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Abstract
Dominance hierarchies are group-level properties that emerge from the aggression of indi-

viduals. Although individuals can gain critical benefits from their position in a hierarchy, we

do not understand how real-world hierarchies form. Nor do we understand what signals and

decision-rules individuals use to construct and maintain hierarchies in the absence of sim-

ple cues such as size or spatial location. A study of conflict in two groups of captive monk

parakeets (Myiopsitta monachus) found that a transition to large-scale order in aggression

occurred in newly-formed groups after one week, with individuals thereafter preferring to

direct aggression more frequently against those nearby in rank. We consider two cognitive

mechanisms underlying the emergence of this order: inference based on overall levels of

aggression, or on subsets of the aggression network. Both mechanisms were predictive of

individual decisions to aggress, but observed patterns were better explained by rank infer-

ence through subsets of the aggression network. Based on these results, we present a new

theory, of a feedback loop between knowledge of rank and consequent behavior. This loop

explains the transition to strategic aggression and the formation and persistence of domi-

nance hierarchies in groups capable of both social memory and inference.

Author Summary

An individual’s success depends critically on socially-constructed properties such as rank.
A detailed study of two independent captive parakeet groups reveals how these properties
come into being. We show that individuals can use localized patterns in the aggression net-
work to learn the relative ranks of individuals, and that these signals of rank strongly cor-
relate with individual decisions to aggress. Over time, feedback between knowledge and
behavior leads to the emergence of strategic aggression: individuals focus their aggression
on those nearby in rank.
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Introduction
Individuals from social species must interact with each other to reproduce, find food, and sur-
vive. Higher-level social structures such as hierarchies emerge when interacting individuals
need to manage trade-offs in the costs and benefits of social associations [1, 2]. One of the most
important is the dominance hierarchy, where group-wide “global” rankings are derived from
local aggressive interactions, and form emergent social properties [3–5].

Aggression has obvious immediate costs, including energy expended and the possibility of
injury. Benefits, conversely, can be both immediate and delayed. Individuals may fight to gain
immediate access to contested resources, or they may aggress in order to gain rank, which then
provides these individuals with delayed rank-dependent benefits. Aggression that results in
higher dominance rank often increases an individual’s access to foraging resources and repro-
ductive opportunities (e.g., Ref. [6–8]).

Groups across a broad range of taxa are structured by dominance rank [9] despite large vari-
ation in cognitive skills. Dominance hierarchies are found in primates [10, 11], social carni-
vores [12, 13], ungulates [14, 15], birds [16–19], fish [20], and even crustaceans [21, 22] and
insects [23]. These group-level social structures form and stabilize on the basis of perceptions
and actions necessarily made at the individual level [24]. Dominance rank is generally achieved
through a series of aggressive events, and hierarchy formation takes place without top-down
control in a manner that is largely independent of the intrinsic properties of the individuals
involved [25–27].

Previous experimental and theoretical work on dominance hierarchies shows that interac-
tion outcomes can shape how individuals behave in subsequent interactions [28], that individ-
uals may use a jigsaw approach to determine how to interact with a few individuals based on
observations of event outcomes [25, 29], and that observed win/loss outcomes can be strong
determinants of an individual’s choice of targets of future aggression [30–32]. In some systems,
“badges of status”, or conventional signals, can enable individuals to estimate the rank of others
[33, 34]. However, these visual signals of rank can differ in their prevalence within species
under different conditions (e.g. [35] and [36]), and may only explain part of the dynamics of
dominance hierarchy formation (e.g. [37]). Aggression preferences of individuals in some
groups can also be driven by spatial patterns, especially in cases where closely-ranked individu-
als are more likely to be in spatial proximity [38–41]. However, little is known about rank for-
mation in groups where these simpler behavioral rules or cues to rank are absent.

Recent evidence suggests that individuals in many species have the cognitive ability to use
their observations of social interactions of others to inform their own behaviors, including sev-
eral primate species [10, 11, 42–44], ravens [45], hyenas [46], and fish [47–50]. However, while
this evidence shows that individuals observe each other and react to these observations, we do
not currently understand how individuals integrate information on the outcomes of their own
interactions, with observations of others’ interactions, in order to determine rank.

We are thus faced with two distinct questions. How does rank become relevant to individual
decisions to aggress? And, what information or mechanismmight individuals use in order to
learn emergent social properties like rank? This paper presents three findings, based on detailed,
highly-resolved observations of aggression in a social avian species, that answer these questions
by reference to the interaction between local decision-making and global system properties.

Our first finding is a strong signal of the influence of rank on decision-making. This is seen
in how aggression is allocated: target choice became structured over and above what is neces-
sary to reproduce the rank order alone. This structuring happened in a manner that could not
be accounted for by individual characteristics, or by the spatial position of individuals. In both
groups, it occurred around a week after initial group formation. After this transition,
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individuals preferentially directed aggression more frequently towards those nearby in rank
and avoided interactions with those far below them in rank.

Our second finding is that in this structured society, both levels of aggression and subsets
of the full network (network motifs in the form of aggression chains) provided cognitively-
accessible signals of rank. These pathways are the likely mechanisms through which rank is
inferred. Rank is a global property, but in these structured systems can be learned by judicious
observation of local interactions.

Our third finding is that the motif pathway not only provided a signal of relative rank, but
was strongly predictive of actual behavior. Individuals were far less likely to direct aggression
against the terminal individual in an observable aggression chain.

Taken together, these results help explain the emergence of rank as an interaction between
two processes: inference of rank from cognitively-accessible social signals, and decision-
making that correlates with these signals. They indicate a critical role played by a knowledge-
behavior feedback loop—between inference of group-level properties, and consequent deci-
sion-making. Such feedbacks may be a critical pathway for how evolved systems reduce uncer-
tainty by tying together multiple timescales [51]; our findings here have parallels in discoveries
of how signal use in primates tracks coarse-grained features of a social network [24, 52].

These results provide new insight into the problem of choosing targets and establishing a
dominance hierarchy in species that lack simple perceptual cues, such as size or spatial loca-
tion, for an individual’s rank. In these more complex societies, rank order is necessarily a cogni-
tive construct that summarizes the many dyadic-level interactions into an emergent group-
level property.

Our results derive from studies of two independent groups of monk parakeets (Myiopsitta
monachus), a small neotropical parrot native to temperate South America and notable for its
highly social colonial and communal nesting behavior [53] as well as its widespread success as
an invasive species [54–57]. Monk parakeets exhibit several characteristics of complex sociality
[58–60], and to our knowledge, is the first parrot species in which detailed and quantitative
dominance hierarchy analysis has been conducted [58].

Studies of dominance hierarchies in parrot species present an intriguing comparison to
those conducted on primates and humans. Parrots share many characteristics with primates,
such as large relative brain size and advanced cognition [61, 62], extended developmental
period [61, 63], long lifespans [64–66], and individualized relationships within complex social
groups [58, 67]. Additional characteristics, such as vocal learning and high fission-fusion
dynamics, are uncommon in most primates [68], but are shared by parrots and humans [69].
Understanding how parrots form and maintain dominance relationships in complex social
groups thus has the potential to further our more general understanding of rank in socially and
cognitively complex species.

Methods

Ethics statement
All animal activities conducted during this study were approved by the New Mexico State Uni-
versity Institutional Animal Care and Use Committee (protocol number 2006-027).

Data collection protocols
Our study is based on observation of directed aggression in groups of monk parakeets housed
in captivity at the U. S. Department of Agriculture National Wildlife Research Center in
Gainesville, Florida. We formed two independent groups (N = 21 and 19) and observed aggres-
sive events during novel group formation (additional details in Refs. [58–60]). Prior to our
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study, parakeets were housed in smaller cages (median group size = 2); while some were in
visual contact, direct physical contact between individuals in different cages was not possible.
Random group assignment resulted in the formation of social groups largely comprised of
novel dyadic associations: only 3% (Group One) and 6% (Group Two) of dyads were composed
of birds housed together during the 8 months preceding the study [59]. To facilitate individual
identification, we marked each bird with a unique facial pattern using colored nontoxic perma-
nent markers (Sharpie, Inc.).

Each captive group was released sequentially into a 2025 m2 semi-natural outdoor flight pen
and observed over the course of 24 days by 1–4 observers. We used all occurrence sampling
[70] to record data on directed agonistic behaviors. As in Ref. [58, 60], we restricted our analy-
sis to dyadic aggression where events had clear outcomes. We focused on intentional aggressive
behavior, which we define here as events where one individual (the actor) approached another
(the target) and the overt aggressive actions of the actor caused the target to be physically dis-
placed and supplanted from its perch by the actor. This resulted in a win for the actor and a
loss for the target of the aggression. Because some actors aggressed against targets in a string of
frequent sub-attacks (e.g. 6 attacks in 10 sec), we required a cessation of aggression from the
actor toward the target of at least 60 sec in order to define the aggression as a clear win; thus an
actor could only achieve a full win once against a target per minute. We do not include more
subtle forms of aggressive signaling, nor aggression that occurred during scramble competition,
because specificity of the direction of aggression was less clear and overt aggression was often
reactive rather than intentional in these cases. We hereafter refer to these intentional, dyadic,
aggressive wins as ‘aggressive wins’ or ‘aggression’.

We divided the 24-day study period into four 6-day study quarters to facilitate comparisons
across the two replicate social groups.

Estimation of dominance hierarchies
Keeping track of the total number of aggressive events between any two individuals allows us
to define the directed aggression network; dij, the number of observed aggressive events
directed by i against j. We then use Eigenvector Centrality (EC, Ref. [71]) on the directed
aggression network as our primary means of determining rank. EC assigns a centrality score,
vi, to each individual i, using both the direct and indirect links in aggression networks in a
recursive fashion. High centrality then equates to low power. Intuitively, an individual has low
power if it is the recipient of many aggressive events from those who themselves have low
power. Once we have observed dij, we can then define the normalized aggression, tij, as

tij ¼
dij þ �

PN
k¼1ðdik þ �Þ ; ð1Þ

where � here is a small regularizing term. Then, the centrality scores for the individuals in the
system, vi, are those that satisfy

vi ¼
XN

j¼1

tijvj ð2Þ

EC is one of the main algorithms for determining consensus beliefs within a network [72], and
dominance ranks based on EC power scores are strongly correlated with the main alternative
ranking methods such as I&SI [73]. A benefit of EC over pure ranking methods is that EC
allows for the direct quantification of power, rather than just a linear order; this means it can
distinguish cases where two individuals are “nearly equivalent” in rank from those where dif-
ferences in dominance are reliable and large. Both the bootstrap error estimates we report, and
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the null models we use, preserve these distinctions: they reproduce the underlying power
scores, rather than just the rank difference.

EC is closely related to David’s Score (DS; Ref. [74]). In contrast to EC, which uses all the
interactions in the aggression network to define the status of a particular individual, DS only
includes interactions up to two steps away (my aggressors’ aggressors; my targets’ targets).
Both DS and EC have found widespread use in the characterization of rank in animal groups
[24, 52, 60, 73, 75–78].

EC and DS are both “depth”methods [75]. They quantify rank by reference to network
properties, and weight the interactions between two individuals i and j in ways that depend on
interactions each individual has had with others.

Conversely, measures like Weighted Simple Consensus (WSC) are “breadth”methods [75],
in which rank is estimated based only on the interactions directed towards individual i. For
example, WSC estimates rank as the product of the total number of an individual’s aggressors
and the total amount of incoming aggression [75]. Ref. [75] found EC comparable to WSC,
both of which performed well. In our data, EC correlates strongly with all three measures
(I&SI, DS, WSC); see S1 Table.

Average rank aggression
We are most interested in how relative rank influences how and where individuals direct their
aggression. To measure this, we use average rank aggression, R(Δ). R(Δ) is the amount of indi-
vidual-level aggression, per unit time, directed at those Δ ranks away. It is defined as:

RðDÞ ¼ 1

NDTobs

XN

i¼1

diD ð3Þ

where diΔ is the amount of aggression directed by i at the individual whose rank is Δ steps
away; NΔ, the total number of individuals who have a potential target Δ ranks away; and Tobs

the total observation time. A rank lower than i, i.e., “down” the hierarchy, is indicated by Δ
greater than zero; a rank higher than i is indicated by Δ less than zero.

Average rank aggression is our primary signal of individual decision-making. We are inter-
ested in determining whether the observed aggression indicates the influence of rank on deci-
sion-making. In order to do this, we construct null models for the range of behaviors we expect
to see if individuals interact in a unstructured fashion. We explore a related measure, average
preferential rank aggression, in S1 Text.

Null models for aggression
A critical step in our analyses is determining when and how patterns of aggression differ from
what might be expected from random noise in otherwise unstructured behavior. To do this, we
construct a hierarchy-constrained null model. This null model produces aggression networks
that reproduce the observed power scores, without imposing particular rules about who directs
aggression against whom. Such a model is possible because in a group of n individuals there are
n(n−1) free parameters in an aggression network, but only n−1 numbers are required to specify
that network’s EC power scores.

EC (indeed, any ranking or scoring system) thus amounts to a lossy compression of the
original data [79], summarizing the behavioral patterns relevant to the establishment of a dom-
inance hierarchy. Conversely, for any given dominance hierarchy there are many possible
behavioral patterns. In particular, because there are many possible d and tmatrices compatible
with a particular power distribution v, we can define a null model as random draws from the
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set of matrices that have, on average, the same v. Our null model for aggression is defined as a
random sample from this larger set; we also preserve the total aggression of each individual
(additional details in S2 Text).

Any particular sample from this null will preserve (on average) the EC power scores, but
will be otherwise unstructured and contain no correlations that are unnecessary to preserve
those scores. We can measure relevant properties, such as R(Δ), on these null networks. Devia-
tions in the real data from these nulls indicate individuals are systematically directing aggres-
sion in ways that differ from what is otherwise expected for an aggression network with that
dominance structure.

Simpler signals of rank
We investigated whether parakeets could use size characteristics or spatial positioning, rather
than social observations, to infer rank. We measured several morphometric characteristics
which reflect body size: wing chord, culmen depth, culmen width, and mass. We used these
data to determine whether rank could be predicted by an individual’s size. We also collected
data on spatial patterns. As in [58, 60], we determined the identity of each individual’s nearest
neighbor (within 10m2 quadrats) during scan samples to determine whether rank affected spa-
tial association patterns. If birds nearby in rank tend to spend more time physically near each
other, spatial proximity could serve as a signal of rank. In particular, we would expect a nega-
tive correlation between (absolute) relative rank difference between i and j, and the number of
times i was observed to be j’s nearest neighbor in space.

Social signals of rank
Estimating rank via social observations and signals can be computationally challenging. As
noted by Ref. [75], breadth measures such as WSC are of particular interest because they corre-
late with the more sophisticated depth measures, but are more likely to be cognitively-accessi-
ble to individuals within the system. For this reason, we also measure WSC on the directed
aggression network. The WSC score of an individual is the product of the total amount of
aggression (number of events) received, multiplied by the number of distinct individuals who
directed that aggression (additional details in S4 Text). We order individuals by these domi-
nance scores to determine individual rank. As in the case of EC, a higher WSC equates to lower
rank because these individuals receive more aggression from more individuals.

Individuals may use breadth-based signals such as WSC, but they may also use measures
sensitive to other features of the network. In particular, even though EC rank is a property of
the aggression network as a whole, small portions of that network may contain signals of rela-
tive rank, and these smaller network subsets may be more easily perceived.

To study information of this second kind, we focus on a particular kind of motif—the
aggression chain—where we can trace a line of aggression from individual i, to individual j, to
individual k, and so forth. We measure the signals contained in such chains using average
weighted rank difference,W(n).W(n) quantifies the extent to which an aggression chain pro-
vides information about relative rank difference for chain length n.W(2) is defined as

Wð2Þ ¼
P

i;j;k;;dijdjkDði; kÞP
i;j;k;;dijdjk

; ð4Þ

where Δ(i,k) is the rank difference between i and k, and ; indicates that in any instance, the
identities of individuals i, j, and k do not overlap.W(2) is then the average rank difference
between any two individuals, weighted by the product of aggression seen along all chains con-
necting them.
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W(2) takes into account not only the existence of the chain, but also its strength. In general,
weighted network ties are generally more informative about the social relationships among
individuals and are more robust to sampling differences [59, 80–82] than relying solely on
presence-absence information.W(n) for n larger than two is defined similarly (see S3 Text);
the number of possible motifs we need to examine to computeW(n) grows exponentially with
depth, and we stop our analysis at n equal to six. (Note that while the total number of motifs
grows exponentially with n,W(n) quantifies the average amount of information in any particu-
lar aggression chain, not the total amount of information in all chains.)

WhenW(n) is significantly different from the null, this indicates the presence of information
in aggression chains over and above what is expected from systems with the same power scores,
but otherwise unstructured aggression.

Use of motif-based signals of rank
To determine if individuals actually perceived and used these motifs as a signal of rank, we
measure the behavioral signatures of transitive inference. Transitive inference occurs when one
individual uses knowledge about its own interactions with a target (j) and third-party observa-
tions of how j interacts with additional targets (k, l,m, . . .) to infer its own likelihood of win-
ning over one of j’s targets, such as k. For the case of three individuals, i and k would have a
transitive relationship with individual j if the amount of aggression directed from i to j (dij) and
the aggression from j to k (djk) was related to the amount of aggression i directed to k (dik).

We tested for transitive relationships between individuals in the first and last positions
anchoring each aggression chain (Fig 1), up to a chain length of 6. We quantified fractional
transitivity, T(n), for a chain length of two as:

Tð2Þ ¼
P

i;j;k;;dijdjkðdik � �di;jÞ=�di;jP
i;j;k;;dijdjk

ð5Þ

where �di;j is the average aggression i directed towards all individuals other than j, and ; indi-
cates that our sums exclude cases where the identities of individuals i, j, and k overlap. The nat-
ural extension to n-step chains, T(n), is defined in S3 Text. T(n) is positive or negative when an

Fig 1. Illustration of aggression chains of length two and three. The d terms indicate the number of
aggressive events between individuals i-l. The originator of the chain (i) is then linked through these indirect
interactions to the terminal individual (k or l), and the dashed line indicates the association between the
originator and the terminal individuals in the chain. For a chain length of two,W(2) quantifies the extent to
which aggression along the chain (dij and djk) is a signal of rank difference between the originator and the
terminal individual (dashed line); T(2) quantifies the extent to which aggression directed from the originator i
to the terminal individual (dashed line) is higher, or lower, than average aggression by i, given aggression
levels within the chain dij and djk.

doi:10.1371/journal.pcbi.1004411.g001
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individual i increases or decreases, respectively, its aggression against k given that k is at the
end of an n-step chain.

Very positive T(n) means that individuals prefer to aggress against those at the end of chains
while very negative T(n) means that individuals preferentially avoid such aggression. When T
(n) is significantly different from null, this indicates the use of information in aggression chains
over and above what is expected from systems with the same power scores, but otherwise
unstructured aggression.

Data exclusions
Our initial analysis indicated that differences in aggression patterns in Group One and Group
Two were strongly driven by a single individual, NBB, in Group Two. This individual was per-
sistent in her attempts to affiliate with others in Group Two, but was not able to form a strong
affiliative relationship within the group [58]. Aggression directed at NBB appeared to be mostly
reactive aggression in response to NBB’s persistent and apparently unwanted attempts to affili-
ate rather than intentional target selection choices by actors choosing to attack NBB.

Because our focus with this work was on intentional target selection and strategic aggres-
sion, and because the actions of NBB were anomalous compared to all the other individuals in
the group, we excluded NBB from the main analyses. However, we present the results for
Group Two including NBB in the Supplementary Information (S1 Fig and S2 Fig) to show how
unusual decision-making by this individual affects the overall patterns created by the other 18
individuals.

Results
We analyzed a total of 1013 aggressive wins in Group One and 1360 wins in Group Two over
the 24-day study periods. Despite the captive conditions, some individuals avoided interacting
which each other, resulting in incompletely connected aggression networks in both groups
(density of 0.89 in Group One; 0.92 in Group Two).

Simpler signals of rank
We find no evidence that rank could be reliably determined based on simple underlying cues
such as size or spatial proximity. None of the morphometric body size measures provided any
rank signal in either of the two study groups. Rank was not significantly associated with the
physical size of individuals, including weight, wing length, and beak properties (jr2j< 0.18,
p> 0.05, S3 Fig).

Nor did we find that spatial proximity provided a signal of rank (S4 Fig). Neighbor identity
is not a strong signal of rank in either Group One (r2 = −0.12) or Group Two (r2 = −0.02).
Even in the final three-quarters, where behavior is most regular, in Group One, proximity pro-
vides only a weakly anticorrelated signal (r2 = −0.14); in Group Two, it provides no signal at all
(r2 = 0.04; consistent with null).

Emergence of social structure
Average rank aggression in both Groups One and Two was consistent with the null model dur-
ing the first quarter of the study period (Fig 2a and 2e). However, behaviors quickly diverged
from null expectations as individuals began to structure their behavior in ways strongly corre-
lated with rank. Aggression patterns in the final three-quarters of the study period all diverged
strongly from null expectations (Fig 2b–2d and 2f–2h), with aggression strongest towards indi-
viduals nearby in rank.
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We refer to this as rank-focused aggression. Combining the final three quarters of the data
increases this signal (Fig 3a and 3b). We can quantify the emergence of this phenomenon by
reference to the ratio of null to observed aggression for nearby ranks (one to five steps below).
While neither group showed above-null aggression to nearby ranks in quarter one (p> 0.05),
both showed significant deviations and large effect sizes for later quarters. Group One had
aggression at 49% above-null (p< 0.05) in the second quarter; and a factor of 2.7 and 2.2 times
higher in quarters three and four (p< 0.001). Group Two had aggression at 60% above null
(p< 0.05) in the second quarter, and 64% and 56% in quarters three and four (p< 0.05).
Aggregating over the final three quarters gives an overall signal of rank-focused aggression of a
factor of 2.1 times above null (Group One, p< 0.001) and 51% above null (Group Two;
p< 0.01). We find equivalent results for a related measure, average preferential rank aggres-
sion; see S5 Fig.

This is our first main result. The onset of strong deviations from the nulls points to the
emergence of structured behavior at the individual level. The structure of this behavior is dic-
tated, at least in part, by relative rank.

Inferring rank: The magnitude pathway
Determination of rank via depth-based measures is computationally intensive. In our data,
depth-based EC correlated strongly with breadth-based WSC (r2 � 0.73 in both groups) and
thus knowledge of WSC can provide at least partial knowledge of EC. Because of WSC’s reli-
ance on levels of aggression alone, rather than network structure, we refer to this rank-
inference mechanism as the “magnitude pathway”.

Fig 2. The emergence of structured aggression. Average rank aggression (R(Δ), Eq 3) for Group One (a-d) and Group Two (e-h) across study quarters;
each quarter is six days long. Units of y-axis are aggressive acts per individual per 1000 minutes (100 scan periods). Patterns of aggression (red band/solid
line) in both groups are consistent with the null (dashed line/blue band) in the first Quarter, but diverge in Quarters two, three and four as individuals focus
their aggression on those nearby in rank. Points are averaged ±1 rank; bands are 1σ bootstrap-estimated error ranges. Maximum rank difference in Group
Two (N = 19) is 17 because one individual was dropped.

doi:10.1371/journal.pcbi.1004411.g002
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We look for signals of the use of this pathway by considering evidence that aggression is
structured as a function of relative WSC rank. We find evidence for reduced aggression at indi-
viduals widely separated in WSC rank (large positive Δ) compared to the null. This indicates
that, in addition to providing knowledge of rank, WSC-derived rank is also predictive of some
features of individual aggression. However, we do not see strong evidence for increased aggres-
sion to those nearby in WSC rank—none in Group One, and only weak evidence in Group
Two (S6 Fig).

The fact that WSC was predictive of aggression indicates that the magnitude pathway may
play an important a role in structuring aggression. However, the absence of a signal of rank-
focused aggression implies that there were patterns of aggression invisible to the breadth-based
WSC measure. If individuals used WSC signals to help direct their aggression to those nearby
in rank, they must have been supplementing them with other sources of information. The
absence of rank-focused aggression in the WSC case is an example of how rank defined by ref-
erence to WSC does not capture all of the structure relevant to individual aggression. This pro-
vides an implicit justification for the decision, made earlier, to use EC as the primary measure
of rank in the system.

Inferring rank: The motif pathway
We also evaluated evidence for the use of depth-based measures of rank, where individuals are
evaluated based not only on the aggression they receive, but on the characteristics of their
aggressors. In particular, weighted rank difference,W(n), allows us to investigate whether
social information was encoded within smaller subsets of the total aggression network in chains
of aggression (Fig 4). We refer to this rank-inference method as the “motif pathway”.

In the null (dashed line in Fig 4), we find that chain length encodes little or no information
about relative rank. Individuals tend to be lower-ranked than their aggressors, but seeing an
individual at the end of a long chain provides little or no additional information about its rank.
By contrast, the observed data (solid line in Fig 4) encoded significant information in

Fig 3. Structured aggression. Preferential rank aggression (R(Δ), Eq 3) pooled over the final 3 quarters of the study period for Group One (a) and Group
Two (b). Pooling data provides a gain of signal-to-noise that further refines our understanding of the strategies at work once the behavior-knowledge
feedback is in place. Both groups show a focusing of aggression towards those nearby in rank, over and above null expectation. Higher levels of rank
entrepreneurship—aggression directed, contrary to expectation, upwards in the hierarchy—are visible in Group Two. Points are averaged ±1 rank; bands are
1σ bootstrap-estimated error ranges.

doi:10.1371/journal.pcbi.1004411.g003
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aggression chains. In both Groups One and Two, local motifs contained a substantial amount
of global information.

An observation of an individual at the end of a longer chain (length� 3) provided more
information about relative rank than an observation of an individual at the end of a short chain
(length 1 or 2). This encoding potentially allowed individuals to distinguish between individu-
als nearby (Δ* 5) and distant (Δ> 10) in rank—a discrimination impossible in the nulls.

This is our second main result: network motifs, in addition to breadth-based magnitude
measures, can provide signals of relative rank.

Fractional transitivity, T(n), allows us to investigate whether these aggression chains are pre-
dictive of actual behavior. Our analysis found a strong difference between the null model and
the observed data (Fig 5). In the null (dashed line), chains predict increased aggression: if i
aggresses against j, and j against k, this leads i, on average, to direct increased aggression against
k. This is independent of chain length—both long and short chains predict similar levels of
increased aggression.

Fig 4. Cognitively-accessible social properties. Shown is the weighted average rank difference for
different aggression chain lengths (W(n), Eq 4) for Group One (a) and Group Two (b). The solid line shows
the observed signal, while the dashed line shows that found in the null, with 1σ error ranges. Significant
evidence exists for a strong signal of relative rank contained in aggression chains. Such signals are then
accessible to individuals capable of transitive inference.

doi:10.1371/journal.pcbi.1004411.g004
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In contrast, behavior in the observed data (Fig 5, solid line) showed the opposite effect.
While short chains predicted a (small amount) of increased aggression (T(2) greater than
zero), long chains were associated with reduced aggression (T(n) less than zero for n greater
than two). This remarkable inversion is what is expected when individuals use the information
content of motifs to predict relative rank, and then both (1) preferentially avoid conflict with
much lower-ranked individuals and (2) focus aggression on rank neighbors.

This is our third main result: network motifs predict behavior.

Quarter-by-quarter dynamics ofW(n) and T(n)
Having demonstrated the existence and predictive power of signals, we can investigate the
time-frame over which the signals themselves emerge by looking atW(n) quarter-by-quarter.
In Group One we can already find evidence for the existence of these signals, over and above
null expectation, at the one-step and two-step level, in the first quarter. The signals were pres-
ent, but R(Δ) results suggest that they are not yet used by participants. By contrast, the signal is
almost entirely absent in the first quarter for Group Two. After the first week (i.e., for the later
quarters) the signal became significantly stronger, covered a wider range of ranks, and we saw
signals at the three-step, and often at the four-step, level in both groups (S7 Fig and S8 Fig).

Fig 5. Aggression chains predict behavioral preferences. In both Group One (a) and Group Two (b),
aggression against those at the end of a chain was reduced compared to null. For aggression chains three
steps or longer, we find preference inversion: negative transitivity, meaning that (on average) i directed less-
than-average aggression against l if l was found at the end of a chain i! j! k! l.

doi:10.1371/journal.pcbi.1004411.g005
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We can also examine T(n) quarter-by-quarter to look for the dynamical emergence of
behavioral preference. The first quarter showed some evidence for the use of motif information
to structure behavior, with shifts in preferences of on average 32 percentage points relative to
the null in both groups. Effects became larger at later times, with behavioral preferences shift-
ing by on average 82 percentage points relative to the null in the final three quarters. Preference
inversion appears only in these later quarters. The emergence of this behavioral pattern paral-
lels the emergence, over time, of the large scale order seen in Fig 2, and of cognitively-accessible
signals seen in Fig 4 (S9 Fig and S10 Fig).

Discussion
Our results show how group social structure forms, how cognitively-accessible signals allow for
inference of rank, and how these signals predict core features of actual behavior in captive para-
keet groups. Our study provides insight into two longstanding questions about dominance in
complex groups: how does dominance emerge, and how do individuals infer and act upon it?

We found that (1) a transition towards more structured aggression occurred rapidly, about
a week after initial group formation, (2) behavioral motifs and chains of aggression provided
information about relative rank, and (3) symbolic distance along aggression chains was predic-
tive of aggression preferences. We found that use of the magnitude pathway, WSC, could only
explain some of this structure, but that individuals could supplement this with depth-based
information in the form of aggression chains.

The patterns seen in Fig 3 are thus driven, on the one hand, by information about rank (in
both the magnitude pathway, and the motif pathway seen in Fig 4), and, on the other hand, by
decisions to aggress that we track in Fig 5. We have found that both the motif signal, and the
extent to which it predicts aggression patterns, increase over time, paralleling the emergence of
the large-scale order seen in Fig 3. Importantly, we found that dominance hierarchy structure
emerges despite the absence of visual or spatial cues to rank. Furthermore, the speed with
which this structured behavior emerges means that “conventional” visual cues—physical mark-
ings that serve as badges of status not logically related to fighting ability [34]—would not have
had time to develop.

Our results thus imply the existence of a feedback between behavior and knowledge. Aggres-
sion at the individual level leads to large-scale knowledge about dominance rank at the group
level. Individuals are able to gain knowledge about these ranks, and to use this information to
adjust their behavior accordingly.

Over time, this leads to the emergence of global social signals, including the dominance
ranks that have been a central part of study in animal behavior. This feedback loop is depen-
dent on individuals possessing two critical cognitive skills: social memory and social inference.
Individuals must be able to identify individuals and remember the outcomes of past events,
and then integrate these memories to structure subsequent behavior. This feedback loop may
play a key role in dominance hierarchy development in larger, more complex social groups.

We focused on two distinct knowledge pathways: (1) the magnitude pathway, which
requires observers to track incoming aggression to each individual, regardless of source identity
and (2) the motif pathway, which requires partial knowledge of aggression network structure.

Under the magnitude pathway, the number of aggressors and the total amount of aggression
targeted at each individual is tracked to determine rank. As more interactions occur, more
information exists upon which rank can be inferred. Although the magnitude pathway is more
likely to be cognitively accessible to individuals [75], decisions made on the basis of this path-
way alone are unable to explain all of the behavior we see. Depth-based measures provide
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additional discriminatory power, and are predictive of actual aggression including the rank-
focused aggression seen in Fig 3.

Once these signals are in place, effects are strong. Aggression levels differed by a factor of
two or more from the null model (Fig 3), signals allowed individuals to discriminate across
nearly the full range of relative ranks (Fig 4), and these signals predict shifts in behavioral pref-
erences of 50 percentage points or more (Fig 5).

Significant features of the social signal are contained in the two- and three-step aggression
chains. That observed shifts in behavior (quantified by T(n)) can be due to direct reliance on
the signal (detected byW(n)) is supported by experimental studies. These find that larger sym-
bolic distances are not only salient, but actually more easily perceived than neighboring pairs
[83, 84]. Meanwhile, our detection of rank focused aggression is consistent with results that
find nearby ranks perceptually salient, including the finding that rank reversals occurring at
small relative rank differences are perceived as more stressful [45].

Spatial assortment may be a signal of rank in some systems [39]. However, we found no evi-
dence that parakeets use either spatial assortment or physical size to structure their aggression.
Instead, our work suggests that the formation of a hierarchy relies on cognitive inference over
complex relationships. Our work has found that aggression motifs contain a substantial
amount of information that could be used infer relative rank.

Despite being more cognitively demanding, the motif pathway explains structuring of
aggression over and above that from the magnitude pathway. Use of this signal requires that
individuals reason inductively about relationships over and above observed pairwise compari-
sons, an ability known as transitive inference. While transitive inference (i beats j, j beats k,
therefore i beats k) is more sophisticated than recall of pairwise comparisons (i beats j), experi-
mental work has established that a wide range of social species have the ability to infer or learn
indirectly [85]. Evidence for transitive inference has been documented in both non-social [83,
86, 87] and social contexts [88–90]. Meanwhile, observational studies find evidence for the use
of higher-order (i.e., beyond pairwise) strategies where actions of one individual against
another are influenced by third parties, both in individual and group-level decision-making
and perception [48, 49, 91–93]. Reliance on transitive motifs provides a natural source of such
rules: a decision to aggress against a target can be influenced by the aggression that others dis-
play against the target.

Previous work has shown how relatively simple rules can be used to govern dyadic or triadic
interactions at a local scale. Here, we have considered how hierarchies form on larger scales in
more complex social groups. As group size increases, the number of relationships that must be
tracked to determine group-level rankings increases dramatically. Our results here help explain
how this complexity can be managed by use of cognitively-accessible pathways, and how the
use of such pathways may feed back to how individuals choose to aggress.

The question of cognitive complexity is crucial. A human observer equipped with sophisti-
cated computational tools can determine rank order given knowledge of all pairwise aggressive
events. However, it is highly unlikely that the individuals have the cognitive ability needed to
use these methods, and they must rely in part on simpler, “ecological” [94–96] methods such
as the magnitude and motif pathways described above.

The ability to construct a model of the dominance hierarchy, based on a combination of
direct experience and indirect observation of others, could be particularly adaptive in species
where dispersal results in the regular integration of new members into existing groups and in
groups with high fission-fusion dynamics. Reliance on, and consequent amplification of, cogni-
tively-accessible signals means that individuals would not have to directly interact with all pos-
sible combinations of individuals in the group.
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Indirect inference of dominance rank can allow individuals to predict the behavior of others
while conserving energy and reducing the possibility of injury [97]. It can also facilitate integra-
tion of immigrants into existing groups, and allow more rapid formation of dominance hierar-
chies. This may be particularly adaptive in species where dispersal results in the regular
integration of new members into existing groups, and in groups with high fission-fusion
dynamics.

Conclusions
How individuals come to know their social worlds, and how that knowledge feeds back to influ-
ence social properties, is a crucial part of group dynamics. This paper has tracked the emer-
gence of strategically directed aggression, the signals that could enable it, and how these signals
predict decisions to aggress.

Previous work on transitive inference by non-human animals has often focused on experi-
mental manipulation of trained subjects [83, 85]. These experiments are generally removed
from social situations. They can provide critical evidence that individuals have the necessary
cognitive skills, but usually cannot show a direct link between those abilities and an under-
standing of the social landscape of an actual group and its effect in real-world situations. Our
work provides new evidence for the importance of transitive inference in the real-world prob-
lem of directing aggression.

Our findings on the information contained in chains of aggression and the strategic use of
this information allow us to construct a mechanistic account of both what signals of rank in
observed behavior might be available to individuals (the knowledge pathway) and how these
signals influence decision-making (the behavior pathway). It allows us to explain the dynamical
transition as the onset of a complex interaction between knowledge of rank and consequent
behavior. In the closing of this knowledge-behavior feedback loop are the seeds of complex
society.
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