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Abstract
Dentate granule cells are born throughout life in the mammalian hippocampus. The in-
tegration of newborn neurons into the dentate circuit is activity-dependent, and struc-
tural data characterizing synapse formation suggested that the survival of adult-born
granule cells is regulated by competition for synaptic partners. Here we tested this hy-
pothesis by using a mouse model with genetically enhanced plasticity of mature granule
cells through temporally controlled expression of a nuclear inhibitor of protein phos-
phatase 1 (NIPP1*). Using thymidine analogues and retrovirus-mediated cell labeling,
we show that synaptic integration and subsequent survival of newborn neurons is de-
creased in NIPP1*-expressingmice, suggesting that newborn neurons compete with pre-
existing granule cells for stable integration. The data presented here provides experi-
mental evidence for a long-standing hypothesis and suggest cellular competition as a
key mechanism regulating the integration and survival of newborn granule cells in the
adult mammalian hippocampus.

Introduction
Neural stem/progenitor cells (NSPCs) generate the vast majority of neurons in the brain
during embryonic development. However, the neurogenic capacity of NSPCs does not
end with birth as new neurons are born across the entire life-span in discrete areas of
the mammalian brain [1]. One of these regions is the hippocampal dentate gyrus (DG)
where NSPCs persist throughout life and continuously generate new granule cells, the
principal neuronal subtype of the DG [2] [3]. Newborn neurons are critically involved in
a number of hippocampus-dependent cognitive functions including behavioral pattern
separation, forgetting, and mood regulation [4] [5] [6] [7] [8]. Moreover, failing or al-
tered neurogenesis has been associated with several diseases such as major depression
and epilepsy, suggesting that the addition of new neurons into the DG circuitry has
translational relevance [9] [10] [11]. Similar to embryonic development, a surplus of
neurons is initially generated in the adult brain. The survival and stable integration
of new neurons appears to be regulated in a two-step process: whereas a substantial
number of newborn neurons dies within the first days after their birth, there is a sec-
ond phase of selection that occurs approximately 1-3 weeks after neuronal birth [12]
[13] [14] [15]. Selection during this stage depends on N-methyl-D-aspartate (NMDA)
receptor-mediated activity as conditional deletion of the GluN1 (NR1) subunit in new-
born granule cells substantially decreases the number of surviving neurons [16]. During
the phase of integration, newborn granule cells are highly excitable and remain so for
approximately 6 weeks. This period of high cellular plasticity has been associated with
unique functional properties of new neurons and may help new neurons to successfully
integrate into the pre-existing circuit [17] [18] [19] [20] [21]. Indeed, it has been sug-
gested that new neurons compete for synaptic partners allowing for stable integration
and subsequent survival [22]. We here tested this hypothesis by examining whether
the cell type-selective enhanced plasticity of mature granule cells affects integration
and survival of newborn granule cells. Strikingly, we have found that enhancing the
plasticity of the mature dentate granule cell circuit leads to decreased survival of new-
born granule cells, providing experimental evidence that competition may be a critical
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component for the survival of newborn granule cells.

Objective
We investigate the survival and morphology of newborn granule cells in the adult den-
tate gyrus in a model of enhanced plasticity of mature neurons to test the hypothesis
that a mechanism of competition governs integration into the neuronal circuits.

a

Figure Legend
Figure 1.
(A-C) CaMKII-driven NIPP1* expression in mature granule cells does not affect
NSPC proliferation. (A) Genetic approach for conditional, DOX-regulated expression
of NIPP1* in mature granule cells. Note that transgene-expressed nuclear GFP (green)
is not expressed in newborn, DCX-expressing cells (red, arrows). Scale bar represents
20 µm. (B) Number of proliferating, BrdU-labeled cells (green) is not changed upon
DOX treatment in control mice (upper panel) compared to DOX-tg-NIPP1* mice (lower
panel). Graphs show quantification. Scale bar represents 50 µm. (C) NIPP1* expres-
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sion in mature granule cells does not affect early survival and neuronal fate choice as
measured using IdU injections 1 week before analysis (shown is an example of an IdU-
labeled (red), Prox1-positive (green) cell) in control compared to DOX-tg-NIPP1* mice.
Scale bar represents 5 µm. Graphs show quantification.
(D-E) Enhanced plasticity of the mature granule cell circuit impairs survival
of newborn neurons. (D) The number of newborn neurons expressing DCX (red)
is reduced in DOX-tg-NIPP1* mice (right panel) compared to control mice (left panel).
Graphs show quantification of DCX-labeled cells per DG. Scale bar represents 20 µm.
(E) The number of newborn neurons, labeled with CldU (red) and expressing NeuN
(green), is also reduced as measured using CldU injections 3 weeks before analyses in
DOX-tg-NIPP1* mice (lower panel) compared to control mice (upper panel). Scale bar
represents 50 µm. Graphs show quantification of CldU-labeled cells per DG. *p <0.05.
(F-H) NIPP1* expression in mature granule cells impairs integration of new-
born neurons. (F) Reduced dendritic complexity of newborn neurons 3 weeks after
birth that were labeled by retrovirus-based GFP expression (green) in DOX-tg-NIPP1*
mice (right panel) compared to control mice (left panel). Scale bar represents 20 µm.
Graphs show quantification of dendritic length (left) and branching points (right). (G)
Number of spines as measured per µm dendritic length is not altered in DOX-tg-NIPP1*
mice (right panel) compared to the control mice (left panel). Scale bar represents 5 µm.
Graphs show quantification. (H) Neurons born in the DOX-tg-NIPP1* mice are capable
of forming MSBs as analyzed using FIB-SEM. Upper panels show the 3D view of 3 week
old newborn neurons identified by viral labeling. Lower image shows 3D reconstruc-
tion of a MSB formed by a newborn neuron (green) and an unlabeled granule cell (red)
that form a synapse onto an axon (yellow). Scale bar represents 500 nm. **p <0.01, ***p
<0.001.

Results & Discussion
Expression of a nuclear inhibitor of PP1 (NIPP1*) in mature granule cells
To test for evidence of activity dependent competition for survival between newneurons
and pre-existing granule cells, we used a mouse model where the plasticity of mature
granule cells is enhanced through transgenic expression of a constitutively active form
of the nuclear inhibitor of protein phosphatase 1 (NIPP1*) [23] [24] [25] [26]. NIPP1*
expression in mature granule cells has been previously shown to enhance synaptic plas-
ticity of granule cells in the adult DG, leading, for example, to an increased amplitude of
long-term potentiation (LTP) [25] [26]. To selectively direct NIPP1* expression to ma-
ture granule cells, we used a cell type specific approachwhere NIPP1* is expressed under
the control of the CaMKIIα promoter and the reverse tetracycline (Tet)-controlled trans-
activator 2 (CaMKIIα-driven rtTA2 x TetO-NIPP1*/EGFP; hereafter called tg-NIPP1*;
Fig. 1A) [27] [25]. We found that the CaMKIIα promoter is not active in newborn
granule cells expressing the microtubule-associated protein doublecortin (DCX) that is
transiently expressed in newborn neurons but not in mature granule cells [28], and that
transgene expression upon Doxycycline (DOX) treatment was highly selective in ma-
ture granule cells (NeuN+, DCX-) in the DG as measured by expression of EGFP fused
to NIPP1* (Fig. 1A, and data not shown). Thus, transgenic NIPP1* expression within the
DG is restricted to mature granule cells past the expression stage of DCX [28] making
this model suitable for testing the effects of enhanced mature granule cell plasticity on
NSPC proliferation, fate determination, and stable integration of newborn neurons.
Tg-NIPP1* expression in mature granule cells does not affect NSPC prolifera-
tion
As previous reports suggested that NSPC proliferation is regulated by neuronal activity
[29] [30] [31], we first analyzed if NSPC proliferation is affected upon tg-NIPP1* ex-
pression. We compared DOX-fed tg-NIPP1* mice with their single transgenic (lacking
the TetO-NIPP1*/EGFP transgene) and non-DOX-fed tg-NIPP1* littermates as controls.
Non-DOX-fed single as well as double transgenic mice and DOX-fed single and double
transgenic mice were analyzed separately to exclude leakiness of the transgene expres-
sion and to test for a potential influence of DOX alone. We did not observe significant
differences in the rate of proliferation and number of newborn neurons as measured
using DCX expression and thymidine analogue labeling (BrdU, CldU, and IdU) between
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any of the control groups in any experiment (Suppl. Fig. 1A, B). Upon 2 weeks of DOX
treatment, NSPC proliferation was analyzed using a single BrdU pulse (Fig. 1B) 14 h
prior to killing the animals. Using this approach, we observed no significant difference
between DOX-fed tg-NIPP1* and their respective controls (Con: 1332 ± 145; DOX-tg-
NIPP1*: 1340 ± 125 BrdU+ cells per DG, n.s). We next analyzed if tg-NIPP1* expression
affects early neuronal cell death or fate specification of newborn cells. Using the thymi-
dine analogue IdU, we labeled cells 1 week prior to analyses and found no difference
between tg-NIPP1* mice and respective controls (Fig. 1C) (Con: 1184 ± 163; DOX-tg-
NIPP1*: 1138 ± 122 IdU+ cells per DG, n.s.). In addition, we found that virtually all
IdU-labeled cells expressed the neuronal markers DCX and Prox1 (Fig. 1C, and data not
shown), suggesting that fate determination and differentiation of newborn neurons is
not affected in DOX-tg-NIPP1* mice.
Enhanced plasticity of the mature granule cell circuit impairs survival of new-
born neurons
We then tested if the total number of immature neurons in tg-NIPP1* mice is affected
upon DOX treatment. DCX starts to be expressed in late dividing NSPCs and expression
lasts for approximately 3 weeks after neuronal birth [32] [28]. Strikingly, the number
of DCX-expressing cells was substantially reduced in DOX-tg-NIPP1* mice (Con: 13182
± 662.2; DOX-tg-NIPP1* 9810 ± 828.8 DCX+ cells per DG, p <0.05), indicating a loss of
immature neurons at later stages when activity dependent survival occurs (Fig. 1D)
[16]. We used a complementary approach to confirm the loss of new neurons based on
DCX analyses and injected the thymidine analogue CldU in DOX-tg-NIPP1* mice and
respective controls. Animals were killed 3 weeks later and the number of CldU+ cells
analyzed. Corroborating the DCX results, we found a significant drop in CldU-labeled
cells in DOX-tg-NIPP1* mice compared to controls (Con: 808 ± 100 control; DOX-tg-
NIPP1*: 465 ± 101 CldU+ cells per DG, p <0.05) (Fig. 1E). Interestingly, these results
suggest that neuronal loss occurs around the time when newborn neurons start to form
dendritic spines and excitatory synapses [33] [22] suggesting that synaptic competition,
impaired by enhanced plasticity of the mature granule circuit through NIPP1* expres-
sion, may be critical for stable integration into the DG network.
Reduced dendritic complexity in newborn neurons in tg-NIPP1* mice
We next analyzed if the length and branching of newborn neurons are affected in DOX-
tg-NIPP1* mice, using these measures as a proxy for neuronal integration [34]. To ana-
lyze the morphology of newborn neurons, we injected retroviruses expressing GFP un-
der chicken beta-actin promoter stereotactically into the DG of control and tg-NIPP1*
mice and killed the animals 3 weeks later [33]. Using this approach, we found that den-
dritic length was significantly reduced in DOX-tg-NIPP1* mice compared to controls
(Fig. 1F) (Con: 476.8 µm ± 18.5; DOX-tg-NIPP1*: 368.1 µm ± 22.8 average dendritic
length, p <0.001). Further, dendrites extending from neurons born in DOX-tg-NIPP1*
mice had substantially fewer branches compared to controls (Fig. 1F) (Con: 8.43 ± 0.52;
DOX-tg-NIPP1*: 6.14 ± 0.35, branch points per neuron, p <0.01). In contrast, we found
that axonal growth into area CA3, which is reached by axons extending from newborn
neurons before first spines are formed [33] was not altered in DOX-tg-NIPP1* mice
(Suppl. Fig. 2) (Con: 1122.74 ± 91.73 µm; DOX-tg-NIPP1* 1225.73 ± 42.36 µm, n.s.).
After finding that dendrites extending from newborn neurons in DOX-tg-NIPP1* were
shorter and less complex, we next analyzed the number of dendritic spines, the main
place for excitatory synapses of excitatory neurons, in DOX-tg-NIPP1* and control mice
(Fig. 1G). On the dendritic segments analyzed, the number of spines per µm dendrite
was similar between groups (Con: 0.469 ± 0.04; DOX-tg-NIPP1*: 0.423 ± 0.02 spines/µm,
n.s.) (Fig. 1G [22]). Furthermore, the subtype of spines did not differ between DOX-tg-
NIPP1* and control mice (Con: 0.761 ± 0.07; DOX-tg-NIPP1*: 0.898 ± 0.07 mushroom
spines/µm; Con: 0.136 ± 0.01; DOX-tg-NIPP1*: 0.105 ± 0.09 stubby spines/µm; Con:
0.256 ± 0.03; DOX-tg-NIPP1*: 0.227 ± 0.02 thin spines/µm, n.s.). However, given that
dendrites are shorter in DOX-tg-NIPP1* mice, we reasoned that despite similar spine
density the total number of excitatory inputs is reduced per newborn neuron in DOX-
tg-NIPP1* mice compared to controls. To estimate the number of spines per cell, we
multiplied spines per µm with the calculated dendritic length. It has to be considered,
however, that spines are not uniformly distributed on the dendrites; so any calcula-
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tions can only be a rough estimation (e.g., within the granule cell layer (GCL), only few
spines are formed). Given that dendrites are substantially longer in controls than in
DOX-tg-NIPP1* mice, we estimated a reduction of synaptic input of approximately 50%
of newborn neurons in DOX-tg-NIPP1* compared to controls (195.7 in control, 130.6
in DOX-tg-NIPP1* calculated spines per cell). Next, we analyzed synapse formation of
new neurons in DOX-tg-NIPP1* on the ultrastructural level [22]. Again, we used retro-
viruses expressing GFP to label newborn neurons in DOX-tg-NIPP1* mice and controls.
Synapse formation was analyzed 3 weeks after stereotactic injection of retroviruses and
after immunhistochemical conversion of the GFP signal into osmiophilic DAB precip-
itate. We then used focused ion beam scanning (FIBS)- electron microscopy (EM) to
reconstruct spines and their environment in 3-dimensions (n = 1 mouse per genotype).
In total, we analyzed 73.2 µm of 2 dendrites containing 36 synapses in DOX-tg-NIPP1*
(n = 1). Using this approach, we found that spines of newborn neurons in DOX-tg-
NIPP1* mice formed synapses with visible postsynaptic densities, indicating functional
connectivity, and engaged in multiple synapse boutons (MSBs), suggesting that synapse
formation is not fundamentally altered in DOX-tg-NIPP1* mice (Fig. 1H) [22].
We used a genetic approach to test if the survival of new neurons in the adult DG is
influenced by the plasticity of the mature granule cell circuit. Strikingly, we found
that dendritic integration and subsequent survival of newborn granule is impaired with
enhanced plasticity of the mature granule cell circuit, suggesting that competition for
synaptic integration is critical in regulating the survival of new neurons. New neu-
rons need to receive synaptic input for their survival, and structural data suggested that
filopodia extending from dendrites of newborn neurons initially grow towards exist-
ing synapses between mature granule cells and presynaptic axons in the perforant path
originating from neurons in the entorhinal cortex, leading to the formation of MSBs
[16] [22]. With time, MSBs are then presumably exchanged by single synapse boutons
(SSBs) suggesting that new neurons that successfully compete for synaptic partners sta-
bly integrate [22]. The survival of newborn neurons can be enhanced, for example, by
environmental enrichment that appears to enhance excitability in the DG circuit [35]
[36]. Similarly, the reduced survival of new neurons lacking the GluN1 subunit of the
NMDA receptor can be partially rescued by global blockade of NMDA-dependent activ-
ity [16]. However, characterizing a potential competition by manipulating the balance
of excitability selectively between new and mature granule cells had not been tested
experimentally. We achieved this by cell type-specific expression of NIPP1* in mature
granule cells and found that enhancing plasticity of the mature granule cell circuit [24]
[25] impairs the survival of newborn granule cells. The growth of dendrites extend-
ing from newborn granule cells was substantially impaired in NIPP1*-expressing mice,
whereas synapse formation appeared to be unaltered as analyzed using conventional
lightmicroscopy and electronmicroscopy. This led to a strongly reduced number of den-
dritic spines of newborn neurons, suggesting that their overall excitatory synaptic input
is decreased. Since the transgene is expressed in all CaMKII-expressing cells, including
those of the entorhinal cortex, we cannot exclude an effect of more globally changed ac-
tivity of neuronal circuits. Without longitudinal imaging of synapse formation, which
is currently technically not feasible at the required resolution, it cannot be proven that
new neurons fail to survive due to impaired synaptic competition. However, our data
strongly supports the hypothesis that new neurons need to compete for synaptic part-
ners to ensure proper integration and survival [22]. Interestingly, it has been shown
that during the first 3–6 weeks after their birth, new granule cells are highly excitable
and show a higher degree of plasticity compared to mature granule cells [17] [18] [19]
[21]. This unique feature has been attributed to their special functional properties with
emerging evidence supporting the idea that adult neurogenesis in the DG is not a pro-
cess for mere cell replacement but that new neurons exert their function at least partially
due to these special properties [37] [38] [39]. However, it is also reasonable to speculate
that the phase of heightened excitability may also be important to ensure the integration
of new neurons, giving them a competitive advantage to form synapses with axons aris-
ing from the entorhinal cortex. Our data supports this idea by showing that the survival
of new neurons is impaired with increased plasticity of the mature granule cell circuit,
whereas NSPC proliferation and initial steps of fate determination and specification are



unaltered. Thus, we here experimentally support a long-standing hypothesis, indicating
that synaptic competition represents a key mechanism regulating the integration and
survival of newborn granule cells in the adult mammalian hippocampus.

Limitations
We used a single mouse model of enhanced plasticity with wildtype littermate controls.
While, we interpret our data as a strong suggestion of a competitive mechanism at work,
additional studies using different models and approaches are needed to prove that the
effects observed are not specific to the model. In our model, the transgene is expressed
under the control of the CaMKIIα promoter, which is active in all forebrain neurons. It is
possible that, next to the effect of the immediate environment, other changes inherent to
the transgene also affect neuronal integration and morphology. One immediate effect
on newborn granule cells may be altered input by medial entorhinal cortex cells, the
primary input of the hippocampus.
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