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Abstract: Over the past few decades, the concentrating photovoltaic systems, a source of clean and
renewable energy, often fully integrated into the roof structure, have been commonly installed on
private houses and public buildings. The purpose of those panels is to transform the incoming solar
radiation into electricity thanks to the photovoltaic effect. The produced electric power is affected, in
the first instance, by the solar panel efficiency and its technical characteristics, but it is also strictly
dependent on site elevation, the meteorological conditions and on the presence of the atmospheric
constituents, i.e., clouds, hydrometeors, gas molecules and sub-micron-sized particles suspended
in the atmosphere that can scatter and absorb the incoming shortwave solar radiation. The Aerosol
Optical Depth (AOD) is an adimensional wavelength-dependent atmospheric column variable that
accounts for aerosol concentration. AOD can be used as a proxy to evaluate the concentration of
surface particulate matter and atmospheric column turbidity, which in turn affects the solar panel
energy production. In this manuscript, a new technique is developed to retrieve the AOD at 550 nm
through an iterative process: the atmospheric optical depth, incremented in steps of 0.01, is used
as input together with the direct and diffuse radiation fluxes computed by Fu–Liou–Gu Radiative
Transfer Model, to forecast the produced electric energy by a photovoltaic panel through a simple
model. The process will stop at that AOD value (at 550 nm), for which the forecast electric power
will match the real produced electric power by the photovoltaic panel within a previously defined
threshold. This proof of concept is the first step of a wider project that aims to develop a user-friendly
smartphone application where photovoltaic panel owners, once downloaded it on a voluntary basis,
can turn their photovoltaic system into a sunphotometer to continuously retrieve the AOD, and more
importantly, to monitor the air quality and detect strong air pollution episodes that pose a threat for
population health.

Keywords: aerosol; optical depth; sunphotometer; photovoltaic; solar panels

1. Introduction

Aerosols are natural or anthropogenic tiny particles, spanning several orders of magni-
tude (diameter ranging from microns to tens of nanometers), suspended in the atmosphere.
Those short-lived climate pollutants, or near-term climate forcers, are directly emitted
in the atmosphere, e.g., ashes from volcanic eruptions, black carbon from combustion
processes, spray marine aerosols, desert dust, and biomass burning products, just to name
few. Another category of aerosols originates from the chemical reaction of gases emitted in
the atmosphere, e.g., sulphuric dioxide, nitrogen dioxide. All the different aerosol species
modulate the incoming solar radiation and, to a lesser extent, the outgoing longwave
Earth radiation. As an indirect effect, the aerosols interact with cloud and precipitation,
especially influencing their formation and lifetime [1]. Indeed, aerosols play a crucial
crucial role in cloud formation, which in turn regulate surface precipitation and then the
Earth–atmosphere system radiative balance. Clouds form when the air, due to different
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reasons, is cooled and it is supersaturated with respect to ice or water (the only exception
is represented by the so-called “funnel clouds”). The vapor in excess in the atmosphere,
because of a high-energy barrier, is not capable by itself to condensate to form clouds.
The presence of aerosols helps the condensation process because these tiny particles act as
nuclei where water vapor can condensate over. The cloud drop size is strictly dependent on
the atmospheric aerosol number density. In turn, the cloud drop size is influencing other
processes such as coagulation and condensation. For this reason, the presence of aerosols in
the atmosphere influences both cloud formation and dissipation and precipitation events.
A recent research by Zheng et al. [2] assesses the impact of higher aerosol atmospheric
concentrations on precipitation intensity and duration over the Beijing metropolitan area.
The study’s main finding states that higher aerosol concentrations are linked to 25% lower
precipitation frequency and 14.8% lower precipitation duration, while a higher precip-
itation intensity of 13.5% is found on average on higher-pollution days with respect to
clear conditions.

Another important aspect that should not be underestimated is that the aerosol effects
on climate are still poorly understood, as highlighted by the Fifth Assessment Report (AR5)
of the Intergovernmental Panel on Climate Change (IPCC) [3]. For example, large amounts
of black carbon are produced and injected into the atmosphere every year by wildfires [4],
which have become more and more numerous worldwide. As a consequence, transported
black carbon at polar latitudes and over mountains deposits both on ice and snow, con-
tributing to accelerating their melting [5]. This happens because the snow and ice albedo
is lowered by the presence of soot and much more solar radiation is absorbed. On other
hands, the black carbon, also generated from incomplete combustion of fossil fuels and
biomass burning, is considered as greatly responsible for cardiovascular and respiratory
illness [6,7]. In [7], the authors found a direct relationship between high exposure to black
carbon and a higher blood pressure that can lead to strokes and cardiovascular disease. As
previously stated, even if the AOD is a column variable, it can still be used as a proxy to
evaluate the concentration of the particulate matter with a diameter smaller than 2.5 µm
(PM2.5) at ground [8] and then detect dangerous air-pollution episodes that can pose a
serious health threat to the population [9].

Due to the multiple reasons mentioned above, the scientific community have put
a lot of effort in the past decades to quantitatively assess the aerosol role, especially in
the Earth–atmosphere radiative budget. For this reason, the optical, microphysical and
geometrical aerosol properties are assessed and monitored mostly through remote sensing
techniques, both from satellite [10], aircraft and ground-based platforms [11]. Burton et al. [12]
pioneered studies of aerosol characteristic and speciation by lidar observations from aircraft.
Ryder et al. [13] report the results of Fennec measurement campaign that took place in 2011
to study the microphysical properties of the Saharan dust outbreaks by aircraft measure-
ments. Additionally, several ad hoc measurement campaigns have taken place in particular
regions of the world which are extremely sensitive to climate change. Wang et al. [14]
report the results of the Dongsha Island campaign, in Taiwan, that aims to characterize
the properties of the transported aerosols using several months of ground-based lidar
observations, while Reid et al. [15] pioneered aerosol measurements in a wild and barren
region very sensitive to climate change, such as the Southeast Asia and in particular in
the Philippine archipelago during the monsoon season. Similarly, Lolli et al. [16] studied
how the monsoon seasons influence the aerosol atmospheric profile over Penang, Malaysia,
especially in terms of radiative effects and heating rate. The study provided evidence that
transboundary aerosol layers from neighboring countries are responsible for haze forma-
tion in Malaysia. Since 1998, the National Aeronautics and Space Administration (NASA)
Aerosol Robot Network (AERONET [17]) has made a crucial contribution to shedding
light on optical aerosol properties thanks to its global network of 2000+ sunphotometers,
deployed worldwide at global scale, from equatorial to polar regions. AERONET is a
proof that the atmospheric instrument networks [18] at global scale are of fundamental
importance not just to study the aerosol optical, geometrical and microphysical proper-
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ties, but also to validate retrievals from satellite [19,20]. The aerosol products obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Earth
Observing System’s Terra satellite launched in 1999 have been validated over more than
100 AERONET sites deployed worldwide, as reported in [21]. This first validation helped
the MODIS team to improve aerosol product retrieval, especially over land. The AOD
quantifies the aerosol loading present in the atmospheric column, i.e., how much light is
removed from the propagation direction by scattering and absorption. As a consequence,
this variable tell us how much solar radiation (wavelength-dependent) is prevented from
reaching the Earth’s surface. The AOD is also a very important variable to assess the
Earth–atmosphere radiation budget. More recently, it is still matter of debate if aerosols
can also play a role in flagging [22] or promoting transmission of COVID-19 [23]. For all
those different aspects, it is then evident why AOD observations at global scale are of
paramount importance both for climate and environmental studies. On other hand, the
energy production by the photovoltaic systems is strongly influenced by the atmospheric
conditions and of course by the concentration of aerosols in the atmospheric column. In fact,
if the direct incoming solar radiation is absorbed and scattered away from the propagation
direction, the ratio between direct and diffuse light changes dramatically and so does
the produced electric power. Theristis et al. [24] show that the panel efficiency is strictly
linked to the distribution of the solar spectrum that in turn is related to the precipitable
water (PW), air mass (AM) and AOD. Pairwise, Liu et al. [25] highlight that other than
the meteorological variables, the Aerosol Index (AI) is critical to correctly forecast the
next-day panel power output. The importance of AOD in forecasting the correct panel
power and its linear correlation with the available solar radiation at surface were also
pointed out by Gueymard et al. [26]. The effects of aerosol in reducing energy production
are well documented. Quantitatively, results from Zhang et al. [27] highlight that in
regions prone to severe pollution or dust outbreaks, the energy production is reduced by
0.15–0.31 kWh m−2 per day relative to clean air conditions, corresponding to a decrease of
4.8–9.0%. The impact on energy production shows also an important seasonal variation.
They conclude that aerosol layers exert an influence similar to clouds during the winter
season in northwestern China, with a drop in energy production of 11.2–17.4% in December.
The authors of [28,29] also report similar results for regions close to important dust sources
(deserts). Once the technical characteristics and specifications of the photovoltaic system
are known, it is possible to forecast the energy production using models that often apply
machine learning techniques, as shown in [30,31].

This proof-of-concept is based on a reverse engineering process where the AOD at
550 nm is retrieved from the difference between the expected and the real produced electric
power by a panel through an iterative process. The AOD at 550 nm, which is a parameter
needed as input by the Fu–Liou–Gu radiative transfer model to compute the radiative
fluxes at the top of the atmosphere and at surface, is increased from 0 (pristine atmosphere,
AOD = 0) to a value for which the radiative transfer model computed direct, indirect and
reflected fluxes used to calculate the theoretical panel power will match the real observed
produced electric power within a user-defined threshold (2% in this study). In view of a
future perspective, this proof-of-concept can be considered phase zero of a wider project
where a smartphone application will be developed. Thanks to this application, common
citizens owners of photovoltaic panels, will be able, on voluntary basis, to contribute with
observation to characterize the aerosol behavior at global scale, and more important, to
detect severe pollution episodes that can put at risk the more vulnerable groups, i.e., elderly
people, people with underlying conditions. This methodology has several drawbacks and
a limited accuracy, i.e., biases introduced by sub-visible cirrus clouds, wrong aerosol typing
to name a few, but still will provide zero-cost valuable observations. The manuscript is
organized as follows: after this introduction, Section 2 describes the used model to forecast
the produced electric energy and the relative methodology to retrieve the AOD. In Section 3
are shown some results and validation with model. In Section 4 are reported the conclusion
and future perspectives.
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2. Model Description
2.1. Incoming Solar Irradiance on a Tilted Plane at Ground

The first step in retrieving the AOD from the electric power produced by a photo-
voltaic panel consists of computing both the solar direct and diffuse irradiance over a
horizontal surface. In this study, all the radiant fluxes computations are calculated us-
ing the Fu–Liou–Gu (FLG) Radiative Transfer Model, used for several other different
studies [32–34]. To solve the multispectral radiative fluxes at surface, the FLG model needs
as input the atmospheric thermodynamic state, i.e., the vertically resolved profiles of
temperature, pressure, mixing ratio, ozone concentration, other than the AOD at 550 nm.
The meteorological variables and ozone concentration profiles are obtained from the mid-
latitude standard atmosphere USS976 [35] standard atmosphere. The solar radiant flux
at surface is computed in terms of diffuse (supposed homogeneous across the sky dome),
direct and total irradiance. The FLG radiative transfer model also needs as input the Solar
Zenith Angle (SZA) and the surface albedo. In this study, the photovoltaic system is located
over a brick roof (see Figure 1) (right) that, according to [36], has an albedo of 0.40. For
panels installed over other surfaces, i.e., downtown, or on a ship, the albedo should be
changed accordingly. The second step in simulating the electric energy produced by the
photovoltaic panel, consists in assessing how much of the incoming solar radiation on
the horizontal plane falls into a tilted surface (representing the photovoltaic system). The
radiation components that should be taken into consideration are: (i) the direct component
(Id), (ii) the diffuse component (Idi f f ) and (iii) the albedo-dependent reflected component
by the surrounding environment (Ialb). The angle of incidence θt is defined as the angle
formed between the normal to the tilted surface and the direction of the solar radiation,
according to Equation (1):

cos θt = cos Φ cos θz + sin Φ sin θz cos (γ− β), (1)

where Φ is the panel tilting angle (0 degrees means that the panel is horizontal), θz is
the solar zenith angle (SZA), γ is the solar azimuth angle, β the panel module azimuth
orientation (South = 0◦ degrees, positive values towards the East direction). Then the direct
incoming solar radiation on a titled plane It

d can be calculated from 1 as:

It
d = Id

cos θt

cos θz
. (2)

Here, Id and Idi f f are computed using the previously described FLG radiative transfer
model for an horizontal surface. The diffuse component on a tilted plane It

di f f is calculated
considering the sky dome view factor as:

Fsky =
1 + cos Φ

2
, (3)

Fsky is then equal to 1 (diffuse energy from the whole hemisphere) if the panel is
horizontal and 0.5 if tilted by 90 degrees (diffuse energy from half hemisphere). Then,

It
di f f = Idi f f Fsky. (4)

In a similar way, the albedo-dependent reflected component on the tilted panel is
dependent on the view factor of the surrounding environment that in turn depends on the
albedo. The reflected energy is dual with respect to the diffuse energy, i.e., a horizontal
panel will be unaffected by reflected radiation (Fc = 0), as shown by Equation (5):

Fc =
1− cos Φ

2
. (5)
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The albedo-dependant reflected component on a tilted plane is then:

It
alb = IdρFc, (6)

where ρ is the albedo, an adimensional parameter that is defined as the ratio (value 0
and 1) between the reflected solar radiation by the surrounding environment and the
incoming solar radiation. As an example, fresh snow has an albedo of 0.75, while an urban
environment has an albedo of 0.12, and water bodies—usually around 0.07. The total solar
irradiance (in W/m2) falling on the tilted panel is then:

It = It
d + It

di f f + It
alb. (7)

2.2. Simplified Energy Production Model from a Photovoltaic Panel

Besides the incoming solar irradiance, the electric energy production is also dependent
on other factors, e.g., the meteorological conditions, the photovoltaic panel efficiency. The
proposed model is non-linear and takes into account the working temperature of the panels
and their efficiency, retrieved from ambient wind speed and temperature.

The expected photovoltaic produced power can be expressed as:

Pout = Pstc
It

Gstc
ηrel(G′, T′m), (8)

where It is computed by the FLG model (Equation (7)). The terms in Equation (7) are found
in Equations (2), (4) and (6). Pstc represents the nominal output power at standard test
conditions (1000 W m−2 solar irradiance and module temperature of 25 ◦C). Gstc is the
reference irradiance of 1000 W/m2 at standard test conditions previously described. The
relative efficiency is given by the empirical non-linear model:

ηrel(G′, T′m) = 1 + k1 ln(G′) + k2 ln(G′)2 + k3T′m + k4T′m ln(G′) + k5T′m ln(G′)2 + k6T′m
2, (9)

where k1, k2 . . . k6 were empirically retrieved and are available in the frame of the Photo-
voltaic Geographical Information System project of European Commission Joint Research
Center (JRC) at Ispra, Italy. For crystalline silica photovoltaic panels (as those used in this
study), the k-values are reported in Table 1:

Table 1. Empirical values to be used in Equation (9) for C-Si photovoltaic panels.

k1 −0.001716
k2 −0.040289

k3 (◦C−1) −0.004581
k4 (◦C−1) 0.000148
k5 (◦C−1) 0.000169
k6 (◦C−1) 0.000005

Here G′ is a non-dimensional value, ratio of the irradiance It and Gstc, while T′m =
Tmod − TmodSTC is the difference between the module operating temperature and the mod-
ule operating temperature at Standard Test Conditions. A good approximation of the
module temperature is given in the Equation (10):

Tmod = 0.943Ta + 0.028 ∗ It − 1.528 ∗V + 4.3, (10)

where It is given by Equation (7), while Ta is the ambient temperature and V is the
horizontal wind speed.
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2.3. AOD at 550 nm Retrieval

The AOD at 550 nm is retrieved through an iterative process. The AOD at 550 nm
is needed as input by the Fu–Liou–Gu radiative transfer model. The iteration starts
with an AOD value of 0.01. The AOD is then increased at each step by 0.01 and the
direct, diffused [37] and reflected solar irradiances are the computed. The values are then
injected into Equation (8), together with the photovoltaic panel technical specifications and
meteorological variables to calculate the expected output power Pout. The computed value
is compared with the real measured power Preal

out , and if the absolute difference between
the two values is within a defined threshold (set at 2%), the process stops and the AOD is
recorded. The algorithm, together with the FLG code, is very efficient and will run under a
powerful, dedicated server that can compute hundreds of runs in seconds. The smartphone
app is then also connected very efficiently to the server through an API. The processing
speed is very high. In a previous study by Campbell et al. [38], more than 15,000 iterations
were computed in seconds. During the retrieval process, the multiple scattering is assumed
negligible, and each atmospheric layer is assumed uniform in the vertical and horizontal
directions. The iterative process is detailed in the flow chart in Figure 1.

Figure 1. Flowchart representing the iterative process to compute the AOD retrieval at 550 nm. The
FLG model uses pre-defined functions to calculate the AOD values at the different wavelengths
needed for solar irradiance calculation at surface.
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3. Photovoltaic Panel Output Energy Production Validation

The polycrystalline silicon photovoltaic module used in this study was manufactured
by the German company Schüho (production currently discontinued) and it was installed
on the roof of a private home in Tuscany, Italy (43.847 N, 10.745 E; 20 m a.s.l.). The
installation site is visible in Figure 2 (Google Earth image). The photovoltaic panel technical
characteristics are available at this site.

Figure 2. The red arrow indicates the photovoltaic modules (43.51◦ N, 10.48◦ E, 20 m a.s.l.) used in this study. The panel
azimuth angle is 163◦ azimuth and it is tilted by 30◦ degrees. Image: Google Earth Pro (7.3.3.7786, 4 June 2021).

From a climatological point of view, according to the historical data from the meteoro-
logical station of Montecatini (6 km NW from the installation site), in winter, the average
daily sunshine is 3.2 h and that increases to 5.2 h in spring and 8.2 h in summer. Autumn
experiences 4.9 h of sunshine per day. Precipitation is mainly concentrated in autumn and
winter (600 mm, 55 days of rain), while a sharp drop is witnessed during summer (142 mm,
13 days of rain). During spring, the expected rain is 254 mm (27 days of rain). The sky is
overcast (8/8 oktas) for about 55% of the time in winter. This value drops to 50% in spring
and to 25–30% in summer. In autumn, overcast sky rises again to 45–55%.

The hourly averaged photovoltaic panel power has been continuously measured
and recorded since 2021. To calibrate the photovoltaic panel power model (Section 2.2),
the AOD measurements are needed. AOD has been retrieved at different temporal and
spatial scales both from space, aircraft and ground-based platforms for at least two decades.
Unfortunately, AOD in situ measurements are not available at location site. A valid and
effective alternative to overcome this problem is given by the Copernicus Atmosphere
Monitoring Service (CAMS) of the European Centre for Medium-Range Weather Fore-
casts (ECMWF), which provides the total AOD values at 550 nm on a 3 h basis with a
spatial resolution of 0.125 × 0.125 degrees (about 10 km × 10 km at mid-latitudes). The
ECMWF-CAMS, near-real-time reanalysis, without entering in details, is based on mak-
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ing a retrospective AOD analysis (on a daily basis) through data assimilation from the
previous day. The meteorological data needed by the model are available in real time
from IMONTE142 weather station, located about 6 km NW from the residence where
the photovoltaic panels are installed. The meteorological data are freely available from
WeatherUnderground website. The calibration took place during 3 clear-sky days, 1 in
winter and 2 in summer (Figure 3). The hourly observed and simulated (using 3 h AOD
values from ECMWF-CAMS) produced powers are intercompared. Solar zenith angles
greater than 70◦ are disregarded from the intercomparison to avoid unwanted reflections
and sun-shading from neighbour buildings and trees. The intercomparison between the
observed and the forecast photovoltaic electric power shows a very good agreement, with
a bias of 0.14 W/m2 and a Root Mean Square Error (RMSE) of 4.34 W/m2. The results are
surprisingly good, considering all the possible different sources of error.

Figure 3. Intercomparison between the measured photovoltaic power and the power forecast by the simplified model
developed in Section 2. The results show a RMSE of 4.34 W/m2 and a bias of 0.14 W/m2.

4. AOD Retrieval and Intercomparison with ECMWF-CAMS Reanalysis
4.1. Analysis of the Sensitivity of the Methodology

We assess the accuracy of the proposed methodology before proceeding with AOD
validation and retrieval. A sensitivity study is performed on the FLG model by vary-
ing the input parameters. The major sources of uncertainty might be summarized as
follows: (i) deterioration of photovoltaic module with respect to the expected technical
characteristics, (ii) the use of standard atmospheric models, e.g., USS976, as input for the
Fu–Liou–Gu Radiative Transfer Model instead of the current meteorological variables (e.g.,
obtained from a radiosounding), (iii) advection of the aerosol species different from those
established during the setup, (iv) presence of sub-visible cirrus clouds introducing a bias,
(v) wrong value of the surface albedo where the photovoltaic panel is deployed. Other
studies [24–26] provide evidence for how the different variables affect the performances of
photovoltaic modeling, especially Air Mass (AM) and Precipitable Water (PW). The AM is
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exactly determined by the solar zenith angle and taken into account in the computation.
The site elevation is also determined to compute the solar radiation correctly. Additionally,
the model sensitivity to PW (through the inputted atmospheric water vapor mixing ratio;
Figure 4) is assessed, and results are shown in Figure 5.

The FLG model sensitivity is assessed against an ideal case where the vertical aerosol
load is set to AOD = 0.2 (urban aerosols) paired with summer mid-latitude USS976 atmo-
spheric profile. Errors due to (ii) are assessed by computing the AOD with an extremely
dry profile, e.g., the summer USS976 arctic profile. As shown in Figure 4, the default profile
contains much more precipitable water. The analysis reveals that the cause (ii) introduces
a large positive bias in the computation, above 20%. This considerable uncertainty in
AOD retrieval is caused by the large discrepancies between the two water vapor mixing
ratio profiles, as shown in Figure 4. This difficulty will be alleviated by incorporating the
vertical profile of the water vapor mixing ratio from the global meteorological models. With
respect to point (iv), the differences in diurnal AOD computation are assessed assuming the
presence of a cirrus cloud with an optical depth of 0.05, a geometrical thickness of 500 m,
and the cloud base at 10 km. The analysis indicates that cirrus cloud can negatively bias the
AOD computations up to 13%. The difference in AOD due to a dust outbreak is assessed
considering a dust layer at 4 km with an optical depth of 0.1 (half of the total AOD). In this
case, a lower positive bias of 5% is found. Wrong values of surface albedo, e.g., point (v),
influence the reflected solar radiation that, during clear sky conditions, is almost an order
of magnitude smaller. In the new release, a look-up table will be implemented to input the
correct albedo value, also using satellite observations. The characteristics deterioration of
the photovoltaic panel will principally affect the computation of Pout (Equation (8)) and
depends on the photovoltaic panel model. In the future release, the final user will be able
to choose the photovoltaic panel type from a menu in the app.

Figure 4. Difference between the summer mid-latitude and arctic USS976 water vapor mixing profile
used to assess FLG sensitivity in computing the AOD.

4.2. AOD Retrieval Validation

In this section I present the AOD retrievals during clear-sky measurements. The data
are considered valid for the intercomparison when cloud cover is less or equal two okta.
As pointed out in Chew et al. [39], invisible, tiny cirrus clouds might still be present and
bias the retrieval. Please refer to Section 4.1 for an assessment of the introduced bias by
those thin ice clouds. The intercomparison is presented as a scatter plot in Figure 6. Data
were taken on fifteen different days from January to June 2021, from around 10 am to 1 pm
local time. Data represent different conditions, from clear-sky to moderately polluted. On
polluted days, the aerosols, following the atmospheric circulation, are advected towards the
observational site from from large-scale industrial plants in the vicinity. It is not possible to
exclude dust outbreaks affecting data (especially for larger AOD values). Dust outbreaks
will bias the retrieval (see Section 4.1) as, in view of automatic retrieval from app, the user
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should set up the type of environment, i.e., the local background aerosol species during
the installation; for this study, the setup type is urban-continental. The first prototype of a
Graphical User Interface has been developed for Apple iPhone models shown in Figure 7.

Figure 5. AOD absolute error vs. the Solar Zenith Angle for source of errors listed in (ii), (iii) and (iv).

Figure 6. Intercomparison between AOD from ECMWF-CAMS reanalysis and AOD retrieved from
photovoltaic panel power, as shown in Section 2.2. The linear fitting highlights that 94% of the
variability can be explained by the model with a RMSE of 0.033.
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Figure 7. Left: A possible Graphic User Interface for iPhone users. The app will show the plot
relative to the last 30 days of measurements. The lower panel shows the current AOD value and
good air quality. Right: Example of notification alerting app users about pollution above a certain
threshold. The notification also suggests to limit time spent outdoors. The notifications, based on
AOD levels, will notify users with different kinds of suggestions.

5. Discussion

For the first time, this manuscript describes a methodology to retrieve the AOD using
a photovoltaic solar system as a sunphotometer. The methodology is based on a iterative
process where the AOD at 550 nm is changed as long as the theoretical produced electric
power is not equal to the real produced power (within a certain threshold). This study
should be considered as a “proof of concept” to demonstrate the feasibility of the proposed
methodology, in view of a future development of a smartphone application that will allow
photovoltaic panel owners to transform their photovoltaic module into an air-quality
measurement device. Errors and uncertainties of the methodology could be high, and
further tests and validation over greater temporal periods for different conditions and at
different latitudes are needed. Nevertheless, despite the uncertainties, the AOD retrievals
are still valuable (and most important, cost-free), both for climate studies and as a warning
for bad air-quality conditions. To reduce the error sources listed in previous Section 4.1, we
obtain the vertical profile of the meteorological variables at the desired location from global
meteorological models such as the European Medium-Range Weather Forecast (ECMWF).
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6. Conclusions

The presented methodology, based on a reverse-engineering process, retrieves the
AOD from the hourly produced electric power by commercially available photovoltaic
panels. The retrieved AOD values, intercompared with the ECMWF-CAMS reanalysis
data, show a linear correlation with an RMSE of 0.033 (R2 = 0.94). The presence of thin
cirrus clouds, incorrect meteorological variables including vertical profiles of PW, and
aerosol miss-typing can lead to a sizable bias in the retrieval up to 25%. Despite this
possible large uncertainty, the presented proof of concept is part of a larger project which
will allow common citizens to use their photovoltaic panels to estimate the AOD in real
time. During the second phase, a smartphone application will be developed to collect the
observations from all the photovoltaic panel owners to produce a global-scale AOD map.
Not to be underestimated is also the smartphone application’s potential in notifying users
when the atmospheric aerosol concentration is too high becoming dangerous for sensitive
groups. During the setup process the user will be asked to introduce the photovoltaic
panel technical characteristics, i.e., the panel tilting, its orientation with respect to the South
direction the efficiency of the panels, the albedo of the surface on which the panels are
installed to name few. Giving access to the position, the app will automatically retrieve the
solar zenith angle, the temperature and relative humidity. There will also be the possibility
to introduce those parameters manually. After the setup process, the user is required to
input the current produced energy in clear-sky conditions. The app will then show and
record the AOD values. Figure 7 (right) shows a notification sent to the user alerting
for high pollution condition and suggesting to limit the time spent outdoors. In a future
release, it will be possible to personalize the profile, e.g., elder people, sensible groups, to
obtain more personalized notifications.

The methodology is based on the development of a simple model to forecast the
photovoltaic panel electric power, once the technical characteristics are known. Then the
clear-sky AOD is retrieved at 550 nm through an iterative process. As shown in Figure 1, the
atmospheric optical depth is incremented in steps of 0.01 until the forecast produced electric
energy by the model using the direct and diffuse radiation fluxes computed by Fu–Liou–Gu
Radiative Transfer Model will match the real observed power by the photovoltaic system.

All the possible methodology error causes are listed in Section 5. The methodology
shows large uncertainties, mostly related to the precision of the technical characteristics
of the panel that might degrade with time. Moreover, meteorological parameters should
be known with sufficient precision, while the Fu–Liou–Gu model needs as input the
atmospheric concentration of the mixing ratio and ozone that are taken from the USS976
atmospheric model.
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