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Gene-Environment Dependence
Creates Spurious Gene-Environment Interaction

Frank Dudbridge1,* and Olivia Fletcher2,3

Gene-environment interactions have the potential to shed light on biological processes leading to disease and to improve the accuracy of

epidemiological risk models. However, relatively few such interactions have yet been confirmed. In part this is because genetic markers

such as tag SNPs are usually studied, rather than the causal variants themselves. Previous work has shown that this leads to substantial

loss of power and increased sample size when gene and environment are independent. However, dependence between gene and envi-

ronment can arise in several ways including mediation, pleiotropy, and confounding, and several examples of gene-environment inter-

action under gene-environment dependence have recently been published. Here we show that under gene-environment dependence, a

statistical interaction can be present between a marker and environment even if there is no interaction between the causal variant and

the environment.We give simple conditions under which there is nomarker-environment interaction and note that they do not hold in

general when there is gene-environment dependence. Furthermore, the gene-environment dependence applies to the causal variant and

cannot be assessed from marker data. Gene-gene interactions are susceptible to the same problem if two causal variants are in linkage

disequilibrium. In addition to existing concerns about mechanistic interpretations, we suggest further caution in reporting interactions

for genetic markers.
There is much interest in discovering interactions between

genetic and environmental risk factors for disease, because

such interactions can shed light on biological processes

leading to disease, identify subjects for whom risk factors

are most relevant, and improve the accuracy of epidemio-

logical risk models.1 Interaction is commonly understood

as the modification by one factor of the effect of the other

and is assessed statistically by testing for departure from

additivity, on an appropriate scale, of the effects of gene

and environment. Such a definition can be dependent

on modeling assumptions and might not correspond to

biological notions of interaction,2–4 but it is nevertheless

useful in general exploratory settings.

To date, relatively few gene-environment interactions

have been reported, in contrast with the large number of

marginal associations discovered through genome-wide

association studies (GWASs). One reason is that there

might be relatively few subjects for whom the joint effect

of gene and environment is high, so that very large sam-

ples are required to detect interactions. Another is that

measurement error in either gene or environment can

lead to substantial increases in required sample size.5

Thus, robust identification of a gene-environment interac-

tion is regarded as a noteworthy finding.

In most studies, genotypes are measured not for the var-

iants that directly affect disease but for markers in linkage

disequilibrium (LD) with the causal variants. This is espe-

cially true in GWASs and other large-scale discovery studies

that aim to map novel disease variants. This creates a

misclassification problem in that the true causal variants

have been measured with error. In contrast to common
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measurement error models, a marker is not an unbiased

measurement of a causal variant (because the genotype fre-

quencies of the marker and causal variant may differ), and

the misclassification probabilities are unknown by design.

General methods to adjust for measurement error6 are not

applicable, and so we must accept possible bias in the esti-

mation of interaction effects.

Through simulations, Hein et al.7 showed that the inter-

action effect of a marker is biased toward the null, with a

corresponding increase in the sample size required for a

study based on a marker. Garcia-Closas et al.8 showed

analytically that measurement error in the environmental

exposure also biases the interaction effect toward the null.

Furthermore, Greenwood et al.9 showed that the interac-

tion effect is not biased bymeasurement error in additional

covariates included in the model. All of these studies

assumed that the genetic marker and environmental expo-

sure are independent in the source population or in the

controls. Gene-environment independence also underlies

the case-only design10 and extensions of it designed to

improve the power of interaction tests.11–14 This assump-

tion is often reasonable: for example, autosomal genotypes

tend to be independent of sex. However, the properties of

interaction tests have not been considered when gene and

environment are not independent. Here we demonstrate

that under gene-environment dependence, the interaction

effect of a marker can be nonzero even if there is no inter-

action between the causal variant and the environment.

We and others recently established an association with

breast cancer of the marker rs10235235, which maps

to the CYP3A locus.15 This marker, which was initially
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Figure 1. Directed Acyclic Graph Showing Gene-Environment
Dependence by Mediation
Boxes are observed variables, circles are unobserved, and arrows
indicate directions of causal relationships. Abbreviations are as
follows: D, causal variant; M, marker genotype; X, environmental
exposure; Y, outcome such as disease; A, composite variable for
ancestry, which gives rise to correlation (LD) between D and M;
and G, composite variable for common causes of X and Y, which
may include additional genes. X mediates the effect of D on Y.
For example, a CYP3A variant (D) affects the risk of breast cancer
(Y) via its effect on age at menarche (X).
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Figure 2. Directed Acyclic Graph Showing Gene-Environment
Dependence by Pleiotropy
Notation as in Figure 1. D has pleiotropic effects on X and Y, but
there is no direct effect of X on Y. For example, a CYP3A variant
(D) affects hormone levels, which independently affect age at
menarche (X) and breast cancer (Y). Age at menarche is an inde-
pendent risk factor for breast cancer because it marks additional
causal processes (G).
identified through its association with urinary estrone

glucuronide,16 a metabolite that is correlated with the

sex hormone estradiol, is also associated with age at

menarche. We found a statistical interaction between

rs10235235 and age at menarche on breast cancer risk,

which is therefore a gene-environment interaction under

gene-environment dependence. However, rs10235235 is

not known to be the causal variant, and we will show

that the marker interaction does not imply an interaction

at the causal variant.

Also in breast cancer, Nickels et al.17 established a statis-

tical interaction between the marker rs3817198 at LSP1

(MIM 153432) with parity, but also reported significant

negative correlation between rs3817198 genotype and

number of births. Again, this is a gene-environment inter-

action in the presence of gene-environment dependence,

but rs3817198 is not known to be the causal variant.

As a further example, variants at chromosome 15q25

have been associated with both smoking and lung

cancer.18–20 Interactions between these variants and smok-

ing on lung cancer risk have also been identified,19,21 but

not for the likely causal variants.22

Gene-environment dependence could arise in a number

of ways. There is likely to be a genetic component to many

of the established risk factors for which interactions are

sought. In addition to the examples above, variants in

genes involved in alcohol metabolism have been associ-

ated with alcohol intake,23 which is a risk factor for

many diseases.24 GWASs have identified numerous vari-

ants associated with obesity, an established risk factor for

many complex disorders including type 2 diabetes and

breast cancer.25 Similarly, multiple variants that influence

low-density lipoprotein cholesterol levels, one of the stron-

gest risk factors for cardiovascular disease, have been iden-

tified.26 Even the more exogenous exposures, such as

urban environment, might conceivably have a genetic

component.27 However, on a per-gene basis, knowledge

of biological function could be invoked to argue that a

given gene is unlikely to affect an exposure of interest.

Figures 1, 2, and 3 illustrate three basic forms of gene-

environment dependence. Association of a gene with an
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environmental risk factor is often taken to imply media-

tion of the genetic effect by the risk factor. That is, at

least part of the effect of the gene on the outcome is

via its effect on the environmental factor. For example,

a variant at the CYP3A locus might directly affect levels

of the hormone estradiol, which influences age at

menarche, which then directly affects breast cancer risk

(Figure 1).

On the other hand, the gene might have pleiotropic

effects on the environmental factor and the outcome,

but the environment might not cause the outcome. For

example, a CYP3A variant might, via estradiol levels, influ-

ence both age at menarche and breast cancer risk. Age at

menarche might have no direct effect on breast cancer,

so it does not mediate the effect of the CYP3A variant,

but it remains a risk factor by acting as a marker for other

mechanisms that affect disease (Figure 2).

Gene-environment dependence could also arise through

confounding, of which the principal source is population

structure. For example, some CYP3A haplotypes might

have become less frequent at northern latitudes. For unre-

lated reasons, age at menarche tends to be higher at

northern latitudes, leading to an association with CYP3A

variants (Figure 3). This confounding might be indepen-

dent of any confounding of the gene and outcome and

cannot be corrected using the standard methods to adjust

for gene-outcome confounding.

Any combination of the above three forms might occur

in practice, so for example a pleiotropic gene might affect

the outcome through several pathways, only one of

which is mediated by the environment of interest. The

corresponding graph would be a combination of Figures

1 and 2, including both direct and indirect effects of the

causal variant.

To formalize the interaction effects under gene-environ-

ment dependence, let M denote a genotyped marker,

coded numerically, X an environmental exposure, and Y

an outcome of interest. Consider a generalized linear

model

EðY jM;XÞ ¼ h�1ðb0 þ bMM þ bXXþ bMXMXÞ;

where h is a known link function. Writing hm,x ¼ b0 þ
bMm þ bXx þ bMXmx, the interaction term in this model is
er 4, 2014
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Figure 3. Directed Acyclic Graph Showing Gene-Environment
Dependence by Confounding
Notation as in Figure 1, with U an unmeasured confounder. D and
X are associated by confounding. For example, haplotype fre-
quencies at CYP3A (A) vary by latitude (U), as does age at
menarche (X). In this graph, U is not a confounder of D and Y;
such confounders are omitted for simplicity.
bMX ¼ h1;1 � h0;1 � h1;0 þ h0;0: (Equation 1)

Let D denote the unmeasured genotype of the causal

variant, with a corresponding generalized linear model in

D and X

EðY jD;XÞ ¼ h�1
�
b�
0 þ b�

DDþ b�
XXþ b�

DXDX
�
;

where the asterisks denote effects in the model forD rather

than for M. If the marker has no effect on the outcome,

conditional on D, then

EðY jM;XÞ ¼ P
d

EðY j d;XÞPrðd jM;XÞ
h�1hm;x ¼

X
d

h�1
�
b�
0 þ b�

Dd þ b�
Xxþ b�

DXdx
�
Prðd jm; xÞ :

(Equation 2)

The conditional distribution Pr(DjM,X) accounts for

both the LD between marker and causal variant and the

dependence between exposure and causal variant. Equa-

tions 1 and 2 allow the marker interaction term to be

nonzero even when the interaction term for the causal

variant is zero. Some conditions under which the marker

interaction term is in fact zero are given in the following

lemma.

Lemma

If b�DX ¼ 0, then bMX ¼ 0 if any of the following condi-

tions hold

(1) there is no main effect of the causal variant on the

outcome, b�D ¼ 0

(2) the marker is perfectly correlated with the causal

variant, D ¼ M

(3) the causal variant is independent of the marker,

conditional on the exposure, Pr(DjM,X) ¼ Pr(DjX)
Furthermore, under linear (h(x)¼ x) or log-linear (h(x)¼
log(x)) regression, bMX ¼ 0 if

(4) the causal variant is independent of the exposure,

conditional on the marker, Pr(DjM,X) ¼ Pr(DjM)

Proof

If b�DX ¼ 0 then the terms in bMX are explicitly

h�1ðh1;1Þ ¼
P
d

h�1ðb�0 þ b�Dd þ b�XÞPrðdjM ¼ 1;X ¼ 1Þ
The American
h�1ðh1;0Þ ¼
P
d

h�1ðb�0 þ b�DdÞPrðdjM ¼ 1;X ¼ 0Þ
h�1ðh0;1Þ ¼

P
d

h�1ðb�0 þ b�Dd þ b�XÞPrðdjM ¼ 0;X ¼ 1Þ
h�1ðh0;0Þ ¼

P
d

h�1ðb�0 þ b�DdÞPrðdjM ¼ 0;X ¼ 0Þ
If b�D ¼ 0 then

h�1ðh1;1Þ¼
P
d

h�1ðb�0 þ b�XÞPrðdjM ¼ 1;X ¼ 1Þ
¼ h�1ðb�0 þ b�XÞ

h1;1 ¼ b�0 þ b�X

Similarly, h0;1 ¼ b�0 þ b�X and h1;0 ¼ h0;0 ¼ b�0, so bMX ¼ 0

proving (1).

If marker and causal variant are perfectly correlated,

then trivially bMX ¼ b�DX ¼ 0, which proves (2).

If Pr(DjM,X) ¼ Pr(DjX), then h1,1 ¼ h0,1 and h1,0 ¼ h0,0,

which proves (3).

Finally, if Pr(DjM,X) ¼ Pr(DjM) and either h(x) ¼ x or

h(x) ¼ log(x), then

h1;1 ¼ b�0 þ b�X þ
X
d

h�1ðb�DdÞPrðdjM ¼ 1Þ

h1;0 ¼ b�0 þ
X
d

h�1ðb�DdÞPrðdjM ¼ 1Þ
h1;1 � h1;0 ¼ b�X
Similarly, h0;1 � h0;0 ¼ b�X under either link function, so

bMX ¼ 0 as required, which proves (4). Q.E.D.

Conditions (1)–(3) are reassuring because theymean that

whenamarker-exposure interactionexists, themarkermust

be associated with a causal variant. Furthermore, if the

causal variant is independent of the exposure, then (4)

shows that a marker-exposure interaction implies a causal

variant-exposure interaction, at least under linear or log-

linear regression (notably, this does not apply to logistic

regression, although for rare outcomes bMX will approach

0). However, if there is dependence between the causal

variant and the exposure, then a marker-exposure interac-

tion does not imply a causal variant-exposure interaction.

Therefore, tests ofmarker-exposure interaction arenot valid

tests of interaction between causal variant and exposure.

We illustrate this with a numerical example. Consider a

biallelic marker with population minor allele frequency

(MAF) 0.1. The risk allele of the causal variant is present

on half the chromosomes with the minor marker allele,

but on no other chromosomes. So the MAF of the causal

variant is 0.05, and the two loci are in linkage disequilib-

rium (D’ ¼ 1, r2 ¼ 0.47). If the risk allele has risk ratio 2,

then assuming multiplicative risks and Hardy-Weinberg

equilibrium, some simple calculations give the risk ratio

for the marker as 1.5 (Table 1 and Appendix A).

Now consider a binary environmental exposure such

that the risk ratio for the causal variant on the exposure

is 1.5. No main effect of the exposure is assumed, although

this does not matter in this example. Assuming that the

quantities in Table 1 apply to unexposed subjects, some

further calculations give the risk ratio for the marker as

1.6 in the exposed and 1.5 in the unexposed subjects

(Table 2 and Appendix A). This reveals an interaction be-

tween the marker and the exposure on the risk of disease,
Journal of Human Genetics 95, 301–307, September 4, 2014 303



Table 1. Example Haplotype Frequencies for Disease and Marker Loci and Calculation of the Risk Ratio of the Marker

Frequency D ¼ 0 D ¼ 1 Total Pr(Y ¼ 1,D,M) D ¼ 0 D ¼ 1 Total RR(M)

M ¼ 0 0.9 0 0.9 0.9 0 0.9 1.0

M ¼ 1 0.05 0.05 0.1 0.05 0.1 0.15 1.5

Abbreviations are as follows: D, allele at causal variant; M, allele at marker locus; Y, disease phenotype. Risk ratio (RR) of D ¼ 1 is 2. Pr(Y ¼ 1,D,M) is relative to a
baseline that cancels in the marker risk ratio; see Appendix A for details of calculations.
although there is none for the causal variant. We regard

this interaction as spurious, because it does not correspond

to an interaction at the causal variant.

The spurious interaction arises from imperfect LD

between the marker and causal variant, causing a

misclassification error that differs between cases and

controls, owing to the main effect of the causal variant,

but that also differs between exposed and unexposed

subjects, owing to the causal variant-exposure associa-

tion. It is important to note that the spurious interac-

tion cannot be removed by transformation of variables,

as can be done in other cases,4 but is a direct result

of measurement error of the causal variant. It does

not depend on the mechanism of gene-environment

dependence, of which Figures 1, 2, and 3 show a few

examples, but arises from simple algebra of the statistical

model.

A particular difficulty is that the bias depends on the

causal variant-exposure association, which cannot be

assessed from the marker data. Indeed, the marker

might not show association with the exposure, even if

the causal variant is associated with both. Even if the

marker is associated with the exposure, it is unclear

whether or not the causal variant would be independent

of the exposure after conditioning on the marker, as

required by the lemma. Therefore, any test of marker-

environment interaction is potentially suspect because it

cannot be determined from the data whether the causal

variant is associated with the exposure, conditional on

the marker.

Across the thousands of markers included in GWASs and

targeted array studies, it is likely that some will be in LD

with causal variants that are associated with the exposure

of interest. The fact that few gene-environment interac-

tions have been reported suggests that the magnitude of

the bias is small. Indeed, under a typical scenario for cur-

rent GWASs in which marker and causal variant have the

same MAF of 0.2, their correlation is r2 ¼ 0.8, and the

causal variant has odds ratio 1.1 with both disease and a

binary exposure, then similar calculations to those in

Table 2 give the interaction odds ratio for the marker

as 1.000433. More than a million cases and controls

would be needed to detect this effect with 80% power at

p < 0.05.28

However, higher interaction odds ratios can arise if the

causal variant and marker have differing MAF. As an

example, the marker rs10235235 observed at the CYP3A

locus15 has MAF 0.09 in women of European ancestry
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and odds ratios for breast cancer of 0.979 (95% CI:

0.915–1.047) and 0.906 (95% CI: 0.864–0.950) in women

with age at menarche %12 years and >12 years, respec-

tively. This gives an interaction odds ratio of 1.08 (95%

CI: 0.990–1.176) (the original study used a finer categoriza-

tion of age at menarche, leading to a significant interac-

tion). Assume that the marker and causal variant have

the maximum correlation given their MAFs (i.e., D’ ¼ 1).

Treating the odds ratios as risk ratios, we can use the

approach shown in Table 2 to solve for the causal risk ratios

on disease and on exposure that lead to the observed

marker risk ratios, given a fixed causal MAF. For causal

MAF of 0.05, the observed marker effects can arise from

causal risk ratio 0.831 on disease and 0.116 on expo-

sure. This seems unlikely because such a strong effect

(0.116 ¼ 1 / 8.62) would probably be detected by a linkage

study, but this region was not identified in the largest link-

age scan for age at menarche.29 Similarly, a causal MAF of

0.01 implies a causal risk ratio of 0.155 (¼ 1 / 6.45) on dis-

ease and 0.208 on exposure, which again seems strong

considering the lack of evidence of linkage to breast cancer

in this region. However, a causal MAF of 0.02 implies

causal risk ratios of 0.577 (¼ 1 / 1.73) on disease and

0.187 (¼ 1 / 5.36) on exposure, which is more plausible.

Therefore, our observed marker interaction is compatible

with a low-frequency causal variant with strong main

effects but no interactions. Although common SNPs are

generally expected to tag common causal variants,30 the

possibility of a low-frequency causal variant suggests

caution in claiming a gene-environment interaction in

this case.

We have focused on gene-environment interaction, but

gene-gene interaction is likewise of high interest and

is also susceptible to this problem. There, a spurious inter-

action arises if two causal variants are in LD and at least

one is measured with error, such as by a marker SNP.

Recently, Hemani et al.31 have reported numerous cis

interactions between marker SNPs on gene expression

levels. However, many of the interactions can be ex-

plained by single variants in LD with both of the interact-

ing markers (A.R. Wood, personal communication). In

those cases the two causal variants are one and the

same: of course a single variant is in LD, but cannot

interact, with itself.

Measurement error can arise not only from a marker

in LD, but also from the numerical coding of the geno-

type. If, for example, the true effect of a causal variant

is dominant, but it is coded as additive and the linear
er 4, 2014



Table 2. Example Haplotype Frequencies and Calculation of the Marker Risk Ratio in Unexposed and Exposed Subjects

Pr(D,MjX ¼ 0) D ¼ 0 D ¼ 1 Total Pr(Y ¼ 1,D,MjX ¼ 0) D ¼ 0 D ¼ 1 Total RR(MjX ¼ 0)

Unexposed

M ¼ 0 0.9 0 0.9 0.9 0 0.9 0.9/0.9 ¼ 1

M ¼ 1 0.05 0.05 0.1 0.05 0.1 0.15 0.15/0.1 ¼ 1.5

Exposed

M ¼ 0 0.9 0 0.9 0.9 0 0.9 0.9/0.9 ¼ 1

M ¼ 1 0.05 0.075 0.125 0.05 0.15 0.2 0.2/0.125 ¼ 1.6

Abbreviations are as follows: D, allele at causal variant; M, allele at marker locus. Risk ratio (RR) of D¼ 1 is 2 on disease Y and 1.5 on exposure X. Pr(Y¼ 1,D,MjX) are
relative to baselines that cancel in the marker risk ratio; see Appendix A for details of calculations.
model is otherwise correct, then the miscoding could also

lead to a spurious interaction term. Furthermore, use of

imputed rather than directly measured genotypes also cre-

ates measurement error, particularly for causal variants

with strong effects because imputation is usually per-

formed assuming no association with the outcome.

Finally, exchanging the roles of gene and environment re-

veals that measurement error in the exposure could also

create a spurious interaction even if the genotype is accu-

rately measured.

The spurious interactions we have described are not

a serious problem when the aim is to construct epide-

miological models of risk, perhaps for disease predic-

tion, in which case model fit may be improved by

interaction terms. The real difficulty is with inference

of biological interaction from statistical models, and
PrðY ¼ 1 jM ¼ 1;X ¼ 0Þ
PrðY ¼ 1 jM ¼ 0;X ¼ 0Þ ¼

X
d

RdPrðd;M ¼ 1 jX ¼ 0Þ
X
d

Prðd;M ¼ 0 jX ¼ 0Þ
X
d

RdPrðd;M ¼ 0 jX ¼ 0Þ
X
d

Prðd;M ¼ 1 jX ¼ 0Þ:
our observations add to established concerns over the

interpretation of statistical interactions that are model

dependent.3 We believe that additional caution is

required in the interpretation of gene-environment inter-

actions, to allow for the possibilities of gene-environment

dependence and imperfect LD between marker and causal

variant. We suggest that sensitivity analyses such as

that described above ought to be routinely performed

to reduce the possibility of false positive reports of

interaction.
Appendix A

Marker Risk Ratio in Unexposed

The frequency of haplotype D,M in unexposed subjects is

Pr(D,MjX ¼ 0). The joint probability of an affected subject

and haplotype D,M is
The American
PrðY ¼ 1;D;M jX ¼ 0Þ ¼PrðY ¼ 1 jD;M;X ¼ 0Þ
3PrðD;M jX ¼ 0Þ

¼ RDPrðY ¼ 1 jD ¼ 0;M;X ¼ 0Þ
3PrðD;M jX ¼ 0Þ

where RD is the causal variant risk ratio. The risk of disease

in an unexposed subject with marker M is

PrðY ¼ 1 jM;X ¼ 0Þ ¼PrðY ¼ 1;M jX ¼ 0Þ�PrðM jX ¼ 0Þ

¼
X
d

PrðY ¼ 1;D ¼ d;M jX ¼ 0Þ
�

X
d

PrðD ¼ d;M jX ¼ 0Þ:

The risk ratio for the marker is then
Marker Risk Ratio in Exposed

Note that

PrðY ¼ 1;D;M jX ¼ 1Þ ¼ PrðY ¼ 1;X ¼ 1 jD;MÞ
3PrðD;MÞ=PrðX ¼ 1Þ

¼ SDPrðY ¼ 1;X ¼ 0 jD;MÞ
3PrðD;MÞ=PrðX ¼ 1Þ

¼ SDPrðY ¼ 1;D;M jX ¼ 0Þ
3PrðX ¼ 0Þ=PrðX ¼ 1Þ

where SD is the risk ratio of D on the exposure X.

Also

PrðD;M jX ¼ 1Þ ¼ PrðX ¼ 1 jD;MÞPrðD;MÞ=PrðX ¼ 1Þ
¼ SDPrðX ¼ 0 jD;MÞPrðD;MÞ=PrðX ¼ 1Þ
¼ SDPrðD;M jX ¼ 0ÞPrðX ¼ 0Þ=PrðX ¼ 1Þ

So the marker risk ratio in the exposed is
Journal of Human Genetics 95, 301–307, September 4, 2014 305



PrðY ¼ 1 jM ¼ 1;X ¼ 1Þ
PrðY ¼ 1 jM ¼ 0;X ¼ 1Þ ¼

X
d

SdRdPrðd;M ¼ 1 jX ¼ 0Þ
X
d

SdPrðd;M ¼ 0 jX ¼ 0Þ
X
d

SdRdPrðd;M ¼ 0 jX ¼ 0Þ
X
d

SdPrðd;M ¼ 1 jX ¼ 0Þ
The above calculations may be performed using Table S1

available online.
Supplemental Data

Supplemental Data include one spreadsheet and can be found

with this article online at http://dx.doi.org/10.1016/j.ajhg.2014.

07.014.
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