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CONTEMPORARY REVIEW

Cardiovascular Safety Assessment in 
Cancer Drug Development
Ohad Oren , MD; Tomas G. Neilan , MD, MPH; Michael G. Fradley , MD; Deepak L. Bhatt , MD, MPH

ABSTRACT: The development of cardiovascular toxicity attributable to anticancer drugs is a pivotal event that is associated 
with cardiovascular morbidity as well as with worse cancer-specific and overall outcomes. Although broad consensus exists 
regarding the importance of cardiovascular safety assessment in cancer drug development, real-world data suggest that car-
diovascular events are significantly underestimated in oncology trials. This drug safety discrepancy has profound implications 
on drug development decisions, risk-benefit evaluation, formulation of surveillance and prevention protocols, and survivor-
ship. In this article, we review the contemporary cardiovascular safety evaluation of new pharmaceuticals in hematology and 
oncology, spanning from in vitro pharmacodynamic testing to randomized clinical trials. We argue that cardiovascular safety 
assessment of anticancer drugs should be reformed and propose practical strategies, including development and validation 
of preclinical assays, expansion of oncology trial eligibility, incorporation of cardiovascular end points in early-phase studies, 
and design of longitudinal multi-institutional cardiotoxicity registries.

Key Words: antineoplastic agents ■ cardiotoxicity ■ cardiovascular safety ■ consensus ■ randomized controlled trials

A lthough broad consensus exists regarding 
the importance of cardiotoxicity assessment 
in cancer drug development, evidence sug-

gests that cardiovascular events are significantly 
underestimated in oncology trials.1 For example, 
immune checkpoint inhibitors,2 novel anticancer 
therapy, were initially shown to have no significant 
cardiovascular sequela in numerous seminal trials.3–6 
Nevertheless, pharmacovigilance analyses demon-
strated a potentially fatal drug-mediated myocarditis 
in 0.06% to 0.27% of patients,7 and real-world data 
suggest an incidence that is at least 4-fold higher at 
close to 1%.8,9 Similarly, sunitinib, a multikinase inhib-
itor, was associated with a favorable cardiovascular 
safety profile in a phase 3 trial of patients with gas-
trointestinal stromal tumors10 and in those with pan-
creatic neuroendocrine tumors,11 leading to US Food 
and Drug Administration (FDA) approvals. Additional 
clinical investigations in patients with metastatic renal 
cell carcinoma showed that left ventricular dysfunc-
tion developed in ≈10% of patients.12 As exemplified 

by these and other anticancer therapeutics, robust 
characterization of drug-specific cardiotoxicity rarely 
emerges in the course of individual clinical trials, 
which may expose patients to untoward complica-
tions. Such drug safety discrepancies have profound 
implications on drug development decisions, syn-
thesis of risks versus benefits, planning of cardiac 
surveillance, formulation of cardiovascular prevention 
strategies, and survivorship.

In this article, we review the contemporary car-
diovascular safety assessment of new pharmaceu-
ticals in hematology and oncology, spanning from 
in vitro pharmacodynamic testing to randomized 
clinical trials and multi-institutional registries. We 
discuss key principles in modern preclinical and 
clinical investigation, address the challenges intrin-
sic to effective cardiovascular safety assessment, 
and propose a road map for the standardized and 
data-driven assessment of the biologic and clin-
ical cardiovascular ramifications of anticancer 
compounds.
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PRECLINICAL EVALUATION OF 
ANTICANCER DRUG CANDIDATES
Preclinical cardiac safety testing provides an early 
signal of a potential cardiotoxic hazard. In addition, it 
helps characterize specific risks and generate data 
about mechanisms of cardiotoxicity. Preclinical assays 
also serve as an important platform for assessment of 
cardiovascular risk mitigation by specific interventions.

An example of an accepted preclinical assay is the 
human ether-à-go-go–related gene (hERG) proar-
rhythmia test, a specialized in vitro study routinely 
performed in cancer drug development (Figure 1). The 
assay takes advantage of the hERG potassium chan-
nel, which is responsible for the repolarization of the 
cardiac action potential.13,14 Specifically, in vitro block-
ade of the hERG channel lengthens the ventricular ac-
tion potential and correlates with electrocardiographic 
corrected QT (QTc) interval prolongation and ventricular 
arrhythmias.15 The hERG channel inhibition test uses 
patch clamp electrophysiology, and recent automation 
of the technique has increased its throughput con-
siderably. The hERG assay has helped identify >100 
drugs as potential mediators of long QT syndrome and 
led to the withdrawal of 10 drugs from the US market 
between 1997 and 2006.16,17 The assay is considered a 
prerequisite to drug registration, and documentation of 
minimal hERG liability is needed for a drug to proceed 
with further testing.18 However, several factors affect 
the utility of this assay. First, although the relationship 
between hERG blockade and proarrhythmic risk has 
been established for most noncardiovascular medi-
cations, it is more complex and less predictable with 
anticancer compounds, most notably tyrosine kinase 
inhibitors. For example, inhibition of hERG potassium 
currents by nilotinib occurs in therapeutic concentra-
tions and accounts for its clinical QTc prolongation.19 
In contrast, dasatinib has a maximal inhibitory concen-
tration that is 100 times higher than its estimated max-
imal concentration, and yet QTc interval prolongation 
occurs in 1% of patients.19 The variability and inconsis-
tencies encountered with the hERG assay stem from 
the choice of experimental conditions (ie, cell type, 
temperature), which influence the assessment of chan-
nel blockade. In addition, adsorption of hydrophobic 
compounds to the patch may lead to spurious results, 

which could be mitigated by the use of glass-coated 
compound plates. In addition, the test is time consum-
ing and associated with high costs. These procedural 
and methodologic caveats highlight the value of in-
strument and technique standardization as part of the 
International Council for Harmonization S7B guidelines 
as well as the need for novel approaches for preclinical 
arrhythmia assessment.

Human-induced pluripotent stem cells (hiPSCs) 
provide valuable insights about drug-associated car-
diotoxicity and are likely to become an integral part of 
cardiovascular drug assessment in the foreseeable fu-
ture (Figure 1). At the heart of the technology, hiPSCs 
are differentiated into cardiomyocytes, and their sub-
sequent maturation and assessment provides import-
ant information regarding metabolic, functional, and 
mechanical derangements.20 In addition to standard-
ized protocols for evaluation of cardiac liabilities using 
hiPSC-derived cardiomyocytes, newer constructs of 
varying complexity assess drug influence on the larger 
cardiovascular system.21,22 For example, oncology 
drugs often lead to multiple cardiovascular patholo-
gies, including atherosclerosis, systemic hypertension, 
and pulmonary artery hypertension, with one toxic-
ity frequency exerting maladaptive influences on an-
other. Such indirect effects are unlikely to be captured 
by single-cell hiPSC-derived cardiomyocyte assays, 
which fail to provide data on hemodynamic and neu-
rohumoral factors. To address that challenge, hiPSCs 
are mixed with fibroblasts, endothelial cells, and mes-
enchymal stem cells to form 2-dimensional cultures or 
3-dimensional organoids, which allow more granular 
evaluation of electrophysiologic abnormalities, struc-
tural toxicities, and contractile dysfunction.21

HiPSC-derived cardiomyocytes have also been 
combined with “omics” studies to identify activated 
pathways that result in cardiac injury. In one study, doxo-
rubicin triggered apoptotic signaling cascades and up-
regulated synthesis of proteins (eg, TP53I3, BAG3) that 
respond to toxic events.23 Doxorubicin also led to dys-
regulation of AMP-activated protein kinase pathways, 
which have critical function in p53-dependent DNA 
damage and programmed cell death.23 In a study of 
primary cardiomyocyte cell lines, exposure to tyrosine 
kinase inhibitors correlated with a p26-gene expres-
sion signature and effectively predicted clinical cardio-
toxicity.24 Further, protein-protein interaction analyses 
helped delineate individual kinases and transcription 
factors that may explain the signature and the associ-
ated cardiotoxicity.

Importantly, cancer therapeutic–mediated car-
diotoxicity is not always an unpredictable event, and 
there are genomic markers that can help determine a 
patient’s likelihood of experiencing toxicity. In that re-
gard, preclinical studies have significantly improved the 
understanding of the genetic basis of cardiotoxicity. 

Nonstandard Abbreviations and Acronyms

FDA	 Food and Drug Administration
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For example, genome-wide association studies have 
identified numerous cardiotoxicity loci associated with 
anticancer drugs (ie, rs28714259 with doxorubicin, 
CBR3 and ABCB1 with trastuzumab),25–27 and hiPSC 
models have shed further light regarding plausible ge-
nomic biomarkers that predict cardiotoxicity.28 This 
knowledge that there exists a rare population that is 
genetically predisposed to cardiotoxicity has an impact 
on safety assessment during drug development and 
indicates that clinical trials may need to be much larger.

CARDIOTOXICITY ASSESSMENT IN 
ONCOLOGY TRIALS AND ROLE OF 
IMAGING
Although clinical trials serve as an essential vehi-
cle for ascertainment of safety events,29 there are no 
standardized protocols that define best practices for 
assessment of cancer therapeutic–related cardiotox-
icity. Instead, the nature and frequency of monitoring 
studies are selected according to in vitro cardiac sig-
nals, toxicology studies in animals, and pharmacologic 
class toxicities. With the safety premise of human trials 
to support reliable detection and characterization of 
drug-related cardiac safety events, methods used to 
screen for cardiotoxicity are ideally highly reproducible 
and subject to unbiased evaluation by highly experi-
enced personnel. Since no single imaging cutoff value 
discriminates abnormal from normal, the emphasis 
should be on developing accurate sequential imaging 
studies with low test-retest variance. In addition, safety 

evaluation instruments need to be readily accessible 
and reasonably inexpensive to enable implementation 
in multicenter clinical trials and in real-world settings.

Assessment of heart failure is a fundamental safety 
component of clinical trials in oncology. In a contempo-
rary cohort of 2625 heterogenous cancer patients (51% 
breast cancer) who received anthracycline-containing 
regimens, 9% developed cardiotoxicity, defined as left 
ventricular ejection fraction (LVEF) <50% with >10% 
absolute reduction from baseline.30 A strong relation-
ship between the cumulative anthracycline dose and 
incident cardiomyopathy was demonstrated, with 3% 
to 5% developing toxicity with 400 mg/m2 and 18% to 
48% at 700 mg/m2 of doxorubicin.31 In a contemporary 
study of 648 patients with non-Hodgkin lymphoma 
treated with rituximab, cyclophosphamide, doxorubi-
cin, vincristine, and prednisone, 29% developed car-
diotoxicity, defined as 10% decline in LVEF.32 The use 
of nonpegylated liposomal doxorubicin has been asso-
ciated with a lower rate of cardiotoxicity relative to that 
of doxorubicin in several randomized clinical trials of 
patients with high-grade lymphoma and breast cancer 
and is often the preferred approach in patients with left 
ventricular dysfunction.33,34 Trastuzumab, a humanized 
monoclonal antibody to human epidermal growth fac-
tor receptor 2, has also been associated with cardiac 
dysfunction, albeit with a unique pattern of myocyte in-
jury/dysfunction that is thought to be generally revers-
ible. In a cluster of breast cancer trials, the incidence of 
cardiomyopathy with trastuzumab ranged from 1% to 
28%, and rates were significantly higher when the drug 
was concurrently administered with anthracyclines. As 

Figure 1.  Preclinical tools in the assessment of cardiotoxicity mediated by anticancer drug 
candidates.
CM indicates cardiomyocytes; hERG, human ether-a-go-go–related Gene; hiPSC, human induced 
pluripotent stem cells; and hiPSC-CM, human induced pluripotent stem cell–derived cardiomyocytes.

hERG Proarrhythmia Test Human Induced Pluripotent Stem 
Cell Cardiomyocytes (hiPSC-CM) 

Advantages

Principle

Limitations

In vitro blockade of the hERG channel 
correlates with in vivo QTc prolongation, 
useful for ventricular arrhythmia 
prediction

Differentiation of hiPSC into hiPSC-CM 
recapitulates CM clinical phenotype, provides 
information about metabolic, functional and 
mechanical derangements

Automated, provides early safety signal, 
clinically meaningful measure

Costly, potential for artifacts, risk of 
inadvertent compound attrition 

Provides milieu-specific assessment of structural, 
contractile, electrophysiologic function 

Cell-to-cell variability, incomplete reprogramming of 
mature cells, differences from adult CM physiology

(Routine) (Investigational)
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a result, sequential rather than concurrent administra-
tion of trastuzumab and anthracyclines is the standard 
approach.35 Osimertinib, an epidermal growth factor 
receptor inhibitor used in lung cancer, and sunitinib, 
a tyrosine kinase inhibitor used in renal cell carcinoma 
and neuroendocrine malignancies, may also lead to 
overt heart failure, and monitoring with echocardiog-
raphy is recommended, although its frequency has not 
been defined.

Echocardiography remains the most frequently 
used imaging modality for assessment of ventricular 
function in clinical trials. Numerous definitions have 
been used for cardiac dysfunction caused by antican-
cer drugs (Table).36–40 When obtained and read locally, 
variabilities in echocardiographic measurements and 
analyses are an inevitable consequence of measure-
ment and process heterogeneity. The echocardiogra-
phy core lab concept was therefore created to facilitate 
high-quality performance, interpretation, and quantifi-
cation of echocardiograms.41 The echocardiography 
core lab standardizes the imaging process by training 
sonographers and readers and maintaining adequate 
intra- and interobserver agreement.41 The benefits af-
forded by centralized reading were captured in a pro-
spective imaging trial of patients with stable chest pain 
in which echocardiography core lab interpretation of 
coronary computed tomographic angiography led to 
41% fewer patients classified as having significant cor-
onary artery disease compared with site interpretation 
of the same images.42 In addition, echocardiography 
core lab interpretation was demonstrated to have 
higher accuracy, specificity, and positive predictive 
value than local site reads.42

Cardiac arrhythmias in patients with cancer are 
complex disorders that are associated with a significant 
risk of systemic thromboembolism and cerebrovascu-
lar ischemia. Monitoring for arrhythmic disturbances 
in oncology trials is typically performed using clinical 
pulse-based and ECG assessments whose frequency 
depends on the investigated drug, its pharmacologic 
properties, and concerning safety signals emerging 
from earlier-phase studies. To help address the ques-
tion of electrocardiographic testing intensity in drug 
development investigations, the ongoing “thorough 
QT/QTc study” will help determine whether drugs have 
a threshold pharmacologic effect on cardiac repolar-
ization (QTc interval increment exceeding 10 ms).43,44 
The results of this investigation, however, would not be 
generalizable to patients with cancer, who are more 
likely to have electrolyte derangements and drug-drug 
interactions, and in whom larger mean increases in 
QTc (ie, >20  ms) are often allowed, accommodating 
proarrhythmic risks and clinical benefits. Future stud-
ies should specifically address the question of ECG 
frequency in patients with cancer as well as the role 
of triplicate, 12-lead ECG monitoring, which has been 

incorporated into many studies yet lacks high-quality 
prospective data to inform its superiority over single 
ECGs. Finally, whether routine Holter monitoring or 
more sensitive methods of continuous monitoring using 
disposable electrode patches or implantable loop re-
corders improves arrhythmia detection or clinical out-
comes in patients with cancer should be evaluated.

ROLE OF CIRCULATING 
BIOMARKERS AS INDICATORS OF 
CARDIOTOXICITY
Patients with cancer who develop an acute coronary 
syndrome45 or heart failure46 have worse clinical out-
comes than those without cancer, and circulating 
cardiac biomarkers represent an important tool for 
cardiovascular risk stratification and diagnosis.47,48 
N-terminal pro-B-type natriuretic peptide, a peptide 
released from the ventricles in response to elevated 
intracardiac pressures, is an established biomarker in 
the diagnosis of heart failure.49 N-terminal pro-B-type 
natriuretic peptide levels have been shown to predict 
ventricular dysfunction and heart failure in patients with 
cancer receiving chemotherapy or targeted therapies. 
In a prospective study of 138 women with human epi-
dermal growth factor receptor 2–positive breast can-
cer who were treated with trastuzumab, N-terminal 
pro-B-type natriuretic peptide levels at baseline and 
during follow-up were associated with development of 
cardiotoxicity, defined as LVEF <45% or an absolute 
decline in LVEF >10% or the occurrence of a clinical 
cardiac event.50 Nevertheless, the absolute change in 
N-terminal pro-B-type natriuretic peptide in that study 
was small and did not effectively distinguish between 
patients who developed cardiotoxicity and those who 
did not.50

A prospective investigation of 333 patients with 
breast cancer who received treatment with anthracy-
clines demonstrated that brain natriuretic peptide levels 
>100 pg/mL and LVEF <50% correlated with develop-
ment of heart failure.51 Interestingly, elevated brain na-
triuretic peptide but not LVEF was predictive of overall 
death.51 These results conflict with those of several 
studies that revealed no association between natriuretic 
peptide levels and cardiac dysfunction in patients re-
ceiving anthracyclines.52–54 This inconsistency might be 
explained by small study sizes, low event rates, patient 
heterogeneity (different tumor stages, drug regimens, 
baseline cardiovascular health), variations in laboratory 
methods, and differences in follow-up durations.

Cardiac troponins have been shown to be use-
ful adjuncts in the assessment of anthracycline- and 
trastuzumab-mediated cardiotoxicity. In a prospective 
evaluation of 205 children with high-risk acute lympho-
blastic leukemia who received doxorubicin, increased 
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pretreatment troponin T levels were associated with 
abnormally reduced left ventricular mass and end-
diastolic posterior wall thickness at 4 years.55 In a co-
hort of 81 women with human epidermal growth factor 
receptor 2–positive breast cancer who were treated 
with anthracyclines followed by trastuzumab, 26 pa-
tients (32%) developed cardiotoxicity, as defined by 
the Cardiac Review and Evaluation Committee,35 and 
ultrasensitive troponin I, measured following comple-
tion of anthracycline use, predicted the development 
of cardiotoxicity.52

Whether elevated cardiac troponin levels identify 
high-risk cancer patients who might benefit from early 
institution of cardioprotective measures has not been 
answered. However, some insights can be derived 
from a prospective multicenter study of 273 patients 
with cancer (76% breast cancer) who were random-
ized into routine enalapril (prevention group) or enalapril 
only if the troponin was elevated during chemotherapy 
(troponin-triggered group).56 Patients were treated with 
a median cumulative doxorubicin dose of 240 mg/m2 
or epirubicin 360 mg/m2. At 12-month follow-up, there 
were no significant between-arm differences in the in-
cidence of cardiotoxicity, defined as LVEF <50% and 
representing >10% reduction from baseline.56 In a ran-
domized placebo-controlled double-blind trial of 130 
women with early-stage breast cancer treated with 
anthracycline-containing chemotherapy regimens, 
candesartan was associated with a lower rate of LVEF 
decline (0.8% versus 2.6%; P=0.026), whereas metopr-
olol attenuated the increase in cardiac troponins, com-
pared with placebo, although the study population was 
characterized by an overall low cardiovascular risk.57 
At 23 months of follow-up, neither drug protected from 
LVEF reduction, although candesartan was associated 
with lower left ventricular end-diastolic volume and 
milder declines in global longitudinal strain.58

CARDIOVASCULAR SAFETY 
EVALUATION DURING 
POSTMARKETING SURVEILLANCE
Since premarketing trials explore the effects of drugs 
in relatively small, narrowly defined populations with 
a typically favorable cardiovascular risk profile, and 
over a relatively short period of time, they are unlikely 
to identify all possible side effects or to ascertain the 
true incidence of serious drug-related complications. 
Postmarketing surveillance is therefore designed to 
evaluate for spontaneous adverse reaction reports and 
identify new safety risks. The traditional approach to 
product safety monitoring involves collection of volun-
tary reports from patients and healthcare providers, a 
strategy called passive surveillance.59 Concomitantly, 
active surveillance, defined as regular and periodic Ta
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assessment of adverse event reports from healthcare 
facilities and sentinel sites, uses patient registries, elec-
tronic medical record research, and prescription moni-
toring59 to provide complementary pharmacovigilance 
input. The integration of passive and active postmar-
keting surveillance permits broader epidemiological 
analyses of safety signals.

Several passive surveillance databases are used 
for drug safety monitoring in the postmarketing en-
vironment. These include VigiBase, a platform regu-
lated by the World Health Organization; the Adverse 
Event Reporting System of the FDA; the Vaccine 
Adverse Event Reporting System; and EudraVigilance, 
a European Medicines Agency initiative. These da-
tabases are useful for elucidation of rare events that 
might be underappreciated in clinical trials, providing 
a window into the clinical experience of heterogenous 
patient cohorts who might not have been eligible for 
trial participation because of comorbid conditions or 
unfavorable performance status. The evaluation of 
low-frequency longer-term complications in high-risk 
groups is therefore a key virtue of postmarketing sur-
veillance and optimizes detection of safety events and 
performance of downstream epidemiological studies.

The impact of passive surveillance on cardiotoxic-
ity monitoring is highlighted by the recent recognition 
of a wide spectrum of cardiovascular complications in 
patients treated with ibrutinib. A highly efficacious se-
lective tyrosine kinase inhibitor, ibrutinib is a standard 
first-line targeted therapeutic in patients with B-cell 
lymphoproliferative neoplasms. In trials leading to its 
regulatory approval,60–63 ibrutinib was associated with 
low rates of atrial fibrillation (3%–6%) and systemic 
bleeding. Between the years 2013 and 2017, the FDA 
had approved ibrutinib for patients with chronic lym-
phocyte leukemia, mantle cell lymphoma, Waldenström 
macroglobulinemia, marginal zone lymphoma, and 
chronic graft-versus-host disease, recognizing its he-
matologic benefits while acknowledging the potential 
for atrial arrhythmias. In 2018, a study of ibrutinib com-
binations in older adults with chronic lymphocytic leu-
kemia demonstrated high death rates among patients 
enrolled in the ibrutinib arms (7% versus 1%).64 A sub-
sequent VigiBase database query demonstrated that 
ibrutinib was associated with significantly higher re-
porting of supraventricular arrhythmias (reporting odds 
ratio, 23.1; 95% CI, 21.6–24.7; P<0.0001), heart failure 
(reporting odds ratio, 3.5; 95% CI, 3.1–3.8; P<0.0001), 
ventricular arrhythmias (reporting odds ratio, 4.7; 95% 
CI, 3.7–5.9; P<0.0001), and hypertension (reporting 
odds ratio, 1.7; 95% CI, 1.5–1.9; P<0.0001).65 The re-
newed understanding of ibrutinib and its attendant 
cardiovascular toxicity has helped inform individual-
ized risk-benefit assessment and highlighted the im-
portance of blood pressure and arrhythmia screening, 
along with risk factor modification, in ibrutinib-treated 

patients. It has also prompted the study and approval 
of second-generation Bruton tyrosine kinase inhibitors 
(ie, acalabrutinib, zanubrutinib), which appear to have a 
milder profile of cardiovascular toxicity, although longer 
follow-up is needed.

Unlike passive surveillance, active surveillance 
involves real-world analyses of comprehensive da-
tabases using computerized engines that enhance 
timeliness and efficiency. The FDA’s Active Postmarket 
Risk Identification and Analysis and Sentinel System 
are representative tools that take advantage of ad-
vanced epidemiological methods to monitor product 
safety, identify and evaluate signals, and investigate 
risks discovered through internal and external mech-
anisms.66 With active surveillance, data are primarily 
derived from administrative and claims data that are 
generated by national health insurers and managed 
care organizations. Beyond pinpointing previously 
undescribed side effects, newer active surveillance 
technologies allow deep characterization of drug use 
in unique populations (ie, elderly, women) and assess-
ment of drug use patterns, with an emphasis on dy-
namic and longitudinal reevaluation of data.66

FIXING THE PRECLINICAL-TO-
CLINICAL TESTING DISEQUILIBRIUM
The hERG proarrhythmia assay provides early screen-
ing of QTc interval prolongation; however, the desired 
battery of biomarkers should define the risk of a wide 
array of interconnected cardiotoxicity phenotypes. 
These include myocardial dysfunction, valvular heart 
disease, peripheral vascular disease, stroke, myocar-
ditis, arrythmia, and coronary artery spasm, which 
are prevalent drug-related complications in oncology. 
For example, contraction and relaxation kinetics can 
be assessed using high-speed video microscopy with 
motion vector analysis.67 In this assay, traction force 
microscopy and multielectrode arrays are applied to a 
hiPSC-derived cardiomyocyte monolayer and cellular 
motion is characterized using extracellular field poten-
tial, traction force, and Ca2+ currents.67 In one study, 
electrical and mechanical responses to isoprotere-
nol included an increase in the Ca2+ transient ampli-
tude, upstroke, and decay, consistent with increased 
maximum relaxation speed and contraction speed.67 
As illustrated by this experiment, motion kinetics in 
hiPSC-derived cardiomyocytes may provide valuable 
information regarding electrical and mechanical events 
induced by pharmacologic agents. Yet the technique is 
limited by regional heterogeneity in contractile assess-
ment because of nonuniform cell density and pres-
ence of noncardiac cells.

Recent advances have allowed for the develop-
ment of high throughput hiPSC-derived cardiomyocyte 
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assays, which provide important functional output 
about mechanical and electrophysiologic changes. To 
enhance the translatability of drug-mediated toxicity 
characterization to clinical settings, multiple methods 
are used to optimize how hiPSC-derived cardiomyo-
cytes recapitulate adult cardiomyocytes. These tools 
include hormonal influences, culture substrate adapta-
tion, and 3-dimensional tissue engineering, yet a gold 
standard protocol for hiPSC-derived cardiomyocytes 
production has not been adopted.68

Future challenges in the study of hiPSC-derived car-
diomyocytes include refining laboratory techniques to 
address residual differences in morphology, contractility, 
metabolism, and electrophysiology. In addition, tech-
nological iterations are needed to ensure that assays 
evaluate the multifactorial effects of drug combinations 
and the impact of drugs on diseased myocardium and 
vasculature, as well as the biologic relationship between 
innate and adaptive immune system and cardiovascu-
lar processes such as myocarditis and atherosclerosis. 
For example, newly employed oncologic strategies use 
immune checkpoint inhibitor combinations with multitar-
geted tyrosine kinase inhibitors, raising the potential for 
cardiovascular toxicities that stem from blockade of up-
regulated compensatory mechanisms. Single-drug eval-
uations are not designed to capture synergistic toxicities 
that result from combination therapies and may therefore 
underestimate the spectrum and magnitude of cardiotox-
icity. To adequately quantify the clinical risks associated 
with anticancer drug combinations, it is essential that 
the integrated effects of novel polymechanism regimens 
on endothelial function, action potential generation and 
propagation, mitochondrial biogenesis, cellular contrac-
tion, and lipid metabolism are systematically studied. This 
is ideally performed in vitro when different drug combi-
nations, administered concomitantly or sequentially, are 
evaluated for a clinical effect (ie, arrhythmia), such as with 
hiPSC-derived cardiomyocyte cell assays.69 In addition, 
antibody-drug conjugates (ie, trastuzumab emtansine, 
inotuzumab ozogamicin), an innovative drug delivery plat-
form consisting of target-specific monoclonal antibodies 
linked to cytotoxic molecules, should undergo dedicated 
cardiovascular monitoring with particular attention to in-
flammatory processes (ie, pericarditis, myocarditis) given 
their association with cytokine release syndrome and 
systemic inflammatory responses.

INCLUSION OF PATIENTS WITH 
CARDIOVASCULAR DISEASE IN 
ONCOLOGY TRIALS
Although patients with cancer have a high prevalence 
of cardiovascular conditions, clinical trials in oncology 
frequently exclude participants with cardiovascular 
disease. In a study of 58 phase 3 breast cancer trials 

initiated between 1993 and 2012, heart failure, ischemic 
heart disease, and hypertension served as exclusion 
criteria in 34%, 24%, and 17% of the trials, respec-
tively.70 In an analysis of 189 trials supporting 123 FDA-
approved anticancer therapies (1998–2018), 34% of the 
trials excluded patients with cardiovascular disease.71

Restrictive inclusion of patients with cardiovascular 
diseases poses serious challenges to the interpretation 
of oncology trials. First, limited generalizability under-
mines synthesis of high-value clinical evidence and 
provides data of uncertain inference to the care of real-
world patients. This is particularly relevant in an era of 
an aging cancer population and longer treatment du-
rations whereby patients are at increased risk of accu-
mulating cardiovascular risk factors or diseases as they 
go through the phases of cancer treatment. In addition, 
recent evidence suggests that already at the time of di-
agnosis, patients with de novo cancers have abnormal 
cardiovascular imaging characteristics, as defined by 
cardiac magnetic resonance imaging, including smaller 
chamber sizes, increased strain amplitude, and systolic 
strain rate, and therefore various cardiovascular phe-
notypes will invariably exist in a given cohort of cancer 
patients.72 Second, narrow eligibility criteria compound 
the evaluation of drug-drug and drug-disease interac-
tions, which is vital to the development of safe phar-
macologic treatment practices. For example, epidermal 
growth factor receptor inhibitors are a cornerstone in 
the treatment of patients with advanced lung adenocar-
cinoma who harbor epidermal growth factor receptor 
mutations but may prolong the QT interval. The study 
of these medications in a biased patient population 
that lacks cardiovascular disease will therefore lead 
to underestimation of its risk for torsade de pointes. 
In addition, narrow inclusion limits the opportunity 
to examine the impact of anticancer interventions (ie, 
anti-inflammatory drugs, free radical scavengers) on 
cardiovascular conditions. For instance, anti-interleukin 
6 monoclonal antibodies have been recently investi-
gated as a potential treatment for renal cell carcinoma, 
although efficacy metrics included only oncologic mea-
sures and not cardiovascular disease end points, thus 
missing an opportunity to understand the compound’s 
potential cardioprotective effects.73 Finally, rare drug-
mediated cardiovascular complications may preferen-
tially occur in at-risk individuals who have concomitant 
cardiovascular diseases. This concept is known as 
“hidden cardiotoxicity,” whereby cardiovascular risk 
factors and comorbidities lower cardiac ischemic toler-
ance and manifest with clinically evident cardiotoxicity 
only in patients with preexisting ischemic myocardium 
or arrhythmogenic substrate, but not in healthy individ-
uals.74 Studying patients with cancer who are otherwise 
healthy may provide false reassurance for an expanding 
cohort of patients who do have cardiovascular disease. 
This is particularly important, as many of the risk factors 
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for cardiovascular disease and cancer, such as smok-
ing and obesity, are shared.

We maintain that oncology clinical trials should 
broaden eligibility criteria and routinely enroll patients 
with subclinical and clinical cardiovascular diseases 
(Figure 2). The shifting epidemiologic landscape (older 
patients, higher rates of cardiovascular disease, longer 
treatment durations, potential drug-drug interactions, 
new mechanisms of cytotoxicity and immune toxicity) 

warrants systematic assessment of drug performance 
in patients with competing morbidity and mortality at-
tributable to noncancer conditions. Quantifying benefits 
and harms in real-world populations is important to cre-
ate a more accurate estimate of a drug’s overall impact 
on clinically meaningful outcomes.75 Although treating 
cardiovascular patients with novel cancer therapies 
could possibly result in harm, patient consent and en-
gagement, close clinical monitoring, and dynamic and 

Figure 2.  Framework for optimizing cardiovascular data analysis in oncology trials.
CV indicates cardiovascular; CVD, cardiovascular disease; ECG, electrocardiography; and TTE, transthoracic echocardiography.

Recruitment and randomiza�on Monitoring Interpreta�on

α

Figure 3.  Proposed risk-adapted protocol for cardiovascular safety monitoring in oncology clinical trials.
C-MRI indicates cardiac magnetic resonance imaging; CV, cardiovascular; CVD, cardiovascular disease; GLS, global longitudinal strain; 
and TTE, transthoracic echocardiography. *Drug class cardiovascular toxicity (mean incidence>0.5%): non-serious: hypertension, low-
grade arrhythmia, pericarditis, dyslipidemia; serious: heart failure, cardiogenic shock, ischemic heart disease, high-grade arrhythmia, 
myocarditis, hypotension, valvular heart disease, QTc prolongation.
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+ - + - - - + Baseline and precycle troponin, ECG and TTE for minimum of 6 months 
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ECG monitoring, advanced imaging (GLS, C-MRI)
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Drug class CV toxicity* Patient CVD 
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transparent safety assessment and opt-out options 
would ensure that benefits outweigh risks for the individ-
ual patient (Figure 2). Interference with trial validity can 
be minimized by optimizing randomization and interarm 
representation of patients with specific cardiovascular 
conditions, development of comorbidity-adjusted mon-
itoring protocols, and use of intention-to-treat analyses.

UNIVERSAL CARDIOVASCULAR 
SURVEILLANCE WITH BIOMARKERS 
AND IMAGING
Not all oncology trial participants require routine cardio-
vascular monitoring. Rather, a risk-adapted strategy is 
suggested, whereby specific circumstances merit peri-
odic surveillance with validated assays such as cardiac 
troponins and echocardiography, throughout the course 
of a clinical investigation. These circumstances include 
the combination of risk factors, presence of a preexisting 
cardiovascular risk factor or manifest disease, preclinical 
cardiotoxicity signal, drug class, and the development of 
new cardiorespiratory symptoms. Biomarker and imag-
ing intervals should be devised for the individual trial and 
determined according to the presumed drug and cancer 

cohort-specific risks. A suggested protocol is included 
(Figure 3). For example, it is reasonable to perform testing 
(biomarkers, ECG, transthoracic echocardiography) for 
the first 6 months in a patient with coronary artery disease 
participating in a study of a drug whose pharmacologic 
class is not associated with serious cardiovascular events 
and for which no concerning toxicity signals emerged in 
preclinical testing, and subsequently lower the frequency 
of testing, assuming no new symptoms or signs devel-
oped during therapy. Conversely, in the case of a patient 
with heart failure receiving a drug with a high incidence 
(5%–20%) of QTc interval prolongation or cardiac arryth-
mia, it might be prudent to continue monitoring beyond 
the first 6 months and consider additional studies, such 
as Holter monitoring or disposable electrode patches. 
Study protocols should outline recommended interven-
tions in scenarios of asymptomatic imaging or biomarker 
abnormalities. This includes defining the thresholds to 
initiate cardioprotective agents, as well as recommended 
pharmacologic classes, agents, and dosages.

Finally, dual assessment of cardiovascular and on-
cologic outcomes will help elucidate the aggregate 
health effects of an investigated drug. This is partic-
ularly important given the expanding pool of pharma-
cotherapies that modulate inflammation and immune 

Figure 4.  Components of cardiovascular safety assessment in the study of anticancer drugs and suggested interventions 
to improve early identification of clinically significant cardiotoxicity.
AE indicates adverse events; CV, cardiovascular; CVD, cardiovascular disease; EF, ejection fraction; EMR, electronic medical record; 
hERG, human ether-a-go-go–related gene; hiPSC-CM, human induced pluripotent stem cell–derived cardiomyocytes; and GLS, 
global longitudinal strain.
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human environment
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stable CVD
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unstable/active CVD on 
case-by-case basis, with 
close monitoring

- Develop consensus 
definitions of cardiotoxicity 
using reproducible tests

- Routine use of troponin, 
natriuretic peptides

- Identify new biomarkers 
leveraging advanced 
technologies (i.e., “Omics”, 
hiPSC-CM)

- Imaging core lab 
accreditation criteria
- Routine echocardiogram in 
phase 2, 3 trials
- GLS in high-risk settings

- Evaluate nonstimulated AE 
reports by health care providers
- Use publicly available, easy to 
use databases
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administrative data into publicly 
available repositories
- Assess machine learning use to 
optimize signal detection 
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pathways, which extend beyond drug development in 
oncology to gastroenterology and rheumatology. For 
example, the Oral Rheumatoid Arthritis triaL is investi-
gating the effects of tofacitinib, a small-molecule Janus 
kinase inhibitor used in rheumatoid arthritis, on cardio-
vascular health and cancer incidence.76 Trial designs 
that allow longitudinal follow-up for cardiovascular and 
cancer outcomes are strongly desired and are likely to 
improve the management of both diseases.

CONCLUSIONS
Although substantial progress has been achieved in the 
clinical safety assessment of anticancer drugs, serious 
cardiovascular toxicities may only become evident after 
a large cumulative dose of a drug or its metabolites has 
accumulated in the heart. Alternatively, certain toxicities 
may be so rare that millions of individuals may be ex-
posed before a safety signal is captured. In light of these 
challenging confounders, newer methods of ascertain-
ing cardiovascular safety are desired with emphasis on 
early and accurate signal detection in preclinical stages, 
structured monitoring in clinical trial phases, and robust 
and active postmarketing analyses (Figure 4).
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