subclass traits in each serum sample.

Using this platform, the serum N-glycomic profiles from
a cohort of COVID-19 positive (23) were analyzed and
compared with those from healthy individuals (10). It
was observed that the total glycan quantity from the
COVID-19 positive cohort was significantly higher than
that in the healthy controls, with particular enhancement
of hyperbranched and hypersialylated glycans and subclass
traits. Additionally, the serum N-glycomic map revealed the
substantial downregulation of 3 N-GPs and up-regulation
of 8 GPs in the COVID-19 positive cohort. Although
the investigated sample size was relatively small, these
statistically significant differences indicate the potential of
serum N-glycomic mapping described herein to be used as
a supplementary technique for surveillance of SARS-CoV-2
infection. Eventually, this may help us better understand the
disease and enable surveillance of persistent symptoms that
are often referred to as “Long-COVID.”

Results

High-throughput and high-sensitivity platform for
functional serum N-glycomic profiling

In the current study, we extended our previously described
high-throughput, high-sensitivity N-glycan preparation plat-
form (Xie et al. 2021) further to identify potential alter-
ations in human serum N-glycome upon or after infection
with SARS-CoV-2. Table 1 lists the 23 COVID-19 positive
serum samples, 10 healthy serum samples, and the source
information that was supplied regarding the sex and age of
the serum donors. We analyzed each sample for sub-type
antibodies (IgG, IgM, and IgA) against SARS-CoV-2 spike
protein subunit 1 (S1) receptor-binding domain (RBD) protein
using an indirect enzyme-linked immunosorbent assay (Ollis
et al. 2015) protocol described in the Materials and Methods
section. Positive values were obtained for all 23 COVID-19
serum samples using anti-SARS-CoV-2 S1 RBD protein IgG,
IgM, and IgA as standards, and the mean positive values
(units/mL) were 129.05 (Ke et al. 2020), 370.46 (IgM), and
97.59 (Zhu et al. 2020). It is to be noted that these units are
relative to the individual anti-SARS-CoV-2 S1 RBD protein

IgG, IgM, and IgA standards provided by the supplier (Ray
Biotech, Peachtree Corners, Georgia, USA), but the absolute
quantities of each are unknown. No anti-SARS-CoV-2 S1 RBD
protein was detected in IgG, IgM, or IgA of the healthy serum
samples.

As shown in Figure 1, to facilitate potential application
for point of care (POC) testing ideally by using finger prick-
ing blood, the volume of human serum has been reduced
significantly to only 1 μL. And it has been cross-validated
to confirm that this workflow was robust, reliable, with
good reproducibility. The coefficient of variation (CV) of the
integrated area under the curve (AUC) generated from trip-
licate serum samples for total GPs after HILIC-FLD analysis
was calculated to be only 0.0133. Therefore, it is reasonable
to deduce that any significant changes in the HILIC-FLD
chromatograms are due to the human serum under investi-
gation rather than to error of sampling or analytical artifact.
Additionally, the 2 cohort samples (healthy and COVID-19
infected) demonstrated similar comparable N-glycan profiles
under the chosen chromatographic conditions, with a total
of 46 well-resolved GP identified (Fig. 2A). This kind of N-
glycomic profile is typical of human serum regardless of
disease status, sex, age, or body mass index (BMI), with GP25
(assigned as A2G2S2) as the dominant GP and GPs 5, 8, 14,
19, 21, 24, 27, 28, 34, 37, and 38 as the relatively more
abundant GPs.

Overall serum N-glycome elevated significantly in
COVID-19 positive cohort

Although the serum N-glycome from both cohorts demon-
strated similar and comparable GPs, the overall integrated
peak areas (or heights) from the COVID-19 positive cohort
(selective chromatograms 3, 4, 5, and 6 in Fig. 2A) were
significantly greater (or higher) than those from both the
blank pooled serum control and individual healthy controls
where the N-glycan profiles were almost identical (selective
chromatograms 1 and 2 in Fig. 2A). Since the InstantPC
fluorescent label binds with each glycosylamine intermediate
at an one-to-one (1:1) molar ratio (as shown in the reaction
scheme in Fig. 1), the quantification of the N-glycans can be
made from the measurement of the integrated area under
each peak (AUC). This allowed us to carry out a direct
comparison between these 2 groups. As shown in the box
plot in Figure 2B, the log2 transformed total AUC (log2AUC)
for all the 46 identified GPs from the COVID-19 positive
group was substantially higher than that from the healthy
control group, with the median values as 26.568 and 26.063,
respectively. Additionally, the log2AUC values were further
analyzed by the receiver operating characteristic (Behnke et al.
2021) test and Mann–Whitney test to evaluate the ability to
distinguish COVID-19 positive patients from healthy controls
based on the generated AUC and P values. It has become
clear that log2AUC held great potential to differentiate the 2
cohorts (AUC for ROC curve = 0.8370, P = 0.0013, as shown
in Fig. 2B and C).

COVID-19 positive cohort demonstrated substantial
serum N-glycomic variability

We further analyzed the serum N-glycomic profiles to see
if single or multiple GPs were significantly altered in the
COVID-19 positive group when compared with the healthy
control group. No specific GPs belonged exclusively to either
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Table 1. Representative clinical information for COVID-19 positive and negative serum samples.

Sample ID Patient ID Sex Age COVID-19
test result

IgG S1RBD
(unit/mL)

IgM S1RBD
(unit/mL)

IgA S1RBD
(unit/mL)

P1 PS302 F 67 Positive 48.71 540.30 5.72
P2 PS303 M 76 Positive 28.21 329.69 103.86
P3 PS304 M 85 Positive 121.13 233.52 346.43
P4 PS305 F 76 Positive 254.84 670.03 81.59
P5 PS308 M 50 Positive 188.81 259.83 114.99
P6 PS310 F 76 Positive 232.80 564.57 8.28
P7 PS313 F 69 Positive 209.44 63.43 16.15
P8 PS314 F 64 Positive 92.04 149.85 27.39
P9 PS326 M 58 Positive 7.95 197.39 24.78
P10 PS333 M 54 Positive 16.09 765.44 45.39
P11 PS346 F 80 Positive 174.37 80.29 147.46
P12 PS347 F 83 Positive 14.46 802.96 9.77
P13 PS348 F 76 Positive 11.52 0.00 2.95
P14 PS351 M 67 Positive 11.95 84.08 21.57
P15 PS357 F 74 Positive 0.59 49.59 159.52
P16 PS358 F 63 Positive 1.20 155.57 141.25
P17 PS359 M 61 Positive 18.49 1322.20 201.36
P18 PS602 F 30 Positive 51.37 74.30 17.16
P19 PS603 F 21 Positive 30.40 52.19 16.57
P20 PS616 F 59 Positive 189.90 479.01 123.78
P21 PS327 M 89 Positive 549.43 614.44 163.61
P22 PS329 F 92 Positive 692.30 426.76 267.82
P23 PS377 M 75 Positive 22.25 605.03 197.26
H1 SN204 M 46 Negative – – –
H2 SN205 F 22 Negative – – –
H3 SN206 M 18 Negative – – –
H4 SN207 M 47 Negative – – –
H5 SN208 F 25 Negative – – –
H6 SN209 M 65 Negative – – –
H7 SN210 M 28 Negative – – –
H8 SN211 M 63 Negative – – –
H9 SN212 F 38.7 Negative – – –
H10 SN213 M 36.5 Negative – – –

M: Male, F: Female, “–”: No values or not detected. COVID-19 Positive: Serum samples from COVID-19 patients confirmed by RT-PCR, antigen, and/or
antibody serology tests. COVID-19 Positive: Serum samples from COVID-19 patients confirmed by RT-PCR, antigen, and/or antibody serology tests. COVID-
19 Negative: serum samples from patients who do not have COVID-19. IgG S1RBD: IgG antibody to the SARS-CoV-2 spike S1 RBD protein in human serum.
IgM S1RBD: IgM antibody to the SARS-CoV-2 spike S1 RBD protein in human serum. IgA S1RBD: IgA antibody to the SARS-CoV-2 spike S1 RBD protein
in human serum.

the COVID-19 positive or the healthy control group. How-
ever, the log2AUC values of the GPs from the COVID-19
positive cohort demonstrated significant difference from those
of the healthy controls. As shown in Fig. 2D the volcano plot,
except GP14 (assigned as FA2G2) where it was identified
as down-regulated, majority of the GPs were up-regulated
in COVID-19 positive patients when compared with healthy
controls. GPs 6, 17, 26, 35, 41, 42, and 46 were elevated
significantly (P < 0.001, −log10 P-value > 3), while GPs
2, 5, 10, 16, 18, 22, 28, 29, 32, 38, 43, 44, and 45 were
increased to a lesser extent (P < 0.01, −log10 P-value > 2).
This was further supported by Figure 3 box plot and Sup-
plementary Information ST IV, where GPs 35, 26, 42, 6, 46,
17, 41, 16, 45, 28, 2, 44, 5, and 10 demonstrated excellent
diagnostic performance to distinguish the COVID-19 positive
cohort from healthy controls (AUC for ROC curve > 0.80,
P < 0.005). GPs 18, 29, 43, 38, 32, 22, 40, 25, 15, 12, 39, 37,
31, 30, 13, 11, 19, 24, 9, and 7 also demonstrated an accept-
able diagnostic performance (AUC for ROC curve > 0.70,
P < 0.05). Reference to the glycan assignment as shown
in Figure 2A and Supplementary Information ST II, most of
the up-regulated GPs were assigned as di-, tri-, and tetra-
sialylated glycans, except GPs 2, 5, 6, and 10 that were neutral
glycans. The rest of the GPs were up-regulated but did not

demonstrate an acceptable diagnostic performance (AUC for
ROC curve < 0.70, P > 0.05).

The interquartile range (IQR) is usually used as an indicator
for variability of a dataset (Zwillinger and Kokoska 2000;
Ross 2010). As shown in Supplementary Information ST IV,
the IQR for majority of the log2(GP)s (including the glycan
subclasses and relative abundance to be discussed below)
from the COVID-19 positive cohort was noticeably wider
compared to the healthy counterparts. For example, the IQR
for log2GP44 was 0.8415 for COVID-19 positive cohort,
while its value was only 0.2736 for the healthy control
group. Similarly, the IQRs for log2GP37 and log2GP38
were 0.9047 and 0.9858 for the COVID-19 positive group
and 0.3248 and 0.4162 for the healthy control group,
respectively. Thus, each GP in the healthy control group was
distributed more narrowly over a well-contained range, while
this was not the case for COVID-19 positive cohort. This
observation was further supported by the direct comparison
of the HILIC-FLD chromatograms (Fig. 2A), where the N-
glycan profiles of blank pooled serum control and healthy
control were almost identical (chromatograms 1 and 2).
However, the N-GPs of the COVID-19 positive cohort showed
considerable variations (selective chromatograms 3, 4, 5,
and 6).

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data


874 Y Xie and M Butler

Fig. 1. Workflow for high-throughput and high-sensitivity human serum N-glycosylation profiling for untargeted screening of glycomic features for
COVID-19 surveillance. Human serum (1 μL) from COVID-19 positive patients and healthy controls were processed and then analyzed by HILIC-FLD,
followed by chromatograms batch processing and normalization and statistical analysis for identification of potential glycomic signatures. The activated
carbamate chemistry based reaction scheme for InstantPC labelling glycosylamine is displayed. Created by ACD/ChemSketch and BioRender.com.

Relative abundance of serum N-glycome changed
substantially in the COVID-19 positive cohort

We further analyzed the composition of the serum N-glycomic
profiles and found that the relative abundance (AUC%) of
several individual N-GPs was substantially changed in the
COVID-19 positive group compared to the healthy control
group. To confirm these observations, the relative abundance
of the 46 major GPs was analyzed by the Mann–Whitney
test and ROC analysis. Figure 4A showed a volcano plot
in which GPs 26, 28, 35, 41, 42, 44, 45, and 46 were up-
regulated significantly, while GPs 14, 21, and 27 were down-
regulated substantially in the COVID-19 positive cohort com-
pared to healthy controls. Figure 4B showed a box plot of
the relative abundance of the identified 11 GPs that demon-
strated significant difference between the cohort groups. ROC
analysis showed the potential in using specific differences in
GPs to distinguish COVID-19 positive samples from nega-
tive counterparts, including GPs 42 and 27 (AUC for ROC
analysis > 0.80, P < 0.005) and GPs 21, 45, 41, 14, 26, 35,
46, 44, and 28 (AUC for ROC analysis > 0.70, P < 0.05). The
complete relative abundance data for all the GPs were shown
in Supplementary Information ST IV.

Specific serum N-glycan subclasses elevated
substantially in COVID-19 positive cohort

Apart from individual serum N-GPs, glycan subclasses sharing
certain structural features were also compared quantitatively
between COVID-19 positive and healthy control groups. The
glycan subclasses included sialylation, galactosylation, fuco-
sylation, multiple branched antennae, and high mannose.
Each glycan subclass was analyzed by the ROC test and
Mann–Whitney test as plotted in Figure 5. The calculation

and complete data for the glycan subclasses were shown in
Supplementary Information ST III and ST IV. The overall
abundance expressed as log2AUC value of each glycan sub-
class was significantly higher in COVID-19 positive samples
compared to healthy controls. Among the glycan subclasses,
the log2AUC of total agalactosylation (G0) and tetrasialy-
lation (S4) subclasses for COVID-19 positive differentiated
significantly from the healthy control samples (AUC for ROC
analysis > 0.85, P < 0.001). The abundance for neutral (S0),
bisialylated (S2), trisialylated (S3), monogalactosylated (G1),
tetragalactosylated (G4), fucosylated (AntF), high mannose
(Man), biantennary (A2), and tetraantennary (A4) glycan
subclasses also showed significant differentiating ability (AUC
for ROC analysis > 0.80, P < 0.005). As far as the rela-
tive abundance of the glycan subclasses was concerned, only
tetrasialylated glycans (S4(%)) demonstrated excellent diag-
nostic accuracy to distinguish the COVID-19 positive cohort
from healthy controls (AUC for ROC analysis = 0.8007,
P = 0.0041).

Serum N-glycomic signatures to distinguish
COVID-19 positive from healthy cohort

The serum N-glycomic profiles reflect the levels of 23 most
abundant glycoproteins in human serum, with immunoglob-
ulins G, A, and M accounting to more than 50% of the
abundance (Clerc et al. 2016). Although there were no spe-
cific single or multiple GPs exclusively present or absent in
COVID-19 positive serum samples, statistical analysis showed
several serum N-GPs including GPs 6, 16, 17, 26, 28, and 35,
and subclass traits including G0, S3, and S4 (expressed as log2
transformation) significantly up-regulated in the COVID-19
positive cohort compared to the healthy controls (AUC for

BioRender.com
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
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Fig. 2. Direct comparison of human serum N-glycome between COVID-19 positive patients and healthy controls. A) Representative HILIC-FLD
chromatograms of human serum N-glycome labelled with InstantPC for selective COVID-19 positive patients with high IgA, IgG, IgM content, and
healthy controls, respectively. B) Box plot of log2 transformed AUC for total 46 GPs (log2AUC). Y -axis represents log2 transformed AUC. The lower and
upper bars connected to each box indicate the boundaries of the normal distribution and the lower and upper box edges mark the first and third quartile
boundaries within each distribution. The bold line within the box indicates the median value of the distribution. Outliers are labelled as black-filled circle.
C) ROC curve of the log2 transformed AUC of the 46 GPs with the AUC for the ROC curve as 0.8370, and P = 0.0015. D) Volcano plot (X -axis represents
the log2 of the fold change, Y -axis represents the negative decade logarithm of the significance value P) for the quantified GPs indicating significant
changes of log2AUC for individual GPs. Two P-value thresholds are indicated (P = 0.01 and 0.001). The significant glycan variables above the first
threshold were considered as significantly changed and labelled in red. The down-regulated GP was labelled in green. The rest of the GPs with P > 0.01
were considered as not significantly changed and labelled in blue.

ROC analysis > 0.80, P < 0.005, as shown in Figs 2, 3, 5, and
Supplementary Information ST IV). Additionally, the analysis
of the relative abundance of the N-GPs and subclass traits
(expressed as AUC%) showed 8 GPs were up-regulated and
3 GPs down-regulated. However, there was no significant
diagnostic capability to distinguish COVID-19 positive from

healthy cohort from the overall analysis of relative abundance
of GPs or subclass traits (AUC for ROC analysis < 0.80,
P > 0.005, as shown in Fig. 4 and Supplementary Infor-
mation ST IV) except for GP27(%), GP42(%), and S4(%),
which individually showed excellent diagnostic performance
accuracy (AUC for ROC analysis > 0.80, P < 0.005, (Fig. 4

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
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Fig. 3. Direct comparison of individual human serum GP abundance between COVID-19 positive patients and healthy controls. X -axis represents log2
transformed AUC for each GP, and Y -axis represents each GP. The left and right bars connected to each box indicate the boundaries of the normal
distribution and the left and right box edges mark the first and third quartile boundaries within each distribution. The bold line within the box indicates
the median value of the distribution. Outliers are labelled as black filled circle. The GPs demonstrating excellent (with AUC for ROC analysis > 0.80, and
P value for Mann–Whitney test < 0.005), acceptable (AUC > 0.70, P < 0.05), and no (AUC < 0.70, P > 0.05) diagnostic performance accuracy was
displayed in top (shaded in pink), middle (shaded in light yellow), and bottom (shaded in light cyan) panel, respectively.

and Supplementary Information ST IV). The variability of
the GPs from the COVID-19 positive samples was extensive,
whereas the N-glycomic profiles for healthy cohort were well-
contained with very narrow IQR.

It has been well-established that choosing appropriate nor-
malization of data is essential for discovery of low abundant

glycan biomarkers (Uh et al. 2020). Therefore, with the aim
of drawing unbiased logical conclusion, we conducted unsu-
pervised data normalization and statistical analysis without
any prior defined variable parameters. Log2 transformation
of the AUC can provide relative molar quantification between
glycan species since the InstantPC fluorescent dye derivatizes

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
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Fig. 4. Direct comparison of the percentage or relative abundance level of human serum GPs between COVID-19 positive patients and healthy controls.
A) Volcano plot shows the significance of the difference of relative abundance for individual GPs between the 2 cohorts. The X -axis represents the log2
transformation of the fold change. The Y -axis represents the negative decade logarithm of the significant difference value P. Two P-value thresholds are
indicated (P = 0.1 and 0.01). The significant glycan variables above the first threshold were considered as significant changes. Up-regulation is labelled in
red, down-regulation is labelled in green, and the rest is labelled in blue. B) Box plot expression of selective human serum GPs down-regulated and
up-regulated in COVID-19 positive patients compared to healthy controls. X -axis represents the relative abundance of the GP (AUC (%)), and Y -axis
represents the selected GPs. Each box represents the boundaries of the normal distribution, and the left and right box edge marks the first and third
quartile boundaries within each distribution. The bold line within each box indicates the median value of the distribution. Outliers are labelled as
black-filled circle. AUC value from ROC curve is displayed to indicate the discriminatory ability of the selected GPs between COVID-19 positive patients
and healthy controls.

each glycan in a 1:1 molar ratio. While relative abundance
expressed as AUC% can provide glycan compositional infor-
mation. The total serum glycan content was normalized to
100% for each sample (COVID-19 positive or negative).

In addition to the above statistical analysis, multivariate
factor analysis was performed to confirm the 13 identified
serum N-glycome variables to potentially classify COVID-19
positive from healthy controls, including absolute quantifica-
tion of GPs 6, 16, 17, 26, 28, 35, total AUC, and subclasses G0,
S3, and S4 (expressed as log2 transformation), and relative
abundance of GPs 27 and 42, and subclass S4 (expressed as
AUC%) as shown in Figure 6A. T-distributed stochastic neigh-
bor embedding (tSNE) and hierarchical heatmap clustering
analysis were performed to identify N-glycomic variables that
distinguished the COVID-19 positive samples from healthy
controls. As shown in Figure 6B, tSNE analysis classified the
investigated serum samples into 2 major clusters: the positive
cluster consisting of 21 COVID-19 positive and 3 healthy
controls, the negative cluster consisting of 9 healthy controls
and 2 COVID-19 positive. As shown in Figure 6C, the hierar-
chical heatmap classified the investigated serum samples into
2 major groups: 1 group consisting of 19 COVID-19 positive
and 1 healthy control, while the other group consisting of 15
samples with 11 healthy controls and 4 COVID-19 positive.

Discussion

The COVID-19 pandemic caused by SARS-CoV-2 repre-
sents one of the most significant threats to global human
health. Currently, COVID-19 is diagnosed routinely by viral

ribonucleic acid (RNA) using polymerase chain reaction
(PCR)-based techniques or by serological and immunological
assays that rely on detection of host antibodies or antigenic
proteins in infected individuals following collection of
oropharyngeal or nasal mid-turbinate swabs (Carter et al.
2020; Cheng et al. 2020; Udugama et al. 2020; Giri et al.
2021). The science behind the serological and immunological
assays is based on the positive association of COVID-19
infection with elevated expression of serum immunoglobins.
IgG, IgA, and IgM, against SARS-CoV-2 S1 RBD protein can
be detected in human serum within 1–3 weeks after COVID-
19 infection. IgG and IgM can arise almost simultaneously.
IgM and IgA can decrease rapidly, while IgG can persist for at
least several months in majority persons after infection, but
the precise duration is unknown (Iyer et al. 2020; Qu et al.
2020; Wolfel et al. 2020; Dan et al. 2021). Therefore, it is
reasonable to deduce that the serum N-glycomic alterations
may be affected by delayed days of blood drawn after
COVID-19 infection due to the changes in these three most
abundant antibodies in human serum. Additionally, the
clinical severity of COVID-19 demonstrates strong positive
correlation with total antibodies titer, independent of age,
gender, or comorbidities (Jacofsky et al. 2020; Li et al. 2020;
Ma et al. 2020; Marklund et al. 2020; Zhao et al. 2020; Shah
et al. 2021). However, the effect of SARS-CoV-2 infection
on the overall serum N-glycomic profile has been largely
unexplored.

In addition to non-glycosylated albumin, there are at least
23 major glycoproteins detected in human serum potentially
involving in multiple biological and pathological processes
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Fig. 5. Direct comparison of selective derived traits of glycan subclasses between COVID-19 positive patients and healthy controls. The lower and upper
bars connected to each box indicate the boundaries of the normal distribution and the lower and upper box edges mark the first and third quartile
boundaries within each distribution. The bold line within the box indicates the median value of the distribution. Outliers are labelled as black filled circle.
Y -axis represents the log2 transformed AUC for each trait (log2AUC). AUC value from ROC curve and P value generated from Mann–Whitney test is
displayed to indicate the discriminatory ability of the trait between COVID-19 positive patients and healthy controls. S0: asialylation, S1: monosialylation,
S2: disialylation, S3: trisialylation, S4: tetrasialylation, G0: agalactosylation, G1: monogalactosylation, G2: digalactosylation, G3: trigalactosylation, G4:
tetragalactosylation, A2: biantennary, A3: triantennary, A4: tetra antennary, CoreF: core fucosylation, AntF: antennary fucosylation, man: mannose.

apart from fibrinogen, which is exclusively present in plasma
(Clerc et al. 2016; Merleev et al. 2020). Quantitative glycomic
analysis yields significant information about the glycosyla-
tion patterns of these major glycoproteins that might have
significance to pathology. Therefore, non-supervised map-
ping of serum N-glycome may hold the potential to iden-
tify signatures upon COVID-19 infection and help us better
understand this disease, and ideally provide a complementary
surveillance strategy allowing timely mitigative interventions.

However, serum glycomic studies in disease settings usu-
ally suffer from poor analytical resolution, reproducibility,
and comparability of results. Here we extended the high-
throughput, high-sensitivity 96-well-plate-based glycan pro-
filing workflow described previously (Xie et al. 2021) to
identify potential COVID-19-associated serum N-glycomic
alterations in a rapid, reliable, and reproducible way.

The serum N-glycome in the COVID-19 positive cohort
showed significant up-regulation compared to healthy
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Fig. 6. Clustering analysis for potential classification of COVID-19 positive from healthy controls with A) factor analysis, B) tSNE analysis, and C)
hierarchical clustering heatmap. A) Factor analysis plot to demonstrate correlation between the significant glycome variables and dimensions. B) tSNE
representation with COVID-19 positives and negatives colored as red and green, respectively. C) Hierarchical clustering heat map rows display the 35
investigated serum samples as displayed in SSupplementary Material Table S1 with 23 COVID-19 positive patients (P) and 12 healthy controls (H, 10
individual healthy controls and 2 biological blank pooled serum). Columns indicate the 13 significant serum glycome variables. The dendrogram on the
side shows the clustering of COVID-19 positive and controls, and the dendrogram on top shows the clustering of serum glycome variables.

controls (Fig. 2B–D), with some GPs exhibiting excellent
diagnostic performance potential (AUC of ROC > 0.800 as
shown in Fig. 3). Additionally, the glycosylation pattern of
the COVID-19 positive cohort showed significant glycomic
variability as indicated by a wider IQR. However, this
was not the case for the healthy cohort, where the glycan

patterns from different individuals were well contained
within a narrow range, displaying similar profiles if not
identical to those obtained from a biological blank of pooled
human serum (Fig. 2A and Supplementary Information ST
IV). Furthermore, 16 glycan subclass traits were derived
from the integrated GPs and found to positively correlate

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
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with the COVID-19 positive cohort namely hyperbranching
(A4), hypersialylation (S4), hypergalactosylation (G4), and
agalactosylation (G0) (Fig. 5 and Supplementary Information
ST IV). Thirteen (13) out of a total of 125 serum N-glycome
variables (the log2 transformed AUC and relative abundance
(%) of the 46 GPs and 16 glycan subclass traits) were
identified to distinguish COVID-19 positive from healthy
controls (Fig. 6). These included the relative abundance of GPs
27 and 42 and subclass S4 (expressed as AUC%) and absolute
quantification of GPs 6, 16, 17, 26, 28, 35, total AUC, and
subclasses G0, S3, and S4 (expressed as log2 transformation).

Noticeably, four COVID-19 positive samples (P9, 13,
18, and 19) were grouped together with healthy control
(Fig. 6), possibly due to lower concentration of serum
immunoglobulins G, A, or M (Table I). The 3 most abundant
glycoproteins in human serum (IgG, IgA, and IgM) have
characteristic glycan profiles. IgG consists mainly of FA2
(GP5), FA2G1 (GPs 8, 9), FA2BG1 (GP10), FA2G2 (GP14),
FA2G2S1 (GP22), IgA consists mainly of A2G2S1 (GPs
19, 20), A2G2S2 (GPs 24, 25) and FA2BG2S2 (GP28),
and IgM consists mainly of Man5 (GP6), Man6 (GP11),
FA2G2S1 (GP22), and FA2BG2S1 (GP23) (Clerc et al. 2016).
Despite the variability in glycan content between COVID-
19 positive and negative serum samples, no clear positive
linear correlation could be detected in relating this data to
the specific immunoglobulin sub-types. However, the use of
ELISA to measure specifically immunoglobulins against only
SARS-CoV-2 S1 RBD IgG, IgA, or IgM antibody showed
distinct differences. It was to be expected that this data
correlated with the clinical assignments of the serum samples
as positive or negative for COVID-19. The relative content of
targeted antibodies between individuals varied and it might
be speculated that this related to the timing of sampling or
the severity of infection. It may be expected that the measured
level of IgM against the SARS-CoV-2 S1 RBD antigen was
found to be particularly high as this sub-type is associated
with early response to viral infection. However, although
the relative content of each antibody against the COVID
antigen was determined by reference to individual sub-type
standards, their concentrations were not quantified and so
any conclusions about the relative content of anti-COVID
sub-types would be tentative.

Other publications have shown that IgA levels demonstrate
statistically significant correlation with severe and critical
status of COVID-19 infection regardless of age, sex, and
duration of the symptoms. Measurement of IgA in serum
has provided a good diagnostic predictor of outcome in the
early stages of infection (Ma et al. 2020; Padoan et al. 2020;
Zervou et al. 2021). The above observation is substantiated
by our findings with the elevated FA2BG2S2 (GP28), which is
exclusively from IgA (Figs 2D, 3, and 4). Of course, one may
argue that IgM contains FA2BG2S2 as well (Arnold et al.
2005). However, the overall IgM level itself in human serum is
relatively much lower compared to IgG and IgA, in the range
of only 0.5–2.0 mg/mL and approximately 5%. Additionally,
as far as the N-glycan profiles are concerned, IgM consists
mainly of Man5 (GP6), Man6 (GP11), FA2G2S1 (GP22), and
FA2BG2S1 (GP23) (Clerc et al. 2016). The combined reasons
made the contribution of IgM to serum glycan FA2BG2S2
(GP28) negligible. The observation of FA2BG2S2 (GP28) was
increased in COVID-19 patients with high IgM was due to the
elevated IgA level in addition to IgM (Fig. 2A and Table I).
Additionally, there was a trend observed that increased or

decreased level of IgA accompanied by higher or lower AUC
value for FA2BG2S2 (GP28) (Table I). However, no clear
positive linear correlation between IgA level and FA2BG2S2
(GP28) was found, and the possibly reasons were addressed
above.

Our general finding is that the abundance of certain
serum glycoproteins comprising specific glycan structures
or subclasses are elevated after COVID-19 infection, but to
an extent dependent upon the disease severity of different
individuals. For example, the N-acetyl methyl groups of the
N-acetylglycosamine (GlcNAc) residues located on the bi-,
tri-, and tetra-antennary branches of specific serum acute-
phase proteins (including mainly alpha-1-acid glycoprotein,
haptoglobin, alpha-1-antitrypsin, alpha-1-antichymotrypsin)
demonstrates positive correlation with C-reactive protein
(Akinkuolie et al. 2014; Otvos et al. 2015). Previous
systematic reviews, meta-analysis (Jutzeler et al. 2020;
Rodriguez-Morales et al. 2020; Qaisieh et al. 2021; Qi
et al. 2021) and machine learning (Kukar et al. 2021)
have demonstrated that COVID-19 infected serum show
a pronounced increase in CRP level among other blood
parameters. This is supported by our findings that CRP
associated GPs and subclasses (Burgess and Collaboration
CCG 2013) are significantly higher in the COVID-19 positive
cohort compared to the healthy control, including GPs16, 41,
42, 44, and 45, and subclasses A2, A4, G4, S3, S4, and AntF.

Previous research has also demonstrated that changes in the
level of acute-phase proteins such as alpha-1-acid glycoprotein
(AGP) determined by different techniques were identified as
biomarkers for the degree and progression of COVID-19
infection (Li and Chen 2020; Lodge et al. 2021). This is
also in good agreement with our serum N-glycomic analysis
where a significantly increased expression of hyperbranched
and hypersialylated GPs and subclasses (GPs 32, 33, 34, 37,
38, 39, 41, 42, 43, 44, 45 and 46, or subclasses S3 and S4)
were identified from COVID-19 positive cohort and could be
attributed to AGP (Clerc et al. 2016).

Alternatively, higher expression of the glycosyltransferases
may be responsible for the enhanced sialylation, fucosylation,
and branching (Jeong et al. 2008). Most significantly as
terminal components of glycoproteins and glycolipids, the
negatively charged sialic acids commonly serve as regulators
of molecular and cellular interactions (Kelm and Schauer
1997; Schauer 2009), including virus–sialic acid interactions
(Vlasak et al. 1988; Stencel-Baerenwald et al. 2014; Matroso-
vich et al. 2015; Fung and Liu 2018; Tortorici et al. 2019).
Comprehensive glycoproteomic or proteomic experiment by
LC–MS after serum proteins enzymatic digestion (Aslam et al.
2017; Shajahan et al. 2017; Suttapitugsakul et al. 2020) can
provide valuable and complementary information to support
our current glycomic findings, however, it is beyond the scope
of the current study. The correlation between glycomics, gly-
coproteomics, and proteomics will be addressed in a separate
article.

Care must be taken to properly interpret the similarity
and difference in serum/plasma N-glycome analysis due to
the importance of fibrinogen glycosylation. Most proteins
present in human plasma or serum are glycoproteins and are
similar, except for proteins removed during the coagulation
process, including fibrinogen. Fibrinogen is the major protein
coagulation factor exclusively present in human plasma with
the concentration at 1.5–4.5 mg/mL, yet absent from human
serum (Lowe et al. 2004). Regarding its N-glycosylation

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
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profiles, fibrinogen predominantly consists of A2G2S1
(GP19) with relative abundance at 53% and A2G2S2 (GP25)
with relative abundance at 33% (Adamczyk et al. 2013). Due
to the absence of fibrinogen in human serum, A2G2S1 (GP19)
is derived mainly from alpha-1B-gycoprotein, haptoglobin,
and immunoglobulin A, with the contribution from alpha-
2-macrogobulin and apolipoprotein B-100 to a lesser extent
(Clerc et al. 2016).

There are of course some limitations to this study in the cur-
rent form. Since the pandemic began, the COVID-19 infection
displays a broad spectrum of symptoms, independent of age,
sex, BMI, and ethnic origin. The severity of symptoms and
period required for recovery is dependent upon the strain of
SARS-CoV-2 infection, varying individual immune, medica-
tion treatment, and vaccine status. Therefore, it is impossible
to provide a comprehensive multivariate analysis investigation
for every aspect of COVID-19 with a limited sample size. The
sample size we had access to in this study was relatively small.
This included serum samples from 23 confirmed COVID-19
patients, 10 healthy controls, and 2 pooled sera serving as
technical blank.

The COVID-19 positive serum samples were from an older
cohort (age range 21–92; average age 67) compared with the
healthy cohort (age range 18–65; average age 39) as shown
in Table I. It is well documented that alterations in serum
glycome can be associated with age and gender, and it has been
shown that increasing age is associated with a modest decline
in overall glycan abundance and IgM level (Merleev et al.
2020). However, this is not the case in the serum N-glycome
alterations after COVID-19 infection as found in the current
study, where the overall N-glycan abundance (expressed as
log2AUC) for the 45 major GPs increased in COVID-19
positive cohort compared to healthy control (except for GP
14).

It is recognized that long-term and large population screen-
ing could improve the analytical accuracy of the current anal-
ysis presented in our study. However, larger sample sizes and
multiple time-based patient serum samples were not available
to us. Nevertheless, we determined that the current serum
sample set was adequate in identifying any major changes
in the overall glycomic profile of serum proteins following
COVID-19 infection. Despite these limitations, to the best of
our knowledge this is the first report relating human serum N-
glycomic profiles to untargeted identification of signatures for
COVID-19 in a high-throughput, high-sensitivity manner. By
associating serum N-glycomic features with the clinical out-
come of COVID-19, this study lays the foundation for future
glycomic studies to determine the value of monitoring serum
N-glycomic profiles as a surveillance tool for COVID-19,
including serum N-glycomic alterations in correlation with
the risk of severe symptoms, drug efficacy, different vaccina-
tions, time-course vaccination, or even discovery of N-glycan-
related biomarkers for COVID-19 diagnosis. This could be
especially beneficial for those recovered from infection with
negative PCR or serological lateral flow testing results but
still experiencing sustained long-term COVID-19 related con-
sequence (termed as “Long-COVID”). Long-COVID or the
post-COVID-19 condition has gradually attracted extensive
attention (Wise 2020; Akbarialiabad et al. 2021; Alwan 2021;
Alwan and Johnson 2021; Beasley et al. 2021), compre-
hensive characterization of post-acute sequelae of COVID-
19 are still to be comprehensively described (Al-Aly et al.
2021). This untargeted serum N-glycomic profiling described

here may serve as one of several techniques for long-COVID
surveillance to help a better understand of this disease and
consequently to improve patients’ diagnosis.

Materials and methods

Materials and reagents

The AdvanceBio Gly-X N-Glycan Prep with InstantPC kit, 96-
ct (Cat NO: GX96-IPC) consisting of three modules, including
Gly-X deglycosylation module (Cat NO: GX96-100), Gly-
X InstantPC labelling module (Cat NO: GX96-101), and
Gly-X InstantPC cleanup module (Cat NO: GX96-102), was
donated by Agilent Technologies (Santa Clara, California,
USA). HPLC-grade acetonitrile was purchased from Sigma
Aldrich (St. Louis, Missouri, USA) and Milli-Q water was used
in all preparations. All the common chemicals were purchased
from Sigma Aldrich (St. Louis, Missouri, USA).

Study designs

The objective of this study was to identify potential human
serum N-glycosylation alterations upon SARS-CoV-2 infec-
tion, and gain better understanding of COVID-19 disease. The
serum sample set containing 20 COVID-19 positive samples
with varying IgG, IgM, and IgA antibody levels and 10 healthy
control samples (Cat NO: CoV-PosSet-S1) and COVID-19
positive sample with high IgG content (Cat NO: CoV-PosG-
S-100), high IgM content (Cat NO: CoV-PosM-S-100), and
high IgA content (Cat NO: CoV-PosA-S-100) were purchased
from RayBiotech (Peachtree Corners, Georgia, USA). The
COVID-19 status was confirmed with reverse transcription
polymerase chain reaction (RT-PCR), antigen, and/or anti-
body serology tests. Healthy control serum samples from
a pool of different donors (Cat NOs: H4522 and S1-M)
used as technical quality controls or blanks were purchased
from Sigma-Aldrich (St. Louis, Missouri, USA). Research was
performed in accordance with relevant guidelines and regu-
lations. The representative and complete information for the
COVID-19 and healthy control serum samples is included in
Table I and Supplementary Information Excel worksheet ST
I, respectively.

ELISA determination of antibodies to SARS-CoV-2
S1 receptor binding domain protein

The in vitro indirect enzyme-linked immunosorbent assay
(Ollis et al. 2015) kits for detection of SARS-CoV-2 S1 RBD
protein human IgG (Cat NO: IEQ-CoVS1RBD-IgG), IgM
(Cat NO: IEQ-CoVS1RBD-IgM), and IgA (Cat NO: IEQ-
CoVS1RBD-IgA) were purchased from RayBiotech (Peachtree
Corners, Georgia, USA). Quantitative measurement of human
IgG, IgM, and IgA antibody against the SARS-CoV-2 S1
RBD protein in human serum was carried out according to
the manufacturer’s instruction and as referenced previously
(Adler et al. 1981; Amanat et al. 2020; Gong et al. 2021;
Luo et al. 2022). Briefly, human serum samples (1 μL) were
diluted 1,500 times for IgG measurement, and 500 times for
IgM and IgA measurement by adding 1,499 and 499 μL of
1× sample diluent, respectively. Additionally, dilution series
(1,000, 333.3, 111.1, 37.04, 12.35, 4.12, and 1.37 unit/mL)
of COVID-19 positive control samples from inactivated serum
containing SARS-CoV-2 S1 RBD protein human IgG, IgM,
and IgA antibodies were prepared by 1× sample diluent. The
1× sample diluent served as the blank. Samples and prepared

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
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positive controls (100 μL) were added to appropriate wells
of SARS-CoV-2 S1 RBD protein coated 96 well microplates,
as well as the additional albumin protein coated 96 well
microplates in the cases of IgM and IgA measurement. The
plates were incubated for 1 h at room temperature (21 ◦C)
with gentle shaking. The solution was discarded, and each
well was washed 4 times with 300 μL of 1× wash buffer.
Biotinylated anti-human IgG, IgM, and IgA antibody solution
in 1× assay diluent (100 μL) was added to each well, and the
plates were incubated for 30 min at room temperature with
gentle shaking. The solution was discarded, and each well was
washed 4 times with 300 μL of 1× wash buffer. Horseradish
peroxidase (HRP)–streptavidin solution (100 μL) was added
to each well, and the plates were incubated for 30 min at
room temperature with gentle shaking. The solution was
discarded, and each well was washed 4 times with 300 μL of
1× wash buffer. The 3, 3, 5, 5′-tetramethylbenzidine (TMB) 1-
step substrate reagent (100 μL) was added to each well, and
the plates were incubated for 15 min at room temperature
in the dark with gentle shaking. Stop solution (50 μL) was
added to each well, and the absorbance at 450 nm was read
immediately. The sample solution was diluted by adding a
suitable amount of stop solution if the absorbance was out
of detection range. The mean absorbance at 450 nm for each
set of duplicate samples was calculated following subtraction
of the blank reading. The values (unit/ml) were determined
from calibration curves established on a log–log scale with
standard positive controls for IgG, IgM, and IgA provided by
RayBiotech (Peachtree Corners, Georgia, USA).

Preparation of InstantPC labelled glycans

The preparation of InstantPC labelled glycans from human
serum was carried out according to the manufacturer’s
instruction and described in detail previously (Xie et al. 2021).
Briefly, human serum (1 μL) was diluted with 19 μL of 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
buffer (50 mM, pH 8.0) to make a final volume of 20 μL.
Gly-X denaturant (2 μL) was added to the 20 μL of serum
solution, mixed thoroughly and incubated at 90 ◦C for 3 min.
After leaving at room temperature for 2 min, 2 μL of N-
Glycanase working solution was added, mixed thoroughly,
and incubated at 50 ◦C for 5 min. InstantPC dye solution
was prepared by dissolving one vial of InstantPC dye with
150 μL of the accompanying solvent and mixed well. The
InstantPC dye solution (5 μL) was added to the above
prepared human serum sample, and incubated at 50 ◦C for
1 min. The Load/Wash solution (150 μL of 2.5% formic
acid/97.5% acetonitrile) was added to each sample, and then
the entire sample (179 μL) was transferred to each well of
the Gly-X Clean-up plate containing 400 μL of the load/wash
solution. After passing the solution through the clean-up plate
by applying a vacuum, samples were washed with 600 μL of
the load/wash solution 3 times. InstantPC labelled glycans
were eluted with 100 μL of Gly-X InstantPC eluent (160 mM
ammonium formate/10% (v/v) acetonitrile, pH 4.4). The
collected InstantPC labelled glycan solutions were analyzed
immediately without further treatment, or alternatively stored
at −20 ◦C for future analysis.

InstantPC labelled glycan profiling by HILIC-FLD

The profiles of InstantPC labelled glycans from human serum
were determined by HILIC-FLD using Acquity I class UPLC
equipped with Acquity UPLC Glycan BEH Amide Column

(130 Å, 1.7 μm, 2.1 × 150 mm, SKU: 186004742) under the
control of Empower software (Waters Corporation, Milford,
Massachusetts, USA). Similar separation performance for the
InstantPC labelled glycans was achieved on the 1290 Infin-
ity II ultra-high performance liquid chromatography system
(UHPLC) equipped with AdvanceBio Glycan Mapping col-
umn (Rapid resolution HD, 300 Å, 1.8 μm, 2.1 × 150 mm,
Part No: 859700-913) under the control of OpenLab soft-
ware (Agilent Technologies, Santa Clara, California, USA).
Each system consists of a binary solvent pump, autosampler,
and a fluorescence detector. The detector for InstantPC was
set with excitation and emission wavelengths at 285 and
345 nm, respectively. The InstantPC labelled glycans from
human serum were injected at a volume of 1 μL without any
prior treatment. The InstantPC glycans were separated with
50 mM ammonium formate (pH 4.4) as solvent A and acetoni-
trile as solvent B. After initial system equilibrium for 1.5 min
with 27% of 50 mM ammonium formate (pH 4.4) and 73%
acetonitrile (v/v) at a flow rate of 0.5 mL/min, the separation
was carried out by a linear gradient of 73–62% of acetonitrile
(v/v) at a flow rate of 0.5 mL/min in 40 min, followed by a
linear gradient of 62–53% of acetonitrile (v/v) at a flow rate
of 0.5 mL/min in 12 min. After washing the system under
30% of acetonitrile (v/v) at a flow rate of 0.4 mL/min for
3 min, complete system equilibrium under 27% of 50 mM
ammonium formate (pH 4.4) and 73% of acetonitrile (v/v)
at a flow rate of 0.5 mL/min for another 15 min was carried
out to ensure good chromatographic reproducibility. Samples
were maintained at 5 ◦C before injection and the separation
column temperature was 60 ◦C. The systems were routinely
calibrated using AdvanceBio InstantPC Maltodextrin ladder
(Cat NO: GKPC-503) donated by Agilent Technologies (Santa
Clara, California, USA). The correlation between glucose unit
(GU) value and chromatographic retention time T (min) was
fitted to 5th order polynomial function to obtain the standard
curve.

Batch correction and data preprocessing

The chromatographic GPs from the HILIC-FLD analysis
were processed with the built-in software for automated peak
picking and integration. Individual GPs were analyzed on the
basis of the correlation between measured retention time and
GU values generated from the 5th order polynomial standard
calibration curve against AdvanceBio InstantPC Maltodextrin
ladder under identical conditions. The chromatograms
were all separated in the same manner into 46 major
GP and the glycan structures were assigned as described
previously (Saldova et al. 2014; Haakensen et al. 2016)
and independently confirmed in the lab by hydrophilic
interaction ultra-performance liquid chromatography coupled
with electrospray ionization mass spectrometry (HILIC–
UPLC–ESI–MS) and exoglycosidase sequential digestion,
and the complete assignment for InstantPC labelled human
serum N-glycans is shown in Supplementary Informa-
tion Excel spreadsheet ST II. The glycan structures were
represented by following the Symbol Nomenclature for
Glycans (SNFG) system (Varki et al. 2015). In addition to
the 46 directly measured GPs, 16 derived glycan subclass
traits were calculated as described previously with minor
modifications (Saldova et al. 2014; Pavic et al. 2018) and the
calculation formula was shown in Supplementary Information
Excel spreadsheet ST III. These derived glycan subclass

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data


Serum N-glycomic signatures for COVID-19 surveillance 883

traits averaged specific glycosylation features (sialylation,
galactosylation, fucosylation, mannosylation, and branching
and extension) across different individual glycan structures.

To remove experimental variation from measurements,
batch correction and normalization were performed on
glycan data. The AUC for each individual GP, glycan
subclass trait, and total GPs was subjected to further log2
transformation before analysis. Additionally, total area
normalization was applied, where the percentage (or relative
abundance) of each GP and subclass trait were calculated
by the integrated peak AUC of each GP divided by AUC
from total GPs of corresponding chromatogram, which
represented the composition of glycans and subclasses in a
serum sample. Both the log2 transformed absolute quantity
data and compositional data were used for further statistical
analysis.

Statistical analysis

Logistic regression model was carried out to identify poten-
tial alterations in serum glycome to distinguish COVID-19
positive patients from healthy controls (Nick and Campbell
2007; Stoltzfus 2011; Sperandei 2014). It generates the coef-
ficients of the formula to predict a logit transformation of
the probability of presence of the characteristic of interest,
logit(P) = ln(odds) = ln

( P
1−P

)
, where p represents the

probability of presence of characteristics, and 1 − P represents
the probability of absence of characteristics. Additionally,
Mann–Whitney nonparametric test was used for comparison
between the 2 cohorts by using the following formula: U =
min(U1, U2) = min

(
n1n2 + n1(n1+1)

2 − R1, n1n2 + n2(n2+1)
2 −

R2
)
, where n1 and n2 represent the size, and R1 and R2

represent the adjusted rank-sum for sample 1 and 2, respec-
tively (Sheskin, 2022). The diagnostic potential of significantly
differed individual GPs and subclasses was further analyzed
by receiver operator characteristic (Hosmer and Lemeshow
2000; Zou et al. 2007; Mandrekar 2010; Hajian-Tilaki 2013;
Behnke et al. 2021). The ROC curve was created by plotting
the true positive rate

(
TPR = TP

P = TP
TP+FN

)
against the false

positive rate
(
FPR = FP

N = FP
FP+TN

)
at various threshold

settings, where P is the number of real positive cases in the
data, TP is true positive, FN is false negative, N is the number
of real negative cases in the data, FP is false positive, and
TN is true negative. The AUC value generated from ROC
test provides an aggregate measure of performance across all
possible classification thresholds and is an effective way for
overall summary of diagnostic accuracy. An AUC of 0.7–0.8
is considered acceptable, 0.8–0.9 is considered excellent, and
more than 0.9 is considered outstanding, while 0.5 suggests no
discrimination at all. The complete statistical analysis result
data for GPs and subclasses are shown in Supplementary
Information Excel spreadsheet ST IV. To identify potential
relationships to distinguish COVID-19 positive patients from
healthy controls, logistic regression model, principal com-
ponent analysis, hierarchical clustering heatmap, and t-SNE
under R environment (version 4.1.1) (Rizzo, 2019), a free
software environment for statistical computing and graphics,
and packages of blorr, FactoMineR, factoextra, pheatmap,
Rtsne, ggplot2 were used.

Supplementary material

Supplementary material is available at Glycobiology Journal online.

Acknowledgements

We thank Aled Jones, and Bethan Morgan of Agilent Technologies
for their review and helpful comments in the preparation of this
manuscript.

Funding

This research work was financially supported by Agilent Technologies,
Santa Clara, CA 95051, USA.

Conflict of interest statement: The authors declare that there is no
conflict of interest.

References

Adamczyk B, Struwe WB, Ercan A, Nigrovic PA, Rudd PM. Character-
ization of fibrinogen glycosylation and its importance for serum/-
plasma N-glycome analysis. J Proteome Res. 2013:12:444–454.

Adler B, Faine S, Gordon LM. The enzyme-linked immunosorbent
assay (ELISA) as a serological test for detecting antibodies against
Leptospira interrogans serovar hardjo in sheep. Aust Vet J. 1981:57:
414–417.

Akbarialiabad H, Taghrir MH, Abdollahi A, Ghahramani N, Kumar
M, Paydar S, Razani B, Mwangi J, Asadi-Pooya AA, Malekmakan
L, et al. Long COVID, a comprehensive systematic scoping review.
Infection. 2021:49:1163–1186.

Akinkuolie AO, Buring JE, Ridker PM, Mora S. A novel protein glycan
biomarker and future cardiovascular disease events. J Am Heart
Assoc. 2014:3:e001221.

Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-
acute sequelae of COVID-19. Nature. 2021:594:259–264.

Alwan NA. The road to addressing long Covid. Science. 2021:373:
491–493.

Alwan NA, Johnson L. Defining long COVID: going back to the start.
Med (N Y). 2021:2:501–504.

Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V,
McMahon M, Jiang K, Arunkumar GA, Jurczyszak D, Polanco J,
et al. A serological assay to detect SARS-CoV-2 seroconversion in
humans. Nat Med. 2020:26:1033–1036.

An HJ, Kronewitter SR, de Leoz ML, Lebrilla CB. Glycomics and disease
markers. Curr Opin Chem Biol. 2009:13:601–607.

Arnold JN, Wormald MR, Suter DM, Radcliffe CM, Harvey DJ, Dwek
RA, Rudd PM, Sim RB. Human serum IgM glycosylation: identifi-
cation of glycoforms that can bind to mannan-binding lectin. J Biol
Chem. 2005:280:29080–29087.

Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics:
technologies and their applications. J Chromatogr Sci. 2017:55:
182–196.

Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Gly-
cobiology. 2018:28:443–467.

Beasley R, Kearns N, Hills T. Charting a course for the management of
long COVID. Lancet Respir Med. 2021.

Behnke J, Cohen AM, LaRoche J. N-linked glycosylation enzymes in
the diatom Thalassiosira oceanica exhibit a diel cycle in transcript
abundance and favor for NXT-type sites. Sci Rep. 2021:11:3227.

Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure,
mechanism of action, antiviral drug promises and rule out against
its treatment. J Biomol Struct Dyn. 2021:39:3409–3418.

Burgess S, Collaboration CCG. Identifying the odds ratio estimated by
a two-stage instrumental variable analysis with a logistic regression
model. Stat Med. 2013:32:4726–4747.

Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, Sasso
JM, Gregg AC, Soares DJ, Beskid TR, et al. Assay techniques and
test development for COVID-19 diagnosis. ACS Cent Sci. 2020:6:
591–605.

Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison
AM, Fogarty CA, Barros EP, Taylor BC, McLellan JS, et al. Beyond
shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS
Cent Sci. 2020:6:1722–1734.

https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data
https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwac051#supplementary-data


884 Y Xie and M Butler

Cheng MP, Papenburg J, Desjardins M, Kanjilal S, Quach C, Libman
M, Dittrich S, Yansouni CP. Diagnostic testing for severe acute
respiratory syndrome-related coronavirus 2: a narrative review. Ann
Intern Med. 2020:172:726–734.

Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer
M. Human plasma protein N-glycosylation. Glycoconj J. 2016:33:
309–343.

Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A,
Ramirez SI, Haupt S, Frazier A, et al. Immunological memory to
SARS-CoV-2 assessed for up to 8 months after infection. Science.
2021:371:eabf4063.

Dong E, Du H, Gardner L. An interactive web-based dashboard to track
COVID-19 in real time. Lancet Infect Dis. 2020:20:533–534.

Doykov I, Hallqvist J, Gilmour KC, Grandjean L, Mills K, Heywood
WE. The long tail of Covid-19′—the detection of a prolonged
inflammatory response after a SARS-CoV-2 infection in asymp-
tomatic and mildly affected patients. F1000Res. 2020:9:1349.

Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH.
Human disease glycomics: technology advances enabling protein
glycosylation analysis—part 1. Expert Rev Proteomics. 2018:15:
165–182.

Freeze HH. Understanding human glycosylation disorders: biochem-
istry leads the charge. J Biol Chem. 2013:288:6936–6945.

Fung TS, Liu DX. Post-translational modifications of coronavirus pro-
teins: roles and function. Future Virol. 2018:13:405–430.

Giri B, Pandey S, Shrestha R, Pokharel K, Ligler FS, Neupane BB. Review
of analytical performance of COVID-19 detection methods. Anal
Bioanal Chem. 2021:413:35–48.

Gong F, Wei HX, Li Q, Liu L, Li B. Evaluation and comparison of
serological methods for COVID-19 diagnosis. Front Mol Biosci.
2021:8:682405.

Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-
CoV-2 spike protein glycan shield reveals implications for immune
recognition. Sci Rep. 2020:10:14991.

Haakensen VD, Steinfeld I, Saldova R, Shehni AA, Kifer I, Naume B,
Rudd PM, Borresen-Dale AL, Yakhini Z. Serum N-glycan analysis
in breast cancer patients—relation to tumour biology and clinical
outcome. Mol Oncol. 2016:10:59–72.

Hajian-Tilaki K. Receiver operating characteristic (ROC) curve anal-
ysis for medical diagnostic test evaluation. Caspian J Intern Med.
2013:4:627–635.

Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission
and pathogenesis. Trends Immunol. 2020:41:1100–1115.

Hart GW, Copeland RJ. Glycomics hits the big time. Cell. 2010:143:
672–676.

Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New
York; Chichester: Wiley; 2000

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu
J, Gu X, et al. Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet. 2020:395:497–506.

Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, Mills R,
Teng E, Kamruzzaman M, Garcia-Beltran WF, et al. Persistence and
decay of human antibody responses to the receptor binding domain
of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol.
2020:5:eabe0367.

Jacofsky D, Jacofsky EM, Jacofsky M. Understanding antibody testing
for COVID-19. J Arthroplast. 2020:35:S74–S81.

Jeong YT, Choi O, Lim HR, Son YD, Kim HJ, Kim JH. Enhanced
sialylation of recombinant erythropoietin in CHO cells by human
glycosyltransferase expression. J Microbiol Biotechnol. 2008:18:
1945–1952.

Jutzeler CR, Bourguignon L, Weis CV, Tong B, Wong C, Rieck B, Parg-
ger H, Tschudin-Sutter S, Egli A, Borgwardt K, et al. Comorbidities,
clinical signs and symptoms, laboratory findings, imaging features,
treatment strategies, and outcomes in adult and pediatric patients
with COVID-19: a systematic review and meta-analysis. Travel Med
Infect Dis. 2020:37:101825.

Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov
J, Neufeldt CJ, Cerikan B, et al. Structures and distributions of SARS-
CoV-2 spike proteins on intact virions. Nature. 2020:588:498–502.

Kelm S, Schauer R. Sialic acids in molecular and cellular interactions.
Int Rev Cytol. 1997:175:137–240.

Kukar M, Guncar G, Vovko T, Podnar S, Cernelc P, Brvar M, Zalaznik
M, Notar M, Moskon S, Notar M. COVID-19 diagnosis by routine
blood tests using machine learning. Sci Rep. 2021:11:10738.

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q,
Zhang L, et al. Structure of the SARS-CoV-2 spike receptor-binding
domain bound to the ACE2 receptor. Nature. 2020:581:215–220.

Lebrilla CB, An HJ. The prospects of glycan biomarkers for the diag-
nosis of diseases. Mol BioSyst. 2009:5:17–20.

Letko M, Marzi A, Munster V. Functional assessment of cell entry
and receptor usage for SARS-CoV-2 and other lineage B betacoron-
aviruses. Nat Microbiol. 2020:5:562–569.

Li J. Functional glycomics: methods and protocols. 1st ed. Totowa:
Humana Press; 2010.

Li L, Chen C. Contribution of acute-phase reaction proteins to the
diagnosis and treatment of 2019 novel coronavirus disease (COVID-
19). Epidemiol Infect. 2020:148:e164.

Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen
W, et al. Development and clinical application of a rapid IgM-IgG
combined antibody test for SARS-CoV-2 infection diagnosis. J Med
Virol. 2020:92:1518–1524.

Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The importance of
glycans of viral and host proteins in enveloped virus infection. Front
Immunol. 2021:12:638573.

Lodge S, Nitschke P, Kimhofer T, Wist J, Bong SH, Loo RL, Masuda
R, Begum S, Richards T, Lindon JC, et al. Diffusion and relaxation
edited proton NMR spectroscopy of plasma reveals a high-fidelity
supramolecular biomarker signature of SARS-CoV-2 infection. Anal
Chem. 2021:93:3976–3986.

Lowe GD, Rumley A, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem.
2004:41:430–440.

Luo J, Brakel A, Krizsan A, Ludwig T, Motzing M, Volke D, Lakowa
N, Grunewald T, Lehmann C, Wolf J, et al. Sensitive and specific
serological ELISA for the detection of SARS-CoV-2 infections. Virol
J. 2022:19:50.

Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, Cheng L, Li Y, Ma X,
Jin T. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol
Immunol. 2020:17:773–775.

Mandal S, Barnett J, Brill SE, Brown JS, Denneny EK, Hare SS, Height-
man M, Hillman TE, Jacob J, Jarvis HC, et al. ’Long-COVID’: a
cross-sectional study of persisting symptoms, biomarker and imag-
ing abnormalities following hospitalisation for COVID-19. Thorax.
2021:76:396–398.

Mandrekar JN. Receiver operating characteristic curve in diagnostic test
assessment. J Thorac Oncol. 2010:5:1315–1316.

Marklund E, Leach S, Axelsson H, Nystrom K, Norder H, Bemark M,
Angeletti D, Lundgren A, Nilsson S, Andersson LM, et al. Serum-IgG
responses to SARS-CoV-2 after mild and severe COVID-19 infection
and analysis of IgG non-responders. PLoS One. 2020:15:e0241104.

Matrosovich M, Herrler G, Klenk HD. Sialic acid receptors of viruses.
Top Curr Chem. 2015:367:1–28.

Merleev AA, Park D, Xie Y, Kailemia MJ, Xu G, Ruhaak LR, Kim
K, Hong Q, Li Q, Patel F, et al. A site-specific map of the human
plasma glycome and its age and gender-associated alterations. Sci
Rep. 2020:10:17505.

Nick TG, Campbell KM. Logistic regression. Methods Mol Biol.
2007:404:273–301.

Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health
and disease. Cell. 2006:126:855–867.

Ollis AA, Chai Y, DeLisa MP. GlycoSNAP: a high-throughput screening
methodology for engineering designer glycosylation enzymes. Meth-
ods Mol Biol. 2015:1321:37–47.

Otvos JD, Shalaurova I, Wolak-Dinsmore J, Connelly MA, Mackey RH,
Stein JH, Tracy RP. GlycA: a composite nuclear magnetic resonance
biomarker of systemic inflammation. Clin Chem. 2015:61:714–723.

Padoan A, Sciacovelli L, Basso D, Negrini D, Zuin S, Cosma C, Faggian
D, Matricardi P, Plebani M. IgA-Ab response to spike glycoprotein
of SARS-CoV-2 in patients with COVID-19: a longitudinal study.
Clin Chim Acta. 2020:507:164–166.



Serum N-glycomic signatures for COVID-19 surveillance 885

Pavic T, Dilber D, Kifer D, Selak N, Keser T, Ljubicic D, Vukic Dugac A,
Lauc G, Rumora L, Gornik O. N-glycosylation patterns of plasma
proteins and immunoglobulin G in chronic obstructive pulmonary
disease. J Transl Med. 2018:16:323.

Qaisieh R, Al-Tamimi M, El-Hammuri N, Shalabi M, Kilani MM,
Taha H, Al-Muhtaseb A, Alfarrajin I, Abu Shaqra M, Hamdan A.
Clinical, laboratory, and imaging features of COVID-19 in a cohort
of patients: cross-sectional comparative study. JMIR Public Health
Surveill. 2021. 7:e28005.

Qi K, Zeng W, Ye M, Zheng L, Song C, Hu S, Duan C, Wei Y,
Peng J, Zhang W, et al. Clinical, laboratory, and imaging features
of pediatric COVID-19: a systematic review and meta-analysis.
Medicine (Baltimore). 2021:100:e25230.

Qu J, Wu C, Li X, Zhang G, Jiang Z, Li X, Zhu Q, Liu L. Profile
of immunoglobulin G and IgM antibodies against severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis.
2020:71:2255–2258.

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and
disease. Nat Rev Nephrol. 2019:15:346–366.

Rizzo ML. Statistical computing with R. 2nd ed. BocaRaton: Chapman
and Hall/ CRC Press, 2019.

Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E,
Villamizar-Pena R, Holguin-Rivera Y, Escalera-Antezana JP,
Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-
Martinez AF, et al. Clinical, laboratory and imaging features of
COVID-19: a systematic review and meta-analysis. Travel Med
Infect Dis. 2020:34:101623.

Ross SM. Introductory statistics. 3rd ed. Burlington, MA: Academic
Press/Elsevier; 2010

Saldova R, Asadi Shehni A, Haakensen VD, Steinfeld I, Hilliard M, Kifer
I, Helland A, Yakhini Z, Borresen-Dale AL, Rudd PM. Association
of N-glycosylation with breast carcinoma and systemic features
using high-resolution quantitative UPLC. J Proteome Res. 2014:13:
2314–2327.

Schauer R. Sialic acids as regulators of molecular and cellular interac-
tions. Curr Opin Struct Biol. 2009:19:507–514.

Seyed Hosseini E, Riahi Kashani N, Nikzad H, Azadbakht J, Has-
sani Bafrani H, Haddad KH. The novel coronavirus Disease-2019
(COVID-19): mechanism of action, detection and recent therapeutic
strategies. Virology. 2020:551:1–9.

Shah J, Liu S, Potula HH, Bhargava P, Cruz I, Force D, Bazerbashi
A, Ramasamy R. IgG and IgM antibody formation to spike and
nucleocapsid proteins in COVID-19 characterized by multiplex
immunoblot assays. BMC Infect Dis. 2021:21:325.

Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycopro-
teomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem.
2017:409:4483–4505.

Shajahan A, Archer-Hartmann S, Supekar NT, Gleinich AS, Heiss C,
Azadi P. Comprehensive characterization of N- and O- glycosylation
of SARS-CoV-2 human receptor angiotensin converting enzyme 2.
Glycobiology. 2021:31:410–424.

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry
mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020:117:
11727–11734.

Sheskin DJ. Handbook of parametric and nonparametric statistical
procedures. 5th ed. Boca Raton: Chapman and Hall / CRC Press;
2020.

Sperandei S. Understanding logistic regression analysis. Biochem Med
(Zagreb). 2014:24:12–18.

Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS.
The sweet spot: defining virus-sialic acid interactions. Nat Rev
Microbiol. 2014:12:739–749.

Stoltzfus JC. Logistic regression: a brief primer. Acad Emerg Med.
2011:18:1099–1104.

Suttapitugsakul S, Sun F, Wu R. Recent advances in glycoproteomic
analysis by mass spectrometry. Anal Chem. 2020:92:267–291.

Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons
GJ, Bosch BJ, Rey FA, de Groot RJ, et al. Structural basis for human
coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol.
2019:26:481–489.

Turnbull JE, Field RA. Emerging glycomics technologies. Nat Chem
Biol. 2007:3:74–77.

Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M,
Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW. Diagnosing
COVID-19: the disease and tools for detection. ACS Nano. 2020:14:
3822–3835.

Uh HW, Klaric L, Ugrina I, Lauc G, Smilde AK, Houwing-Duistermaat
JJ. Choosing proper normalization is essential for discovery of sparse
glycan biomarkers. Mol Omics. 2020:16:231–242.

Varki A. Essentials of glycobiology. 3rd ed. Cold Spring Harbor (NY):
Cold Spring Harbor Laboratory Press; 2015.

Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko
JD, Stanley P, Hart G, Darvill A, Kinoshita T, et al. Symbol
nomenclature for graphical representations of glycans. Glycobiol-
ogy. 2015:25:1323–1324.

Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and
immune interactions. Trends Microbiol. 2007:15:211–218.

V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus
biology and replication: implications for SARS-CoV-2. Nat Rev
Microbiol. 2021:19:155–170.

Vlasak R, Luytjes W, Spaan W, Palese P. Human and bovine coron-
aviruses recognize sialic acid-containing receptors similar to those of
influenza C viruses. Proc Natl Acad Sci U S A. 1988:85:4526–4529.

Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of
glycosylation in enveloped virus pathobiology. Biochim Biophys
Acta Gen Subj. 2019:1863:1480–1497.

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-
specific glycan analysis of the SARS-CoV-2 spike. Science. 2020:369:
330–333.

Wiederschain G. Glycobiology and human diseases. 1st ed. Boca Raton:
CRC Press; 2016.

Wise J. Long covid: Doctors call for research and surveillance to capture
disease. BMJ. 2020:370:m3586.

Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller
MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, et al. Virological
assessment of hospitalized patients with COVID-2019. Nature.
2020:581:465–469.

Xie Y, Butler M. Construction of an InstantPC-derivatized glycan
glucose unit database: a foundation work for high-throughput and
high-sensitivity glycomic analysis. Glycobiology. 2022:32:289–303.

Xie Y, Mota LM, Bergin A, O’Flaherty R, Jones A, Morgan B, Butler M.
High-throughput and high-sensitivity N-glycan profiling: a platform
for biopharmaceutical development and disease biomarker discov-
ery. Anal Biochem. 2021:623:114205.

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for
the recognition of SARS-CoV-2 by full-length human ACE2. Science.
2020:367:1444–1448.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu
Z, Fang M, et al. Clinical course and outcomes of critically ill
patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-
centered, retrospective, observational study. Lancet Respir Med.
2020:8:475–481.

Zervou FN, Louie P, Stachel A, Zacharioudakis IM, Ortiz-Mendez
Y, Thomas K, Aguero-Rosenfeld ME. SARS-CoV-2 antibodies: IgA
correlates with severity of disease in early COVID-19 infection. J
Med Virol. 2021:93:5409–5415.

Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T,
Li J, et al. Antibody responses to SARS-CoV-2 in patients with novel
coronavirus disease 2019. Clin Infect Dis. 2020:71:2027–2034.

Zhao X, Chen H, Wang H. Glycans of SARS-CoV-2 spike protein
in virus infection and antibody production. Front Mol Biosci.
2021:8:629873.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi
W, Lu R, et al. A novel coronavirus from patients with pneumonia
in China, 2019. N Engl J Med. 2020:382:727–733.

Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic
analysis for evaluating diagnostic tests and predictive models. Cir-
culation. 2007:115:654–657.

Zwillinger D, Kokoska S. CRC standard probability and statistics tables
and formulae. Boca Raton: Chapman & Hall/CRC; 2000


	 Serum N-glycomic profiling may provide potential signatures for surveillance of COVID-19
	 Introduction
	 Results
	 Discussion
	 Materials and methods
	 Supplementary material
	 Acknowledgements
	 Funding


