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ABSTRACT

Genome wide association studies provide statis-
tical measures of gene–trait associations that re-
veal how genetic variation influences phenotypes.
This study develops an unsupervised dimensional-
ity reduction method called UnTANGLeD (Unsuper-
vised Trait Analysis of Networks from Gene Level
Data) which organizes 16,849 genes into discrete
gene programs by measuring the statistical asso-
ciation between genetic variants and 1,393 diverse
complex traits. UnTANGLeD reveals 173 gene clus-
ters enriched for protein–protein interactions and
highly distinct biological processes governing devel-
opment, signalling, disease, and homeostasis. We
identify diverse gene networks with robust inter-
actions but not associated with known biological
processes. Analysis of independent disease traits
shows that UnTANGLeD gene clusters are conserved
across all complex traits, providing a simple and
powerful framework to predict novel gene candi-
dates and programs influencing orthogonal disease
phenotypes. Collectively, this study demonstrates
that gene programs co-ordinately orchestrating cell
functions can be identified without reliance on prior
knowledge, providing a method for use in functional
annotation, hypothesis generation, machine learning
and prediction algorithms, and the interpretation of
diverse genomic data.

INTRODUCTION

Generation of consortium-scale data such as ENCODE (1),
the Human Cell Atlas (2) and the UKBiobank (3) coupled
with the development of advanced computational meth-

ods is enabling the creation of transformative models that
harness the natural diversity of biological systems. These
models draw on the relationships and patterns derived from
biological data to establish quantitative frameworks that
can make highly accurate predictions, with implications
for nearly every field of biology. For example, in the field
of structural biology, patterns in the sequences and struc-
tures of proteins’ evolutionary homologs reveal how amino
acids interact, enabling prediction of protein structure with
atomic accuracy (4). Similarly, patterns of repressive his-
tone methylation (H3K27me3) across hundreds of human
cell types enable identification of genes governing cell deci-
sions and functions for any cell type and organism (5).

Genome wide association studies (GWAS) characterize
the genomic variation underlying complex traits and dis-
eases, providing insights into how genes affect biological
processes (6). Despite the wealth of variant-trait association
information, GWAS studies predominantly focus on eluci-
dating the genetic basis of a single trait or a group of highly
related traits (6,7). Here, we utilize patterns of genomic vari-
ation across hundreds of diverse phenotypes as the basis for
an unsupervised method to parse the organization of gene
programs in cells.

We hypothesized that complex traits are underpinned by
conserved gene programs that can be identified by studying
associations between genetic variation and phenotypic vari-
ation. To test this, we developed UnTANGLeD (Unsuper-
vised Trait Analysis of Networks from Gene Level Data),
which identifies patterns of association between genes and
hundreds of diverse phenotypes. UnTANGLeD creates a
phenotypic signature to cluster genes with similar associ-
ations across many traits in an unsupervised manner into
gene programs controlling cell biological processes (Figure
1).

We used a gene–trait association matrix derived from
GWAS data for 1,393 complex traits to infer co-ordinately
acting gene programs that represent both known and novel

*To whom correspondence should be addressed. Tel: +61 4 39 241 069; Email: n.palpant@uq.edu.au
Correspondence may also be addressed to Gabriel Cuellar Partida. Email: g.cuellarpartida@uq.edu.au
Present address: Gabriel Cuellar Partida, 23andMe Inc.

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-4631-5633
http://orcid.org/0000-0002-9334-8107


e87 Nucleic Acids Research, 2022, Vol. 50, No. 15 PAGE 2 OF 12

Figure 1. Schematic of central model design. Complex trait genetic data provide a unique association signature for each gene which can be used to parse
the genome into functionally related gene sets.

biological processes. While the scale of associations avail-
able from public GWAS data is underpowered to saturate
the accuracy of our model, we demonstrate that UnTAN-
GLeD can be applied to any orthogonal GWAS data to pre-
dict the genetic basis of disease including in underpowered
and transethnic GWAS data. UnTANGLeD represents a
powerful analytical framework for studies in population ge-
netics, cell biology, and genomics, that will improve as more
data emerges.

Collectively, this study provides a statistical framework
for defining genes orchestrating biological processes by
evaluating genetic signatures across diverse complex traits.

MATERIALS AND METHODS

Data collection

S-MultiXcan results for 1393 phenotypes with statistically
significant SNP-based heritability (P < 0.05) were down-
loaded from CTG-VL (http://vl.genoma.io). Phenotypes
are listed in Supplementary Table S2. SNP-based heritabil-
ity was estimated using linkage disequilibrium score regres-
sion (LDSR). The significance values reflecting the strength
of the association between each gene and trait across all tis-
sues were compiled into a gene–trait association matrix.

Dimensionality reduction analysis pipeline

All genes with fewer than two significant associations across
all phenotypes (P < 10–4) were removed, leaving 16 849
genes. Following this, all values in the gene–trait association
matrix were chi-squared transformed. Infinite values pro-
duced when transforming very small P-value (<1e–300) due
to floating point precision were replaced with 1415, which
was five greater than the largest non-infinite value. The data
was then normalized by the sum of chi-squared values per

phenotype and scaled by a factor of 10 000. Ten princi-
pal components were retained from the principal compo-
nent analysis (PCA). Clustering of genes was performed us-
ing the native Seurat shared-nearest neighbour algorithm.
Clustering iterations were performed at increasing resolu-
tions from 0.2 to 20 in increments of 0.2. The resolution is
a parameter from Seurat where increased values lead to a
greater number of clusters. Cluster assignments were com-
piled into a consensus distance matrix, where each gene pair
had a value representing how often they were grouped to-
gether out of 100 potential matches. One hundred was then
subtracted from the values and they were made absolute to
transform the matrix into a dissimilarity matrix. Agglomer-
ative clustering using Ward’s minimum variance method, as
implemented in the stats package, was applied to the con-
sensus matrix directly. The average silhouette score (a met-
ric used to calculate how well a data point relates to its clus-
ter) across all genes was calculated using the cluster package
from 2 to 300 clusters. The inflection package was used to
calculate the plateau point, which was determined to be the
optimal number of clusters. Pearson’s correlation was used
to determine the correlation of a gene with the other genes
in the same cluster based on chi-squared association values.

Enrichment analyses

GO, DO, KEGG enrichment, colocalization and tissue
specificity enrichment were performed using ClusterProfiler
(8). An FDR corrected significance value of P < 0.01 was
used. Colocalization was determined using ClusterProfiler
enrichment for the Molecular Signatures Database collec-
tion 3: positional gene sets (9). The largest proportion of
genes within a cluster belonging to a single genomic region
was divided by the total number of genes within the cluster
to identify the maximum degree of colocalization. STRING
enrichment analysis was performed using the STRINGdb

http://vl.genoma.io
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package, with a significance threshold of P < 0.001 and a
confidence threshold of 0.400. STRING enrichment analy-
sis without the text-mining component was performed us-
ing the online STRING interface (https://string-db.org/) for
clusters found to have PPI enrichment in the prior analysis
with a confidence threshold of 0.150 to preserve predicted
interactions reinforced by other components. For the cal-
culation of the correlation between the loss of enrichment
and the degree of colocalization, clusters 111 and 173 were
removed due to having well established biological functions
despite being highly colocalized. Broad enrichment analysis
for more specialized gene sets was performed using EnrichR
(https://maayanlab.cloud/Enrichr/) across all 192 libraries.
Redundant libraries, including GO, KEGG, chromosomal
location and NIH-grant associated libraries were excluded.
The top significant term from each library for each clus-
ter are reported in Supplementary Table S9. A significance
value threshold of 0.01, after correction for multiple testing,
was used. For identification of genes possessing the same
protein domains or belonging to the same family, the En-
richR library ‘Pfam Domains 2019’ was used. A distinct
protein family or domain was defined by collating the fam-
ily or domain terms together that shared genes until there
was no overlap between them. Protein terms did not need
to be significantly enriched, but two or more members of a
protein family had to be present in a single cluster.

Permutations

Five permutations were generated by re-ordering the values
within the gene–trait association matrix. These permuta-
tions were analysed as described above. A one-way ANOVA
with FDR corrected pairwise comparisons was performed
to identify significant differences in the number of enriched
clusters, total enriched GO terms and the most significant
GO enrichment of any cluster.

Phenotype associations

The gene–trait association matrix containing P-values was –
log10 transformed. All infinite values generated due to float-
ing point precision were windsorized with 315, which was 5
greater than the maximum finite value. The phenotypic as-
sociations for the genes within a cluster were extracted, av-
eraged, normalized for their average associations across the
dataset and ranked.

Clustering quality in dimensionality reduction methods

We extracted the UMAP coordinates for all genes as calcu-
lated by Seurat. Following this, we identified the 10 closest
neighbours for each gene and calculated the average cor-
relation of chi-squared association values between the gene
and its neighbours. The UMAP was re-plotted representing
the average correlation with each point colour. We repeated
the process, instead colouring by the number of significant
associations for each gene.

Prediction of novel genes using an underpowered GWAS of
the same trait

Data collection and S-MultiXcan analysis. We selected 13
phenotypes for which GWAS studies had been performed

at differing cohort sizes or ethnicities for the same, or com-
parable traits. The specific studies and their respective de-
tails can be found in Supplementary Table S1. Summary
statistics were downloaded from various sources and har-
monized using MetaXcan’s in-built harmonization (https:
//github.com/hakyimlab/MetaXcan) to be compatible with
the MASHR models. We then performed S-MultiXcan
analysis of each trait using the MASHR models built off the
V8 GTEx release. Associated genes were defined as those
found to have a significance of P < 10–4 by S-MultiXcan.

Global clustering coefficient calculation. The genes iden-
tified for an independent GWAS were projected onto the
173 identified clusters. Following this, we generated an un-
weighted adjacency matrix in which genes in the same clus-
ter were represented by a 1, and genes in different clusters by
a 0. A comparison between the same gene was represented
by 0. Finally, the global clustering coefficient (GCC) for the
genes was calculated. To derive a statistical significance, we
randomly sampled the same number of genes as there were
significant genes for the phenotype and calculated the GCC
one-hundred times. A Z score was calculated from the curve
generated by the sampled values.

Gene prediction. We took a simple approach of predicting
which clusters were associated with the trait using the S-
MultiXcan associations from the smaller GWAS and then
checking whether novel gene associations identified by the
larger GWAS were in those clusters. A chi-squared enrich-
ment test was used where the minimum expected frequency
was >5, and a Fisher’s test if not. Several approaches to pre-
dict clusters associated with the trait were trialled. The first
was to identify any of the 173 clusters with a significant gene
in it. The second was to integrate the additional phenotype
into the trait-gene association matrix. Next, clusters were
identified which had an overall significance signature >1.5
times the average or were significantly (P < 0.05) higher
than the average signature. Different values were tested for
these thresholds, with these providing the best performance.
The third approach was to predict associated clusters from
the previously established 173 clusters using the thresh-
olds taken in approach two. A one-way ANOVA was per-
formed with pairwise comparisons to determine the best
approach. Approach three was the most effective, albeit not
significantly, while maintaining a low computational bur-
den. In instances where transethnic GWAS were compared,
the East-Asian GWAS was used to predict the trait relevant
clusters, and the European GWAS was used as the test set.

Gene prioritization analysis

The GWAS with the largest sample size for each of the
13 traits listed in Supplementary Table S1 was used to de-
termine the potential of our pipeline for prioritizing genes
within a locus. Clumping was performed on each sum-
mary statistic using PLINK (https://www.cog-genomics.
org/plink/) and 1000 genomes phase 1 genotype data with
an LD threshold of 0.5. This was followed by clumping for
long distance LD, at the same threshold. Next, we identi-
fied individual 500 kb regions around the lead SNPs and
the genes within that region.

https://string-db.org/
https://maayanlab.cloud/Enrichr/
https://github.com/hakyimlab/MetaXcan
https://www.cog-genomics.org/plink/
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We took a leave one chromosome out (LOCO) approach,
where we removed all potential genes on one chromosome.
With the remaining genes, we identified which clusters were
enriched for genes associated with the trait. To calculate en-
richment, we treated all genes associated with one locus as
one positive, so that enrichment was for different loci and
not genes at the same locus. A Fisher’s enrichment test was
used to determine significance. Finally, we assessed at what
proportion of loci the UnTANGLeD clusters identified a
gene when that chromosome was left out of the analysis.

Normalization

We trialled relative count, centralized-log ratio and loga-
rithmic normalization on the chi-squared transformed val-
ues of the gene–trait matrix across phenotypes. We evalu-
ated their effects on the following metrics: correlation score,
silhouette score, GO and STRING enrichment, global clus-
tering coefficient, prediction of GWAS. A Kruskal Wallis
one-way analysis of variance was used to evaluate differ-
ences. Relative count was used for the final pipeline.

Phenotype filtering based on euclidean distance

A distance matrix between phenotypes using chi-squared
transformed, RC-normalized data was generated using the
Euclidean distance formula from the package wordspace.
Phenotypes with a Euclidean distance below a set thresh-
old, which indicated a high degree of relatedness, were re-
moved from the data, leaving the phenotype with the high-
est number of significant associations. This was performed
for thresholds 0 to 62, at which too few phenotypes re-
mained to cluster the genes using the dimensionality reduc-
tion methods. GO enrichment was used to evaluate the clus-
tering efficacy at each threshold.

Phenotype subsampling and sensitivity analyses

Phenotype subsampling was performed on two datasets;
MultiXcan results for 1393 phenotypes across 16 849 genes
generated in this paper, and another dataset containing
MultiXcan results for 4091 phenotypes across 15 734 genes
(phenomexcan.org). For the data containing 1393 pheno-
types, subsampling was performed randomly without re-
placement from 50 to 1393 phenotypes in 20 equal incre-
ments across five replicates for each number of traits. The
full UnTANGLeD clustering pipeline was applied to each
subsampled matrix. Adjusted rand index (ARI) was calcu-
lated for each of the subsampled clustering configurations
compared to the full dataset. This analysis was repeated
for the data containing 4091 phenotypes; however, subsam-
pling was performed from 50 phenotypes to 4091 pheno-
types in 50 equal increments.

Cluster conservation

To explore the cause for the marked increase in ARI be-
tween 1322 phenotypes and 1393 phenotypes, cluster con-
servation was calculated between them. For each cluster
from 1393 phenotypes, the proportion of genes that re-
mained grouped together in each of the clusters from 1322

phenotypes was calculated. That proportion was used to as-
sign a conservation score to each gene, depending on how
large the proportion of cluster the specific gene remained
with was. The same approach was applied between 4091
phenotypes and 4009 phenotypes.

RESULTS

Unsupervised identification of gene groups with shared com-
plex trait associations

We used MultiXcan results from CTG-VL (10) derived from
publicly available GWAS (primarily from UK Biobank, on
∼400,000 individuals) to create a gene–trait association ma-
trix for 16,849 genes and 1,393 traits (Figure 1, Supple-
mentary Figure S1, Table S2). For each gene trait pair,
MultiXcan predicts whether trait-associated variants alter
the gene’s expression. The chi-squared transformed signifi-
cance value for each gene–trait association pair was com-
piled into the gene–trait association matrix (Figure 2A).
These values were normalized using relative count normal-
ization to account for the difference in power between phe-
notypes. Performance was not significantly different using
other normalization methods including centralized log ra-
tio or log normalized data (Supplementary Figure S2). The
data was then clustered using Seurat, a dimensionality re-
duction method commonly used to analyse single cell RNA
sequencing data to cluster cells into related groups (11).
Here, we use Seurat to test whether the calculated gene–trait
associations could be simplified into biologically enriched
gene clusters. Clustering was performed across 100 step-
wise increases in resolution, a parameter which increases
the number of gene clusters. Repeat iterations provided an
opportunity to survey both the broad scope of biological
processes that could be identified, as well as the specificity
that could be achieved with each biological process (Figure
2B).

To test the biological validity of the derived clusters,
we used positive gene sets as defined by gene ontology
(GO) (12) and STRING (13) to show that gene clusters
have significant enrichment for GO biological processes
and STRING protein–protein interactions (Figure 2C and
D). To demonstrate that the observed enrichment is driven
by distinct gene–trait association signatures rather than
chance, we performed permutation analyses in which the
values in the data matrix were randomly re-ordered. Permu-
tations had significantly fewer enriched clusters, GO terms
and a lower strongest significance compared to the real data
(P < 4 × 10–27) (Figure 2C, Supplementary Figure S3A, B).
Furthermore, we validated that GO enriched clusters were
more likely to also have enrichment for protein–protein in-
teractions, suggesting the enrichment is robust (Figure 2D).
This analysis revealed that genes possessing similar asso-
ciations to complex trait phenotypes cluster meaningfully
into biologically enriched groups and the enrichment is not
stochastic.

We next developed an ensemble learning method we call
‘consensus clustering’ that incorporates a measure of clus-
tering robustness and quality. Across each of 100 stepwise
increases in clustering resolution we evaluated the robust-
ness of clustering by assessing how often every possible gene
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Figure 2. Consensus clustering method identifies biologically enriched gene clusters. (A) MultiXcan analysis links genetic variants to genes by predicting
changes in gene expression using eQTLs. The chi-squared values of the associations between each of 1393 traits and 25851 genes were compiled into a
gene–trait matrix. (B) Dimensionality reduction clustering of genes based on their phenotypic associations was performed using Seurat across resolutions
0.2 to 20 in 0.2 increments. (C) Five permutations of the dataset were compared to the real data by the number of enriched gene ontology terms per
resolution. Enrichment was performed using ClusterProfiler, FDR corrected P-value <0.01. Pairwise comparisons between permutations were performed
with Wilcoxon signed rank test. (D) Validation of gene ontology enriched clusters with STRING protein-protein interaction enrichment. Wilcoxon signed
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from 12 random clusters.



e87 Nucleic Acids Research, 2022, Vol. 50, No. 15 PAGE 6 OF 12

combination was clustered together ranging from 100 (al-
ways) to 0 (never) and compiled these values into a consen-
sus matrix (Figure 2E). Following this, we performed ag-
glomerative hierarchical clustering, evaluating the average
silhouette score at each possible number of clusters. The
silhouette score quantifies how consistently genes cluster
across Seurat resolutions. To derive the optimal number of
gene clusters, we calculated the plateau point of the aver-
age silhouette score, which informs the number of clusters at
which point further splitting no longer improves the stabil-
ity of clustering assignments (Supplementary Figure S3C).
Applying this methodology to gene–trait associations for
16,849 genes, we identified 173 clusters with an average of
97 genes (Figure 2F, G). Across each cluster, we measured
the silhouette score, a metric of cluster robustness and the
correlation score, a metric of relation across phenotypes,
thereby providing two metrics to quantify the quality of
clustering (Figure 2H). Collectively, we call this approach
UnTANGLeD: Unsupervised Trait Analysis of Networks
from Gene Level Data.

Consensus clustering identifies robust gene groups enriched
for known gene sets

We analysed each cluster by reference to curated annota-
tions of gene programs (GO, disease ontology (14)), sig-
nalling pathways (KEGG (15)), protein-protein interac-
tions (STRING), and tissue specificity (16) to evaluate the
ability of UnTANGLeD to identify distinct, biologically es-
tablished gene programs in an unsupervised manner (Fig-
ure 3A, Supplementary Figure S3D, Supplementary Ta-
bles S3–S8). This analysis revealed significant enrichment
of cell biological pathways and networks across gene clus-
ters, with stronger enrichment among clusters with higher
silhouette and correlation scores (Figure 3A). We further
performed enrichment analysis of the UnTANGLeD clus-
ters using the EnrichR database (17) (Supplementary Fig-
ure S4A–C, Table S9), finding considerable enrichment for
disease-associated genes, gene-expression perturbations as-
sociated with disease states or drugs and protein domains
and families. We note that although many clusters contain
multiple members of a protein family (18) the proportion of
any one protein family in a cluster is minor (Supplementary
Figure S4D, Table S10).

We next investigated the relationship between individual
gene clusters and the traits most strongly influencing the
genes within the clusters, using enriched GO processes as
a proxy for the functional profile of a cluster (Figure 3B).
Each cluster is defined by a distinct gene–trait association
‘signature’ indicated by the variation and strength of associ-
ation across 1,393 diverse complex traits. In some instances,
the enriched biological processes for certain gene clusters
are clearly related to the cluster’s most significantly asso-
ciated complex trait phenotypes (e.g. cluster 119: GO en-
richment: cholesterol homeostasis; dominant complex trait
phenotypes: low-density lipoprotein, alipoprotein B quan-
tile).

Since UnTANGLeD draws on associations across di-
verse phenotypes to inform gene-gene relationships, the
method can identify gene groups with enriched functions
that are apparently biologically independent of the pheno-

types most significantly associated with the genes in the
cluster. For example, cluster 80, enriched for embryonic
morphogenesis (GO:004859), is most significantly associ-
ated to the phenotype Bone Mineral Density and cluster
111, enriched for nucleosome organization (GO:0034728),
is most significantly associated to the phenotype Mean Cor-
puscular Haemoglobin. These results support the central
hypothesis that genes with shared effects across diverse
phenotypes can be clustered into gene groups controlling
shared biological functions and processes in an unsuper-
vised manner (Figure 3B).

Importantly, we show that the GO enriched gene clus-
ters show no overlap in their strongest enriched biological
functions, and almost no overlap in their top 5 enriched
terms, demonstrating the use of gene–trait association data
to parse novel biological gene programs encoded within the
genome (Figure 3C).

Stratifying clusters by their silhouette and correlation
scores reveals a higher level of GO, STRING, KEGG,
DO and tissue specificity enrichment with higher cluster-
ing quality, indicating that the metrics provide an accurate
representation of cluster quality (Figure 3A, D). Further-
more, both the robustness of clustering and the presence
and strength of GO and STRING enrichment are corre-
lated with the number of significant associations to pheno-
types per gene (Pearson’s correlation, r > 0.65), as well as
the stability of clustering (Pearson’s correlation, r > 0.69)
(Figure 3E–G, Supplementary Figure S5A–F).

Lastly, we note that there is considerable colocalization of
genes within clusters, with a stronger relationship between
the correlation score and the degree of colocalization for the
genes in a cluster (Pearson’s correlation, r = 0.77), than the
cluster robustness (Pearson’s correlation, r = 0.34) (Figure
3H, Supplementary Table S11). STRING enrichment may
also be inflated due to the text-mining component, as find-
ings from GWAS may be incorporated into the database,
with genes in proximity often being reported together. In-
deed, we find that the loss of enrichment due to removal of
the text-mining component is correlated with the colocal-
ization of the cluster (r = 0.60) (Supplementary Figure S6A,
B). However, clusters with a high degree of colocalization
are not necessarily artefacts of false-positive associations
identified by MultiXcan. For example, clusters 173 and 111
are strongly enriched for immune processes and chromatin
organization respectively, despite being highly colocalized
(Supplementary Figure S6C, D).

Subsampling reveals need for more data to improve accuracy
of UnTANGLeD

We next sought to determine how the number and diver-
sity of phenotypes influences the accuracy and utility of
UnTANGLeD clusters. We show that the number of GO
enriched clusters is highly correlated with the number of
phenotypes utilized in the analysis (Pearson’s correlation,
r = 0.85), even when phenotypic diversity is preserved (Sup-
plementary Figure S7A). To further test this, we performed
phenotype subsampling and evaluated clustering accuracy
using an adjusted rand index (ARI) analysis. We found
that clustering accuracy compared to the full data improved
with the addition of more phenotypes, however a marked
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increase in ARI between 1,322 and the full data set sug-
gests that inaccuracy in clustering that is not determined
by phenotypic diversity can be attributed to genes which
have weak signatures and few significant associations (Sup-
plementary Figure S7B). We repeated subsampling in a
larger dataset containing MultiXcan analysis of 4,091 phe-
notypes retrieved from Pividori et al. (2020) which resulted
in the same outcome (Supplementary Figure S7C). Com-
parison of the two data sets revealed that genes already hav-
ing many significant associations simply had more associa-
tions in the larger dataset with both datasets possessing an
equal proportion of genes with few to no significant asso-
ciations (Supplementary Figure S7D). Further, that genes
with higher numbers of significant associations have higher
degrees of conservation (Supplementary Figure S7E, F). It’s
likely that the effective number of traits is similar between
the two datasets, as both mostly draw on the UK Biobank
and have many highly correlated phenotypes. Further, genes
with higher numbers of significant associations have higher
degrees of conservation (Supplementary Figure S7E, F).

Cumulatively, these findings indicate that the quality of
gene clustering is dependent on the scale and quality of
data needed to derive high silhouette and correlation scores
as a basis for efficient enrichment of functional gene clus-
ters. Accordingly, as more data becomes available, the qual-
ity and accuracy of UnTANGLeD will improve. However,
simply increasing the number of phenotypes leads to an in-
crease in redundant associations, and therefore strategies to
increase the number of significant gene–trait associations
across the genome should be employed, such as diversify-
ing phenotypes and increasing cohort size.

UnTANGLeD clusters are conserved across traits and can
predict novel trait associated genes

GWAS require collections of large cohorts comprising
thousands of individual-level genotype data to characterize
the genetic architecture of a trait. Furthermore, collecting
enough samples can prove challenging for many diseases,
and as such they are often underrepresented in biobanks.

We hypothesized that UnTANGLeD gene clusters would
be conserved across complex traits. To test this, we investi-
gated an independent GWAS of ulcerative colitis (UC) (19)
(Figure 4A). We show that the 278 genes associated with
UC (P < 10–4) (Figure 4B) were significantly more clus-
tered within the UnTANGLeD clusters than expected by
chance (P = 2 × 10–9) (Figure 4C). The result shows that
despite not being used to construct the clusters, UC asso-
ciated genes nevertheless group within the UnTANGLeD
clusters, demonstrating that the defined gene programs are
conserved. We replicate our findings in six additional inde-
pendent GWAS phenotypes, highlighting that the UnTAN-
GLeD clusters are conserved across a broad phenotypic
space (3,20–28) (Figure 4G).

We next tested whether the gene clusters can be used to
predict novel genes and cellular processes underpinning in-
dependent complex trait data. To test this hypothesis, we
examined two GWAS for UC. The first was performed in
2013 with 6,687 cases and 19,718 controls (29), and the
latter in 2017 with 12,366 cases and 33,609 controls (19)
(Figure 4A). MultiXcan analysis of the summary statistics

identified 153 and 278 genes respectively, with an overlap
of 53 genes (Figure 4B). We projected the MultiXcan as-
sociations for the 2013 GWAS onto the 173 clusters, iden-
tifying clusters were statistically associated with UC (Sup-
plementary Figure S8). Finally, we tested whether the clus-
ters predicted from the 2013 GWAS contained novel genes
identified by the 2017 GWAS. Of the 225 novel genes iden-
tified by the 2017 GWAS, our approach was able to use the
2013 GWAS to predict 120 with a significant enrichment
for predicting UC associated genes compared to other genes
(P < 3 × 10–121, chi-squared test) (Figure 4D).

GWAS of the same complex trait conducted in popula-
tions of differing ancestries may implicate both shared and
distinct loci. We tested whether UnTANGLeD clusters are
conserved for genes specific to non-European ancestries,
given that the UnTANGLeD gene clusters are built from
a European cohort. To test this, we examined a GWAS for
triglyceride levels in an East Asian population, which iden-
tified 34 genes (30) (Supplementary Figure S9A-B). Mirror-
ing our findings in a GWAS conducted on a European pop-
ulation, we found that the genes associated with triglyceride
levels in an East Asian population are significantly more
clustered than expected (P = 1 × 10–9) and replicate this
finding in 4 other GWAS conducted in populations of non-
European ancestry (30–32). We further tested whether the
GWAS conducted in the East Asian cohort could be used
to predict novel genes identified in a European cohort. We
found that clusters implicated in triglyceride levels using the
East Asian GWAS were highly enriched for genes identified
by the European GWAS (P = 6 × 10–109) (Figure 4F).

All together, we show significant enrichment for predic-
tion of novel genes across GWAS performed for 7 traits in
differing cohort sizes in a European population, and 4 traits
for which GWAS were performed in different ancestries
(3,20–28,30–33) (Figure 4G, Supplementary Figure S9C).

We further tested whether the UnTANGLeD clusters
could be used to prioritize causal genes at any given lo-
cus. It is difficult to accurately identify the causal genes
from GWAS identified variants due to linkage disequilib-
rium and complex regulatory effects of intergenic variants.
For each independent trait, we identified potential gene can-
didates within 500kb of each independent significant SNP
then took a leave one chromosome out approach (LOCO)
to investigate whether genes on the removed chromosome
would be implicated in the clusters associated with the re-
maining genes. (Figure 4H). We are able to identify a major
proportion of loci independently across all traits and reduce
the potential candidates at each locus considerably, further
highlighting the utility of UnTANGLeD (Figure 4I).

DISCUSSION

This study demonstrates that gene programs governing bio-
logical processes can be identified without reliance on prior
knowledge, by analysing the association between genetic
variation and a large range of diverse complex traits. Several
prior studies have constructed small gene networks using a
limited number of disease phenotypes and their associated
genes from curated GWAS databases and restricted sources
of rare genetic variants. Other studies, like PheWAS (34,35)
and PhenomeXcan (36) have collated genomic associations
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across numerous phenotypes to create resources of variant-
trait and gene–trait associations.

Here, we construct a gene–trait association matrix for
16,849 genes across 1,393 complex traits similarly to Phe-
nomeXcan, and further the concept by using UnTAN-
GLeD to identify gene programs. We apply dimensional-
ity reduction methods, which can harness the high dimen-
sional, complex gene–trait association data, allowing us to
greatly expand on the scale of studies previously attempt-
ing to build gene networks. By increasing the scale of data,
we not only identify gene programs enriched for biological
processes specific to associated phenotypes but also reveal
gene programs enriched for central processes governing di-
verse mechanisms of cellular development and homeostasis.

The UnTANGLeD framework is a powerful approach
to identify gene programs orchestrating key biological pro-
cesses. We implicate novel genes in clusters enriched for
known processes and identify numerous novel gene pro-
grams with enrichment for protein-protein interactions and
no known function. We further highlight the utility of Un-
TANGLeD for hypothesis generation and functional anno-
tation of genes, which may be particularly valuable for non-
coding genes, as they are notoriously difficult to annotate
in silico (37). Finally, the UnTANGLeD framework reveals
relationships between complex traits, linking phenotypes by
the gene programs that underpin them.

We demonstrate the utility of UnTANGLeD for predict-
ing genes associated with complex traits and diseases using
a low-powered GWAS of the same trait. Currently, standard
methods use gene-set analysis to improve power to iden-
tify genes and pathways involved in a phenotype, such as
MAGMA or GIGSEA (38–41). Our method eliminates the
need to define gene-sets and instead uses gene–trait associ-
ation data to learn gene sets governing complex traits (39),
enabling us to implicate novel trait associated genes and loci
from a much smaller cohort size.

We further highlight the use of the UnTANGLeD clus-
ters for gene prioritization, showing that they effectively se-
lect gene candidates at different loci related to the same
phenotype. Current gene prioritization approaches use ei-
ther distance-based metrics or mapping to eQTLs to pre-
dict changes in gene expression (42). However, these also
suffer from a considerable false positive rate and may not al-
ways distinguish between two genes in proximity, as noted in
our data (42). Some recent methods have integrated biolog-
ical data, such as gene sets, RNA sequencing and protein-
protein interaction databases to further prioritize genes at
a locus (43). Our framework can be used independently or
integrated with any of these approaches to advance under-
standing of complex trait biology.

Outside of its utility in GWAS analyses, UnTANGLeD
may provide key mechanisms for data analysis in medical
and industry pipelines including genetic testing and drug
discovery. For example, polygenic risk scores (PRS) are an
emerging method that evaluate an individual’s disease risk
from genetic variants (44). Methods such as UnTANGLeD
may help reveal genes and hence genetic variants govern-
ing cell programs underlying disease risk and hence improve
prediction accuracy. In the context of pharmacogenomics,
studies have shown that drug targets with genetic support
from either rare or common diseases are more than twice as

likely to pass through clinical trials (45,46). Since UnTAN-
GLeD captures gene programs associated with all complex
traits and diseases, its predictive power may help de-risk
candidates and thereby decrease cost associated with the
drug discovery pipeline. Overall, UnTANGLeD represents
a powerful and versatile framework for studying cellular
gene programs to interpret diverse sources of orthogonal
genetic data.

We note several limitations in our method. Primarily, that
the current GWAS data does not represent the whole phe-
nome. Furthermore, many traits are highly correlated, and
disease traits are underrepresented in the UK Biobank, the
main source of data in this study. Secondly, UnTANGLeD
relies on S-MultiXcan to construct the gene–trait associa-
tion matrix. While S-MultiXcan is powered to detect asso-
ciations across all tissues, it suffers from a high false discov-
ery rate and may perform poorly in tissues with small sam-
ple sizes. Moreover, S-MultiXcan can identify genes colo-
calized with a causal gene as significant, which can ob-
scure biological signatures. Other approaches such as SMR
MR-JTI may remedy this issue (47). Additionally, UnTAN-
GLeD does not account for the predicted directionality of
effect or tissue-specific effects, which may help to further in-
crease the quality and biological specificity of the clusters.
Biological validation of the method using established gene
sets may be inflated due to GWAS data being included in
the definition of the gene sets. Finally, we note that although
UnTANGLeD is a powerful tool for identifying clusters in
an unsupervised manner, the overall function of the cluster
may be difficult to determine. The development of improved
gene-based tests and emergence of larger GWAS data span-
ning the whole phenome will improve the accuracy and util-
ity of UnTANGLeD.

This study provides a powerful framework for the iden-
tification of gene programs governing biological processes
conserved across all complex traits and diseases, with im-
portant applications for functional annotation, hypothe-
sis generation, machine learning and prediction algorithms
and interpretation of GWAS and diverse other genomic
data types. Our approach can be applied to any collection of
gene–trait information, harnessing the power of biological
patterns in a diverse landscape of phenotypic variation.
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