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The global pandemic caused by the SARS-CoV-2 virus continues to spread. Infection with SARS- CoV-2
causes COVID-19, a disease of variable severity. Mutation has already altered the SARS-CoV-2 genome
from its original reported sequence and continued mutation is highly probable. These mutations can:
(i) have no significant impact (they are silent), (ii) result in a complete loss or reduction of infectivity,
or (iii) induce increase in infectivity. Physical generation, for research purposes, of viral mutations that
could enhance infectivity are controversial and highly regulated. The primary purpose of this project
was to evaluate the ability of the DeepNEU machine learning stem-cell simulation platform to enable
rapid and efficient assessment of the potential impact of viral loss-of-function (LOF) and gain-of-
function (GOF) mutations on SARS-CoV-2 infectivity. Our data suggest that SARS-CoV-2 infection can
be simulated in human alveolar type lung cells. Simulation of infection in these lung cells can be used
to model and assess the impact of LOF and GOF mutations in the SARS-CoV2 genome. We have also cre-
ated a four- factor infectivity measure: the DeepNEU Case Fatality Rate (dnCFR). dnCFR can be used to
assess infectivity based on the presence or absence of the key viral proteins (NSP3, Spike-RDB, N protein,
and M protein). dnCFR was used in this study, not to only assess the impact of different mutations on
SARS-CoV2 infectivity, but also to categorize the effects of mutations as loss of infectivity or gain of
infectivity events.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The continuing evolution of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) genome remains a major
obstacle to developing effective antiviral and vaccine therapies
[1,2]. The potential to better understand and predict this evolution
will assist in the early detection of drug-resistant strains and facil-
itate the development of effective antiviral drugs and vaccines [3].

One important focus in the field of virology is to develop a bet-
ter understanding of the impact of genetic mutation on infectivity
[4,5]. Here we define infectivity as the ratio of individuals who
become infected divided by the number who are exposed to the
virus. Predicting viral evolution is a fundamental goal in virology
and this is especially true for pathogenic viruses [6]. Genomic
information about current viral pathogens like SARS-CoV-2 and
their continued evolution will provide a better understanding of
the dynamics of future virus evolution and shed light on effective
strategies to contain future outbreaks [7,8].
Even though RNA viruses have a limited genome and a
relatively limited evolutionary capacity, they do present unique
challenges to predicting the impact of evolutionary changes. RNA
viruses are known for their high mutation rates (around 1 muta-
tion in 1,000 bases) and frequent recombination that can produce
novel genotypes from co-circulating strains [6]. RNA viruses addi-
tionally undergo frequent mutations as they circulate in the popu-
lation as in response to host factors. Of note, a recent variant
analysis of SARS-CoV-2 has shown that, out of 10 022 SARS
CoV-2 genomes that were analyzed, there were 65,776 variants
detected and 5775 of them were distinct variants. These 5775 dis-
tinct variants included 2969 missense mutations, and 1965 point-
mutations [9].The feasibility of predicting viral evolution relies
upon on the breadth and scale of well posed questions and calls
for cautious optimism [10].

Machine learning-based predictions of the impact of genetic
mutations has been efficiently utilized in the field of viral genetics
for many years, and have been mostly focused on the prediction of
viral mutations that are associated with drug resistance [10]. Given
the ongoing SARS-CoV-2 global pandemic and the emergence of
new variants of concern, it is highly desirable to have a fast,
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Table 1
Summary of evaluated LOF and GOF mutations in the SARS-CoV-2 genome
(N = 15 � 2).

SARS-CoV-2 Target Loss of Function Gain of Function

aiPSC-WT N/A N/A
aiLUNG (i.e. Uninfected) N/A N/A
aiLUNG + SARS-CoV-2 N/A N/A
Spike-RBD Mutation �1, Locked OFF +1, Locked ON
Furin Mutation �1, Locked OFF +1, Locked ON
NSP12 Mutation (RdRP) �1, Locked OFF +1, Locked ON
orf1ab Mutation �1, Locked OFF +1, Locked ON
orf10 Mutation �1, Locked OFF +1, Locked ON
(N)ucleoprotein Mutation �1, Locked OFF +1, Locked ON
(M)embrane Mutation �1, Locked OFF +1, Locked ON
NSP3 Mutation �1, Locked OFF +1, Locked ON
orf7a Mutation �1, Locked OFF +1, Locked ON
orf8 Mutation �1, Locked OFF +1, Locked ON
NSP5 Mutation �1, Locked OFF +1, Locked ON
(S)pike Mutation �1, Locked OFF +1, Locked ON
(E)nvelope Mutation �1, Locked OFF +1, Locked ON
NSP13 Mutation (Helicase) �1, Locked OFF +1, Locked ON
orf3a Mutation �1, Locked OFF +1, Locked ON

NSP = Non-Structural Protein, RdRP = RNA-dependent RNA polymerase, orf = open
reading frame, aiLUNG = Wild Type (uninfected), aiLUNG + SARS-CoV-2 = aiLUNG-
COVID-19.
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reliable and efficient machine learning platform for simulating
viable mutations and studying their potential effects on the infec-
tivity of SARS-CoV-2 as well as future viral pathogens for which we
are not prepared.

An important goal of this study is to simulate the natural evolu-
tion of the post-pandemic strain of SARS-CoV-2 by systematically
introducing both gain of function (GOF) and loss of function muta-
tions (LOF) into the viral genome. The overarching objective of this
study is to identify potential therapeutic targets and improve pre-
paredness for future epidemic/pandemic outbreaks of new strains
of SARS-CoV-2 and other viral pathogens. In this study we simulate
the impact of predicted GOF and LOF mutations in the SARS-CoV-2
genome. We have also developed a measure of viral infectivity,
DeepNEU case fatality rate (dnCFR) for estimating changes in the
SARS-CoV-2 case CFR in response to predicted GOF and LOF muta-
tions. Our literature validated deep machine learning platform,
DeepNEU v5.0, has successfully identified the infectivity potential
of SARS-CoV-2 mutations well ahead of when they could occur
and be identified in nature. These discoveries will offer the possi-
bility of improving viral pandemic preparedness and better target-
ing surveillance between and during epidemics/pandemics.

1.1. Methods

The DeepNEU stem cell simulation platform is a literature vali-
dated hybrid deep-machine learning system with elements of fully
connected recurrent neural networks (RNN), cognitive maps (CM),
support vector machines (SVM) and evolutionary systems (GA).
The detailed methodology for simulation development and valida-
tion plus the description of the current database (DeepNEU v5.0)
used in these experiments has been described in [11–13].

1.1.1. The DeepNEU simulations
The main goal of this project was to extend our previous Deep-

NEU based research into SARS-CoV-2 infection by evaluating the
potential impact of simulated LOF and GOF mutations in the viral
genome on viral infectivity. As described previously [13] we first
created computer simulations (aiPSC) of human induced pluripo-
tent stem cells (iPSC) and lung (aiLUNG) cells. Once validated,
the aiLUNG simulations were exposed to simulated SARS-CoV-2
viremia by turning on extracellular Spike-RBP (Receptor Binding
Domain) in the presence of active Transmembrane Serine Protease
2 (TMPRSS2) [13]. The simulated SARS-CoV-2 infection of AT1 and
AT2 lung cells (aiLUNG-COVID-19) was confirmed using a profile of
genotypic and phenotypic features from the published literature
[14,15]. Finally, the validated aiLUNG and aiLUNG-COVID-19 sim-
ulations were used to evaluate an inclusive set of factors derived
from the published SARS-CoV-2 genome (Accession number:
NC_045512.2; https://www.ncbi.nlm.nih.gov/sars-cov-2/) regard-
ing their ability to affect an increase or decrease in infectivity. A
summary of the fifteen SARS-CoV-2 gene/gene products evaluated
in the current experiments are presented in Table 1.

Prior to the application of simulated LOF and GOF mutations as
described above, the predictions from the wild type aiPSC, aiLUNG-
WT and aiLUNG-COVID-19 simulations regarding the expression or
repression of genes and proteins and presence or absence of phe-
notypic features were validated directly against published data
as outlined previously [13]. All experiments in this study were con-
ducted in triplicate (n = 3) using different initial conditions in the
form of initial state vectors.

1.2. DeepNEU platform statistical analysis

For these experiments we have used the unbiased binomial test
to analyze aiPSC, aiLUNG and LUNG-COVID-19 simulation predic-
tions versus the published literature . This test compensates for
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prediction bias and is most suitable for calculating the significance
of differences when comparing outcomes that fall into just two cat-
egories (e.g., agree vs disagree) Analysis of the complete data set
identified the pre-test probability of a positive outcome prediction
is 0.661 and the pre-test probability of a negative prediction is
therefore 0.339 . A p value < 0.05 is considered significant in that
the predicted outcome is unlikely to have occurred by chance
alone. To compare between group differences (e.g. LOF vs GOF)
the non parametric Mann-Whitney u test was used to estimate sig-
nificance [16]. We chose this non parametric test, because some of
the data were not normally distributed.

For the purpose of this project it we created a simple method for
estimating the impact of LOF and GOF mutations on infectivity
based on a recent paper by [17]. These authors identified four gene
products that were impacted in almost all the known mutations
identified so far in the SARS-CoV-2 genome. These four gene prod-
ucts were Polyprotein-1ab (orf-1ab), Nucleocapsid protein (N),
Spike protein (S) and Membrane protein (M). Refinement of the
impact of these four proteins revealed that the non-structural pro-
tein cleavage products NSP3, NSP4 and NSP14 were largely respon-
sible for mutations seen in the orf-1ab polyprotein, while the
Spike-RBD protein appeared responsible for most of the variation
in the Spike protein [17]. We therefore created an estimate of
infectivity (dnCFR) by combining DeepNEU estimates of NSP3
derived from orf-1ab polyprotein (NSP4 and NSP14 are not imple-
mented in DeepNEU (v5.0)), Nucleocapsid protein (N), Spike
Receptor Binding Domain (S-RBD) and Membrane protein (M).
The dnCFR measure was used to compare all imposed LOF and
GOF mutations. In addition, the dnCFR measure was correlated
with the calculated Angular Cosine Distance (ACD) a validated
metric for evaluating the distance between real valued vectors
with values between �1 and +1 [18,19].

Validation of the dnCFR measure included calculation of Cosine
Similarity (CS) for all LOF and GOF mutations to establish similarity
to the wild type SARS-CoV-2 genome. Cosine Similarity is a com-
monly used measure for comparing the similarity of two or more
real valued vectors with the same number of elements. In this
study each SARS-CoV-2 genomic profile was represented as real
valued vectors. As similarity between the genomic profile vectors
increases, CS increases to + 1 or maximum similarity. As CS similar-
ity decreases away from the reference vector and becomes increas-
ingly dissimilar, CS decrease towards�1 or maximum dissimilarity

https://www.ncbi.nlm.nih.gov/sars-cov-2/
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[7]. We then used a simple mathematical transformation to derive
Angular Cosine Distance (ACD) using the formula ACD = arccosine
(CS)/Pi. The ACD metric was selected to evaluate the distance
between wild type and mutated SARS-CoV-2 genomic vectors
because [1] it conforms with all four properties of a valid distance
metric, [2] sample sizes are relatively small (N < 20) minimizing
any influence of the curse of dimensionality and [3] it is a widely
used and well validated metric for comparing bounded real valued
(�1 to + 1) vectors [18,19].

Further validation of the dnCFR measure using publicly avail-
able CFR data

Following the initial validation as outlined above, the dnCFR
was used to predict actual CFRs over a six-month period beginning
August 1st, 2020 and ending on January 1st, 2021. The beginning
and ending CFRs were obtained for continents, regions and coun-
tries around the globe. These data which are updated daily are
available from Coronavirus Pandemic Data Explorer publicly avail-
able at SARS-CoV-2 worldwide CFR.

For this process, we chose to focus on the Spike-RBD component
of dnCFR since this element contributed the most to the values
generated for the global COVID-19 dnCFR (see below). During data
generation, the M, N and NSP3 components were held constant
while S-RND was varied between �1 (complete absence) and + 1
(maximum effect). This process produced a dataset of calculated
dnCFR and actual CFRs that could be evaluated from continents,
regions and major cities. Initially, predictions were compared to
actual CFRs and plotted for visual analysis. Then the system predic-
tions vs actual results were used to develop an optimal regression
model for statistical analysis. Pearson r correlation coefficient, R2

and p value with n-2 degrees of freedom were used to assess the
significance of results.
1.3. Data availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
2. Results

2.1. The aiPSC and wild type (uninfected) aiLUNG simulations

As reported previously both the unsupervised aiPSC simulations
and the unsupervised aiLUNG simulations converged quickly (24
iterations) to a new system wide steady state without evidence
of overtraining after 1000 iterations [13]. The aiPSC simulations
expressed the same human hESC specific surface antigen and geno-
mic profile as both undifferentiated human embryonic stem cells
(hESC) and induced pluripotent stem cells (iPSC) [13]. The proba-
bility that all (N = 15) of these aiPSC-WT outcomes were correctly
predicted by chance alone using the binomial test is 0.0021.

While the aiLUNG simulations reproduced several lung cell
types including ATI and ATII precursors, Alveolar ATI and ATII cells,
ATI and ATII Sacular cells plus epithelial Ciliated, Club, Goblet cells
and pulmonary neuroendocrine cells (PNEC), we focused on the ATI
and ATII alveolar cells because they are a primary target of SARS-
CoV-2 respiratory infection. The aiLUNG simulations produced a
similar genotypic and phenotypic expression profile when com-
pared with the human wild type (ATI and ATII) lung cell specific
factors taken from the literature [13]. The probability that all
(N = 15) of these aiLUNG outcomes were correctly predicted by
chance alone using the binomial test is 0.0021. Importantly, the
data also indicate that the generation of aiLUNG cells from aiPSC
produces a heterogenous population of alveolar cell precursors
and more mature alveolar cells consistent with previous study
[20].
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2.2. Simulation of SARS-CoV-2-infected aiLUNG cells (aiLUNG-COVID-
19)

The next step in the experiments was to expose the aiLUNG
cells to simulated SARS-CoV-2 virus. For this simulated infection,
the concept of SARS-CoV-2 viremia was activated (turned on).
The viremia activates the viral life cycle beginning with the inter-
action of the viral Spike protein with its receptor protein
Angiotensin-converting enzyme 2 (ACE2) and ending with exocy-
tosis of new viral particles which completes the cycle by contribut-
ing new viral particles to the ongoing viremia [21]. The SARS-CoV-
2 genome consists of four structural genes, at least six non-
structural genes and produces at least ten proteins. As described
previously, the seventeen gene/protein expression profile was
compared with the uninfected aiLUNG simulations to assess the
validity of simulated COVID-19. All genes and proteins studied
were expressed in the aiLUNG-COVID-19, but not aiLUNG simula-
tions. The probability that all (N = 17) of these aiLUNG-COVID-19
simulation outcomes were correctly predicted by chance alone
using the binomial test is 0.0009 [13].

A phenotypic profile of aiLUNG-COVID-19 was also developed
based on the published literature and has been described previously
[13]. These phenotypic features (N = 8) include: New Extracellular
Virus release, Spike-ACE2 Interface, Spike-RBD, TMPRSS2, Virus
Clearance, Virus Intracellular RNA release, Virus Internalization
and Virus Replication. Strictly speaking, TMPRSS2 is a transmem-
brane host factor with protease activity but was included in the dis-
ease phenotype because its’ protease activity is required for [1]
priming S-protein, [2] activating ACE2 through cleaving its C termi-
nal and [3] it may be impacted by mutational pressure from
S-protein variations [22]. The presence of these phenotypic features
of COVID-19 was correctly predicted by the aiLUNG-COVID-19
simulations when compared with the aiLUNG simulations. The
probability that all (N = 8) of these aiLUNG-COVID-19 outcomes
were predicted correctly by chance alone using the binomial test is
0.0364.

When we combined the genotypic and phenotypic profiles, the
probability that all (N = 25) features of simulated aiLUNG-COVID-
19 were accurately predicted by chance alone using the binomial
test is 0.00003.

2.3. Evaluation of the validated aiLUNG-COVID-19 simulations for
estimating the impact of LOF and GOF mutations on SARS-CoV-2
infectivity.

2.3.1. LOF mutations:
The LOF mutations (N = 15), representing fifteen genes and pro-

teins of the SARS-CoV-2 genome listed above, were simulated by
setting the gene/gene product concepts to �1 and locking them
off during system development. This is the computational ana-
logue to creating a gene deletion and therefore an absent gene pro-
duct that is propagated from each iteration to the next until system
convergence is achieved. All unsupervised aiLUNG-COVID-19 and
aiLUNG-COVID-19 with LOF simulations converged quickly to a
new system wide steady state without evidence of overtraining
after 1000 iterations.

The dnCFR measure for the LOF mutations ranged from a value
of �4.000 for the aiLUNG-WT (uninfected) simulations to a maxi-
mum of 1.365 (95% CI ± 0.521) with a theoretical maximum
of + 4.000. The mean dnCFR for LOF mutations was (0.152 ± 0.52
1). Analysis of system outputs using the dnCFR identified eight
LOF mutations that significantly decreased SARS-CoV-2 infectivity
(p < 0.05) when compared with the wild type SARS-CoV-2 genome.
The most impactful LOF mutation was in Spike-RBD (-1.812 ± 0.5
21) followed closely by LOF mutation in the S protein cleavage
enzyme Furin (-1.553 ± 0.521). The remainder of the LOF mutations
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did not significantly alter infectivity as estimated by the dnCFR
(p > 0.05)(Fig. 1A and Fig. 4).

2.3.2. GOF mutations:
The GOF mutations (N = 15) were simulated by setting the

gene/gene product concepts to + 1 and locking them on during sys-
tem development. This is the computational analogue to creating a
maximum increase in gene function and therefore a maximum
gene product that is propagated from each iteration to the next
until system convergence is achieved. All unsupervised aiLUNG-
COVID-19 and aiLUNG-COVID-19 with GOF simulations converged
quickly to a new system wide steady state without evidence of
overtraining after 1000 iterations.

The dnCFR measure for the GOF mutations ranged from a value
of �4.000 for the aiLUNG-WT simulations to a maximum of 2.156
(95% CI ± 0.131) with a theoretical maximum of + 4.000. The mean
dnCFR for GOF mutations was (1.652 ± 0.131). Analysis of system
outputs using the dnCFR measure identified six GOF mutations
that significantly increased infectivity (p < 0.05) when compared
with aiLUNG-COVID-19 without mutations. The most impactful
GOF mutation was in the N protein (2.156 ± 0.131) followed closely
by GOF mutation in the M protein (2.063 ± 0.131). A significant
Fig. 1. aiLUNG simulations of the effect of LOF and GOF mutations in the SARS-CoV-2
bars represent mutations in SARS-CoV2 that result in a significant decrease in infectivit
SARS-CoV2 that result in a significant increase in infectivity. A, B, Green bar represents aiL
genome) simulations; blue bars represent mutations that has no significant effect on inf
interval around the average. (For interpretation of the references to colour in this figure
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increase in SARS-CoV-2 infectivity was also predicted to result
from GOF mutations in ORF10, ORF1ab and Spike protein RNA
binding domain (Spike-RBD). The remainder of the GOF mutations
did not significantly alter infectivity (p > 0.05) (Fig. 1B and Fig. 5).
2.4. Using the dnCFR measure to compare LOF and GOF mutations

The first step in assessing the dnCFR measure was to evaluate
the ability of each of the four individual genomic components of
the measure (NSP3, S-RBP, M, N proteins) to distinguish LOF from
GOF mutations. Based on the 2 tailed Mann-Whitney u test, each
component of the dnCFR measure easily distinguished LOF and
GOF mutations from each other (all exact p values � 0.000044)
(Fig. 2 and Fig. 6).

Next, we explored the ability of the dnCFR measure to distin-
guish between LOF and GOF mutations. The mean dnCFR (±95%
CI) for LOF mutations was 0.152 ± 0.521 and 1.652 ± 0.131 for
GOF mutations. The exact Mann-Whitney u test p value for the
direct comparison was 1.55E-07 suggesting that the dnCFR
measure was better at distinguishing between LOF and GOF muta-
tions than any single element of the measure (Fig. 2A and Fig. 6).
genome on viral infectivity. A, LOF simulations and their virulence estimation. Red
y. B, GOF simulations their infectivity estimation. Red bars represent mutations in
UNG-WT; Yellow bar represents aiLUNG-COVID-19 (unmutated original SARS-CoV2
ectivity. These data represent the average from 3 experiments ± the 95% confidence
legend, the reader is referred to the web version of this article.)



Fig. 2. DeepNEU summary analysis summary and statistics A, DeepNEU summary results comparing the impact of LOF and GOF mutations on SARS-CoV-2 individual
genotypic features. Data from 3 separate experiments. E = Envelope, M = Membrane, N = Nucleocapsid, S-RBD = Spike-Receptor Binding Domain. B, Summary results from
DeepNEU simulations of the individual mutated components and composite dnCFR measure effects on SAR-CoV-2 infectivity. Results are the average of 3 experiments ± the
95% CI.
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We also compared the dnCFR measure using a widely used and
validated distance metric, the Angular Cosine Distance (ACD). The
ACD was used to estimate the distance between genomic profiles.
As we described previously, we first calculated the Cosine Similarity
(CS) measure for each LOF and GOF mutation profile. This value was
then converted to the ACD using the equation ACD = arccosine
(ACD)/Pi. ACD valueswere calculated for each LOF andGOFmutation.
Like the dnCFR measure, the ACD metric also easily distinguished
between the LOF and GOF mutations (Mann-Whitney u test
p = 3.87E-07). We next compared the ACD metric directly with the
dnCFR measure using the Spearman rank correlation coefficient.
The Spearman coefficient for the LOF mutations was 0.973 (critical
value (N = 15) is 0.779, p < 0.001) (Fig. 3A). The Spearman coefficient
for the GOF mutations was 0.903 (critical value (N = 15) is 0.779,
p < 0.001) (Fig. 3B). These data indicate that the dnCFR measure and
ACD metric are both able to accurately distinguish between LOF and
GOFmutations andare strongly positively correlatedwith eachother.
2.5. The dnCFR estimates vs actual CFR

A total of 46 (df = 44) predictions for dnCFR were generated for
this analysis. The initial analysis revealed a weak linear correlation
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between calculated dnCFR and actual CFR (Pearson r = 0.514).
However, when we evaluated the log of the CFR (LogCFR) and
the dnCFR, a much stronger correlation was revealed (Pearson
r = 0.982, df = 44, critical value ~ 0.490, p < 0.001). The derived sim-
ple log-linear regression equation is Log(CFR) = 0.5091*dnCFR-2.1
925, (R2 = 0.9635). The predicted Log(CFR) can be converted to
the corresponding CFR using the transform CFR = 10(LogCFR). The
data are summarized graphically in Fig. 7 and numerically in
Table 2.
3. Discussion

Recently, we evaluated the capability of the DeepNEU (v5.0)
machine learning platform to simulate SARS-CoV-2 infection in
simulated Type 1 (AT1) and Type 2 (AT2) alveolar lung cells
(aiLUNG-COVID-19) [13]. In our most recent research, we reported
the ability of the DeepNEU platform to enable the rapid identifica-
tion of therapeutic targets and drug repurposing for treating
COVID-19 [13](While we have used the same approach that we
reported in our previous research [13],),the primary purpose of this
project was to extend our previous work by evaluating the ability
of the DeepNEU platform to enable rapid and efficient assessment



Fig. 3. DeepNEU simulations of the effect of LOF and GOF mutations on SARS-CoV2 infectivity. A, Correlation between ACD metric and dnCFR measure regarding there
ability to identify LOF mutations in the SARS-CoV-2 genome. Data from from 3 experiments ± the 95% confidence around the estimates is presented. Spearman r = 0.973,
n = 15, p < 0.001. B, Correlation between ACD metric and dnCFR measure regarding there ability to identify GOF mutations in the SARS-CoV-2 genome. Data from from 3
experiments plus the 95% confidence around the estimates is presented. Spearman r = 0.903, n = 15, p < 0.001.
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of the impact of LOF and GOF mutations in the SARS-CoV-2 gen-
ome. As of this writing and with a few exceptions, the diversity
and impact of knownmutations in the SARS-CoV-2 genome are rel-
atively unknown and this is particularly true for GOF mutations
that have increased potential to amplify SARS-CoV-2 infectivity.

While there is some variation in the definition of infectivity, we
have defined it here to mean the ratio of individuals who become
infected with SARS-CoV-2 divided by the number who are exposed
to the virus. In addition, the SARS-CoV-2 associated case fatality
rate (CFR) is the proportion of people who die from documented
COVID-19. For the purposes of this project we have created a
new measure called dnCFR. This new measure represents a logical
extension of the insights into mutations in the SARS-CoV-2 gen-
ome provided in [17]. These authors identified four gene products
(proteins) that result from the most common mutations in the
SARS-CoV-2 genome. These mutated proteins are [1] Non-
Structural Protein 3 (NSP3), [2] Spike-Receptor Binding Domain
(S-RBD), [3] Membrane (M) protein and [4] Nucleocapsid (N) pro-
tein. All four of these proteins were implemented in DeepNEU
(v5.0) and could be evaluated individually and in combination to
constitute the dnCFR measure. Individually each of the four
mutated proteins could easily distinguish LOF from GOF mutations
(p < 4.4E-05). Importantly, when combined the dnCFR measure
appeared to be about 75 times better at distinguishing between
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LOF and GOF mutations (p = 1.55E-07). The dnCFR measure also
performed well when compared with a validated and widely used
metric, the Angular Cosine Distance (ACD) which we used to mea-
sure the distance between two real valued genomic vectors. Specif-
ically, we wanted to measure the distance between the un-
mutated SARS-CoV-2 genome and the mutated genomes using
the ACD. The calculated Spearman correlation coefficient
was>0.900 (p < 0.001) for all comparisons supporting the existence
of a strong positive correlation between the two.

To provide further validation, we explored the relationship
between the calculated dnCFR and actual CFR as an estimate of
infectivity. By varying the function of the Spike-RBD between a
complete loss of function (S-RBD = -1) and a qualitative maximum
gain of function (S-RBD =+1), we generated a dataset of 46 dnCFR
predictions. On the basis of these data, we found a weak correla-
tion between actual CFR and calculated dnCFR but a strongly pos-
itive correlation between the Log(CFR) and the dnCFR. This
relationship allowed us to derive a simple log-linear regression
equation in the form of Log(CFR) = 0.5091*dnCFR-2.1925,
(R2 = 0.9635, p < 0.001, df = 44). The predicted Log(CFR) was then
converted to the corresponding CFR using the transform
CFR = 10(LogCFR).

Given that the dnCFR has four components and three of them
were held constant for this analysis, it is not surprising that varying



Fig. 4. Heat map representation of summary DeepNEU simulations data of the effects of individual LOF mutations. A, effect of LOF on the SARS-CoV-2 genome and B,
effect of LOF on phenotypic profile of simulated ATI and ATII cells. Data are the average of 3 separate experiments. Data represented as dnCFR measure +/- the 95% CI around
the estimates is presented. dnCFR is the DeepNEU measure of SAR-CoV-2 infectivity, where (-4) represents the maximum reduction in viral infectivity and (+4) represents the
maximum increase in infectivity.
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Spike-RBD between �1 and + 1 had a significant impact on CFR
over a limited range. For example, a Spike-RBD set to �1 produced
a minimum dnCFR value of�0.113 and a CFR of 0.004 or 0.4% while
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a maximum S-RBD set at + 1 produced dnCFR of 1.887 and a CFR
of ~ 5%. As a result, actual CFR values > 5% will always return the
same dnCFR of 1.887. The same limitation applies to dnCFR < -



Fig. 5. Heat map representation of summary DeepNEU simulations data of the effects of individual GOF mutations. A, effect of GOF on the SARS-CoV-2 genome and B,
effect of GOF on phenotypic profile of simulated ATI and ATII cells. Data are the average of 3 separate experiments. Data represented as dnCFR measure +/- the 95% CI around
the estimates.
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0.113 but would be expected to have little or no impact on actual
CFR since the current low dnCFR in already close to zero. It should
be noted that the validation derived from these data only applies to
Spike-RBD and over the range of dnCFR from �0.113 to + 1.887.
This type of analysis could easily be repeated for the remaining
1708
three predictors (i.e. M, N and NSP3 proteins) of the dnCFR
measure.

As part of our analysis, we also examined the impact of a simu-
lated B1.1.7 GOF mutation(s) in the S-RBD region of the S-protein
in 3 areas; the USA, the UK and the continent of Europe. This muta-



Fig. 6. DeepNEU simulations of the calculated 4 component dnCFR as a measure of SARS-CoV-2 infectivity. A, calculated 4 component dnCFR measure for LOF mutations.
B, calculated 4 component dnCFR measure for GOF mutations. dnCFR is the DeepNEUmeasure of SAR-CoV-2 infectivity, where (-4) represents the maximum reduction in viral
infectivity and (+4) represents the maximum increase in infectivity. Results are from 3 separate experiments ± 95% CI.
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tion is thought to be responsible for a 30%-50% increase in receptor
binding and viral transmissibility. This simulated GOF mutation
was applied at the end of the study period (i.e. January 1, 2021).
The derived linear equation linking Log(CFR) to the calculated
dnCFR was used to predict the potential impact by multiplying
the S-RBD value by a factor of 1.4 to simulate a 40% increase in
function. A small increase in CFR was predicted for both the USA,
0.3% from 1.7% to ~ 2.0% and from 2.3% to ~ 2.6% for Europe. The
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largest change in the CFR was in the UK where it was predicted
to increase from 2.9% to ~ 4.4% over the next 6 months if current
policies and behaviors continue.

The dnCFR measure has a few important advantages namely its
simplicity and ease of use. It is easily calculated by adding four val-
ues whereas the ACD calculation requires a two-step calculation
involving a trigonometric transformation. The dnCFR can also be
directly linked to the global, regional or local CFR estimate. As of



Fig. 7. Linear Regression analysis between DeepNEU estimated dnCFR vs Actual CFR. Results from experiments applying the equation Log(CFR) = 0.5091*dnCFR-0.2915 to
publicly available CFR data. Three of the dnCFR measure components were held constant at their baseline values while the S-RBD varied from a minimum of �1 to a
maximum of + 1. Over this range of values for S-RBD activity, predicted dnCFR ranged between �0.118 to + 1.88. After computing the value for Log(CFR), the predicted CFR
was recovered by using the transform CFR = 10dnCFR .
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this writing the number of global SARS-CoV-2 infections is
22,200,000 with 783,000 deaths producing a CFR of 0.035. This glo-
bal CFR of 3.5% or 35,270 deaths per million is associated with a
dnCFR estimate of 1.457 for the infectivity of the wild type SARS-
CoV-2 genome. For example, a GOF mutation that produces a
dnCFR of 2 or a 1.373 increase in infectivity would result in a
CFR of 0.048 or 48,044 per million people infected or 12,774 excess
deaths per million. Perhaps most importantly the dnCFR measure
can be modified for any viral genome for which there are validated
insights into the genome mutational landscape. While the dnCFR is
based on sound logic and mathematical principles there are a few
drawbacks. These potential drawbacks of the current version of the
dnCFR measure are related to its newness and lack of additional
independent validation and widespread use.
3.1. dnCFR and LOF mutations

When we applied the dnCFR measure to each of the fifteen LOF
mutations evaluated, eight significant mutations were identified.
All these mutations produced a significant decrease in SARS-CoV-
2 infectivity compared with the wild type genome. The most signif-
icant LOF mutation was in Spike-RBD with a dnCFR of �1.812 ± 0.
521 representing a 224.37% decrease in infectivity. This complete
LOF mutation leads to a profound loss of infectivity as evidenced
by an estimated CFR of 0.00 deaths per million people infected
and a decrease of 35,270 deaths per million. There are three other
LOF mutations that produce a negative dnCFR. These other
mutated proteins are Furin (-1.553 ± 0.521), NSP12/RdRP (-1.124
± 0.521) and orf1ab (-0.846 ± 0.521) suggesting that SARS-CoV-2
infectivity is dependent to some degree, on each of these muta-
tions. The least, but still significant LOF mutation was in the
NSP3 protein with a dnCFR of 0.321 ± 0.521 representing a 17.9%
decrease in infectivity. This LOF mutation results in a decrease in
infectivity and is associated with a CFR of 2.90% or 28,949 per mil-
lion people infected and an expected decrease of 6,322 deaths per
million.

These data have important implications for future research
focusing on SARS-CoV-2 pandemic preparedness. Importantly,
the rapid identification of drug and drug combinations, monoclonal
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antibodies or vaccines that target one or more of these LOF muta-
tions would be expected to produce a LOF or LOFs situation that
could reduce CFR by a minimum of 6,322 deaths per million
infections.
3.2. dnCFR and GOF mutations

When the dnCFR measure was applied to the each of the fifteen
GOF mutations evaluated, six significant mutations were identi-
fied. All these mutations produced a significant increase in SARS-
CoV-2 infectivity compared with the wild type genome. The most
significant GOF mutation was in the N protein with a dnCFR of 2.
156 ± 0.131 representing a 47.98% increase in infectivity. This
GOF mutation produces an increase in infectivity associated with
a CFR of 5.18% or 52,191 deaths per million people infected and
an increase of 16,921 deaths per million. The second most signifi-
cant GOF mutation was in the M protein with a dnCFR of 2.063 ± 0.
131. In addition, GOF mutations in ORF10, ORF1ab and Spike pro-
tein RNA binding domain (Spike-RBD) also produced significant
increases in SARS-CoV-2 infectivity. The least, but still significant
GOF mutation was in the NSP3 protein with a dnCFR of 1.743 ± 0.
131 representing a 19.63% increase in infectivity. This GOF muta-
tion produces an increase in infectivity associated with a CFR of
42,732 deaths per million people infected and an expected increase
of 7,012 deaths per million.

These data also have important implications for future research
focusing on SARS-CoV-2 pandemic preparedness. For example,
these data suggest that GOF mutations other than in the S-
protein and particularly in N and M gene/proteins may have even
greater impact on infectivity and CFR of evolving SARS-CoV-2.
The implication is that going forward SARS-CoV-2 research should
be refocused to assign greater importance to potential N and M
mutations. Importantly, the rapid identification of drug and drug
combinations, monoclonal antibodies or vaccines that target one
or more of these GOF mutations would be expected to produce a
GOF or GOFs situation that could reduce CFR by at least 7,012
and perhaps as much as 17,000 deaths per million infections. Early
application of this literature validated technology could have even



Table 2
Correlation between predicted dnCFR and actual CFR of global SARS-CoV2 variants.

Continent Region M protein N protein NSP3 S-RBD dnCFR CFR Log(CFR)

Best case (WT) COVID-19 �1 �1 �1 �1 �4.0000 0.000 �4.000
Global CFR COVID-19 0.202 0.202 0.483 0.571 1.4580 0.035 �1.456
Africa S_Africa 0.202 0.202 0.483 0.02 0.9070 0.016 �1.796
Africa S_Africa _6m 0.202 0.202 0.483 0.495 1.3820 0.027 �1.569
Africa Africa 0.202 0.202 0.483 0.148 1.0350 0.021 �1.678
Africa Africa + 6 m 0.202 0.202 0.483 0.259 1.1460 0.024 �1.620
Asia China 0.202 0.202 0.483 1 1.8870 0.053 �1.276
Asia China + 6 m 0.202 0.202 0.483 0.999 1.8860 0.050 �1.301
Asia Asia 0.202 0.202 0.483 0.571 1.4580 0.035 �1.456
Asia Asia + 6 m 0.202 0.202 0.483 �0.041 0.8460 0.017 �1.770
Asia Russia 0.202 0.202 0.483 �1 �0.1130 0.005 �2.301
Asia Russia + 6 m 0.202 0.202 0.483 0.01 0.8970 0.018 �1.745
Europe UK 0.202 0.202 0.483 1 1.8870 0.135 �0.870
Europe UK + 6 m 0.202 0.202 0.483 0.56 1.4470 0.029 �1.538
Europe UK_B1.1.7* 0.202 0.202 0.483 0.784 1.6710 0.044 �1.357
Europe Italy 0.202 0.202 0.483 1 1.8870 0.142 �0.848
Europe Italy + 6 m 0.202 0.202 0.483 0.571 1.4580 0.035 �1.456
Europe Denmark 0.202 0.202 0.483 0.936 1.8230 0.044 �1.357
Europe Denmark + 6 m 0.202 0.202 0.483 �0.603 0.2840 0.008 �2.097
Europe EU 0.202 0.202 0.483 �0.041 0.8460 0.017 �1.770
Europe EU + 6 m 0.202 0.202 0.483 0.259 1.1460 0.024 �1.620
Europe France 0.202 0.202 0.483 �0.15 0.7370 0.015 �1.824
Europe France + 6 m 0.202 0.202 0.483 0.259 1.1460 0.024 �1.620
Europe Europe 0.202 0.202 0.483 1 1.8870 0.078 �1.108
Europe Europe + 6 m 0.202 0.202 0.483 0.224 1.1110 0.023 �1.638
Europe Europe + B1.1.7* 0.202 0.202 0.483 0.314 1.2010 0.026 �1.593
N_America USA 0.202 0.202 0.483 0.703 1.5900 0.034 �1.469
N_America USA + 6 m 0.202 0.202 0.483 �0.041 0.8460 0.017 �1.770
N_America USA_B1.1.7* 0.202 0.202 0.483 �0.025 0.8620 0.017 �1.762
N_America N_America 0.202 0.202 0.483 1 1.8870 0.064 �1.194
N_America N_America + 6 m 0.202 0.202 0.483 0.183 1.0700 0.022 �1.658
N_America Canada 0.202 0.202 0.483 �0.593 0.2940 0.009 �2.046
N_America Canada + 6 m 0.202 0.202 0.483 0.362 1.2490 0.027 �1.569
Oceania Australia 0.202 0.202 0.483 �0.237 0.6500 0.012 �1.921
Oceania Austrakia + 6 m 0.202 0.202 0.483 0.649 1.5360 0.032 �1.495
Oceania New Zealand 0.202 0.202 0.483 �0.21 0.6770 0.014 �1.854
Oceania New Zealand + 6 m 0.202 0.202 0.483 �0.343 0.5440 0.012 �1.921
Oceania Oceania 0.202 0.202 0.483 �0.274 0.6130 0.013 �1.886
Oceania Oceania + 6 m 0.202 0.202 0.483 0.454 1.3410 0.030 �1.523
S_America Brazil 0.202 0.202 0.483 0.571 1.4580 0.035 �1.456
S_America Brazil + 6 m 0.202 0.202 0.483 0.48 1.3670 0.025 �1.602
S_America SAmerica 0.202 0.202 0.483 �0.5 0.3870 0.010 �2.000
S_America SAmerica + 6 m 0.202 0.202 0.483 0.363 1.2500 0.027 �1.569
S-RBD GOF Other 0.202 0.202 0.483 1 1.8870 0.057 �1.244
S-RBD LOF Other 0.202 0.202 0.483 �1 �0.1130 0.004 �2.398
Worst case (GOF) COVID-19 1 1 1 1 4.0000 1.000 0.000

N = 46 df = 44 Log-Linear
Regression =

Log(CFR) = 0.5091*
(dnCFR)�2.1915,
R2 = 0.9635

Pearson r = 0.514 for dnCFR vs actual CFR * Calculations for B1.1.7 mutation, ~40%
increase in S-RBD function

0.982 for dnCFR vs Log (actual CFR), p < 0.001
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greater beneficial effects on future viral pandemics for which we
remain unprepared.

Interestingly, when we combined all mutations, six of the
mutated proteins, both LOF and GOF, significantly impacted the
infectivity of SARS-CoV-2 as estimated by the dnCFR. These six pro-
teins were N, M, S-RBD, Orf1ab, Orf10 and NSP3.

3.3. Evolution of the SARS-CoV-2 genome so far

The evolution of the SARS-CoV-2 genome is ongoing and so far,
it appears to have evolved into at least six clades defined based on
a common ancestor. These currently identified clades are labelled
as G, GH. GR, S, V and L plus an O clade representing Other. These
clades have different geographic representation as well as muta-
tional profiles. Worldwide the most common clades are G, GH
and GR accounting for ~ 74% of identified mutations. Importantly,
clades GH and GR are believed to be derived from the G clade.
The G glade has NSP3, RdRP (NSP12) and Spike (S) mutations.
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The GH clade has the same mutations as G plus an ORF3a mutation
and similarly, the GR clade has the same mutations as G plus a
Nucleocapsid (N) mutation [23]. All these individual mutations
have been evaluated by the DeepNEU platform.

Beginning with Africa, the most common clade is G followed by
GH, GR, and O. In Asia the largest clade is O followed by GH, S, GR
and G. The most common European clade is GR followed G, V and
GH. In North America the dominant clade is GH followed by S and
G. The most common clade in South America is GR followed by GH
and G. Finally, in Oceania GH is the most common clade followed
by O, G, V and GR. The G, GH and GR clades are variably but sub-
stantially represented in all regions of the globe discussed
[9,23–27].

The DeepNEU platform can be used to assess the impact of
regionally specific SARS-CoV-2 clades by combining LOF and/or
GOF mutations. For example, globally the most common clade is
GR [18] and the worse-case scenario can be simulated by combin-
ing NSP3 + RdRP (NSP12) + Spike (S) + Nucleocapsid (N) GOF
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mutations. Of note, the current version of DeepNEU could easily
handle an almost unlimited number of LOF and/or GOF mutations.
The cumulative mutational impact on the GR clade CFR can be esti-
mated by the dnCFR as outlined above. For example, GOF muta-
tions of all four proteins of the GR clade would result in a dnCFR
of 3.052 which equates to a worst case, CFR of 7.333% or 73,891
deaths per million and an expected increase in CFR of 38,621
deaths per million. Given that the average number of mutations
in the SARS-CoV-2 genome so far has been > 7, this scenario is unli-
kely but not impossible.
3.4. Future viral pandemic preparedness: We are not prepared!

Finally, we must act now and fortunately we can begin with the
world health organization (WHO) list of top 10 pathogens for
which we are not now prepared. Importantly, all the pathogens
on this list have been recognized longer than SARS-CoV-2(2019)
has. For example, the Rift Valley fever virus was officially recog-
nized in 1931, the Zika virus was recognized in 1947, Crimean-
Congo Fever in 1967, Lassa Fever in 1969, Ebola in 1976, Nipah
virus in 1998 and the MERS virus in 2012. Although none of these
pathogens have effective therapies, all of them have a considerable
body of knowledge regarding their genome and changes over time.
So far, this is the only absolute requirement for implementing
other analyses like that for SARS-CoV-2. In other words, an
approach that combines the DeepNEU platform and a dnCFR mea-
sure modified for a specific viral genome can be used with the
other members of the WHO list of top 10 pathogens for which,
midway through 2020, we are not prepared.
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