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Abstract
Despite the emerging evidence in recent years, successful implementation of clinical genomic sequencing (CGS) remains limited and is 
challenged by a range of barriers. These include a lack of standardized practices, limited economic assessments for specific indications, 
limited meaningful patient engagement in health policy decision-making, and the associated costs and resource demand for implementation. 
Although CGS is gradually becoming more available and accessible worldwide, large variations and disparities remain, and reflections on the 
lessons learned for successful implementation are sparse. In this commentary, members of the Global Economics and Evaluation of Clinical 
Genomics Sequencing Working Group (GEECS) describe the global landscape of CGS in the context of health economics and policy and 
propose evidence-based solutions to address existing and future barriers to CGS implementation. The topics discussed are reflected as two 
overarching themes: (1) system readiness for CGS and (2) evidence, assessments, and approval processes. These themes highlight the need 
for health economics, public health, and infrastructure and operational considerations; a robust patient- and family-centered evidence base on 
CGS outcomes; and a comprehensive, collaborative, interdisciplinary approach.
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Background
Clinical genomic sequencing (CGS) has significantly changed 
genomic medicine and garnered global interest, owing to its 

ability to process large amounts of genomic data rapidly and 
simultaneously.1,2 As a diagnostic tool in oncology, immun-
ology, and rare diseases, CGS could enhance clinical care by 
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offering earlier detection and reduced diagnostic odysseys, 
tailored treatment options, and definitive and accurate genom-
ic etiologies and prognoses.3-8 However, efforts to evaluate 
and improve implementation and access to CGS are compli-
cated by the variability in health systems and funding capaci-
ties across countries.9,10

This commentary is an international, collaborative contri-
bution to illustrate the global landscape of CGS in clinical ap-
plications and to propose economic- and policy-focused 
solutions where appropriate. The authors are members of 
the Global Economics and Evaluation of Clinical Genomics 
Sequencing Working Group (GEECS), which aims to improve 
methodologies in assessing the value of CGS to facilitate its 
cost-effective and equitable implementation.11 The topics cov-
ered in this commentary reflect two themes: (1) system readi-
ness for CGS and (2) evidence, assessments, and approval 
processes. We discuss several key challenges and potential sol-
utions for addressing the slow and limited uptake of CGS glo-
bally that reflect these two themes. These challenges and 
solutions include the lack of harmonization and standardiza-
tion around genomic data and evidentiary uncertainty about 
CGS, which requires centralized practices and policies with 
collaboration among government bodies, laboratories, health 
and academic institutions, and patients to create robust evi-
dence bases and to increase patient engagement. We also con-
sider equity and both financial constraints and incentives to 
support implementation of CGS and ongoing sustainability. 
Although some of these topics are applicable to certain coun-
tries and types of health systems, particularly in the context of 
economic evaluation, the general considerations regarding 
challenges and solutions for implementing CGS are relevant 
in the broad context of health policy.

System readiness for CGS
Increasing trust in CGS through review, 
standardization, and transparency
It is a challenge for health systems to ensure that novel medical 
technologies, including CGS, are safe, effective, economically vi-
able, and trusted by patients. In the United States, concerns have 
emerged due to conflicting information about the limitations of 
genomic tests in screening for rare diseases, such as a New York 
Times report on the frequency and consequences of false- 
positive findings from noninvasive prenatal genetic tests.12

These reports contributed to calls for greater review, standard-
ization, and transparency of genomic testing through regulation.

Transparency of CGS could be furthered through publicly ac-
cessible genetic and laboratory test registries and regulatory and 
delivery system infrastructures.13,14 For example, the National 
Institutes of Health Genetic Testing Registry (GTR) was devel-
oped to document and standardize data on registered laborator-
ies and genetic tests.14 Although regulatory oversight of tests 
and laboratories typically falls under the jurisdiction of govern-
ment agencies and professional bodies, registries such as the 
GTR could reveal gaps and issues in the registered tests that 
may prompt further inquiry and action.

However, increasing review and standardization of CGS 
can be complicated. Although the US Food and Drug 
Administration (FDA) regulates clinical tests, most genomic 
tests are laboratory-developed tests (LDTs) that often enter 
the market without regulatory review.15 On September 29, 
2023, the FDA announced its intent to provide greater over-
sight of LDTs through the rule-making process, with an 

expected final issuance in 2024.15 Their rationale specifically 
notes that greater oversight is needed because of patient and 
provider mistrust about test safety and effectiveness.

The implications of the FDA proposal are complex and 
spark debate on balancing innovation and accessibility with 
trust in tests’ safety and efficacy. Numerous responses to the 
proposed rules have emerged, with proponents and opponents 
arguing their perspectives.16 These debates—and the implica-
tions if the rule is approved—are particularly relevant to CGS 
tests that are classified as LDTs. Regardless of the mechanisms 
used and actions taken, acceptance and trust by patients are 
critical aspects of CGS adoption.

Considerations of equity in CGS access and 
outcomes
Health inequity is embedded in genomic medicine. The exclu-
sion of minoritized populations from genomics research has 
resulted in disparities in genomic data across ancestral groups 
and subsequent repercussions in clinical care, such as higher 
rates of inconclusive genetic results in patients from ancestral 
groups outside of Europe.17,18 Compounding data disparities, 
individuals belonging to underserved populations, including 
racial and ethnic minority groups, socioeconomically vulner-
able groups, and rural populations, face limited access to 
CGS.19-22 When patients in underserved population groups 
do receive testing, disparities in outcome-based diagnostic val-
ue and accessibility to follow-up care further perpetuate cycles 
of health inequity.21 If not addressed, these challenges and the 
greater medical distrust in these populations23,24 could im-
pede the successful implementation of CGS.

Policymakers and other relevant parties must consider the 
impact on health equity when developing policies to implement 
and support CGS. Health economists can advance understand-
ing of empirical impacts on equity by using equity-informative 
approaches to economic evaluation of CGS interventions. One 
type of equity-informative analysis is the distributional cost- 
effectiveness analysis (DCEA). DCEA models the distribution 
of health benefits and opportunity costs across population sub-
groups and thus allows formal assessment of tradeoffs between 
efficiency and equity.25,26 DCEA can inform health policy and 
implementation decisions, and by projecting the expected im-
pact of CGS on total health and health equity, it can be used 
to monitor these outcomes as genomics research progresses. 
Future research is warranted to address the data and methodo-
logical challenges of using DCEA to evaluate CGS, and the ac-
ceptability and usefulness of DCEA output to policymakers. 
Results of DCEA should be considered alongside other social 
science research on attitudes and preferences for CGS among 
diverse and representative populations.

Centralized, regional sequencing and 
institutional-level informatics and results disclosure
Creating a diagnostic sequencing service requires significant in-
vestment in equipment and supplies, retooling of laboratories, 
staff training, and maintaining updated bioinformatics pipe-
lines. Variations in services across institutions and laboratory 
partners, based on the patient’s region of residence and insur-
ance coverage, contribute to inconsistency and inefficiency.

Establishing a single, high-volume sequencing laboratory 
within a region or payer jurisdiction with cloud-based data 
storage can reduce procurement, supply, and contract costs, 
and enhance standardized procedures for staff training and 
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pipeline maintenance and updating.27-29 An online regional 
accessioning system can be created where physicians can re-
quest sequencing for their eligible patients, allowing them to 
have blood drawn and shipped locally.30 Raw results can be 
returned to bioinformaticians working locally with a request-
ing medical geneticist or specialist for clinical interpretation 
and reporting.31 Alternatively, interpretation and reporting 
may be performed at a few academic health centers, and re-
sults returned to the ordering physician. Local solutions may 
be limited in terms of yielding economies of scale (eg, smaller 
sample throughput) and may potentially be more expensive 
compared with a centralized system. Decisions in managing 
sequencing informatics would need to be considered in the 
context of the specific health system.

Understanding features for system implementation 
and financial incentives to drive uptake in practice
System readiness for CGS in practice requires an understand-
ing of operational and logistical considerations, including the 
technical platform, sample collection and preparation, and 
the testing site and methodologies. The future use of CGS 
in health systems requires the following: (1) infrastructure 
for a community of practice involving health professionals 
in various specialties; (2) operational resources for innov-
ation, coordination, and evaluation of testing and reporting 
services; and (3) a health care environment integrating innov-
ation and health care delivery with educational and training 
support.32-36 The implications of these health system factors 
for CGS extend beyond individuals to collective societal val-
ues and needs.35,37 Evidence of differential use of genetic 
tests among primary care physicians reveals lower rates of re-
ferral and testing for specific patient populations in the 
United States.35 These findings reflect the potential for in-
equitable access and uptake of CGS among different popula-
tions and care systems that result in differential utilization of 
CGS. Consequently, inadequate consideration of the impacts 
of health system factors could affect the accessibility of CGS 
for specific population groups differentially. Engaging public 
health experts and health economists can support health care 
decision-making and develop systems for innovation and 
broader, more equitable use of CGS in care and preventive 
applications.32

Recognizing the financial structures of health systems and 
coverage policies is also necessary, as they incentivize hospital 
institutions to consider and negotiate price-volume arrange-
ments to maintain revenues. The Medicare Benefits Schedule 
in Australia dictates a 75% rebate for fluorescence in situ hy-
bridization testing for patients with epidermal growth factor re-
ceptor (EGFR)–negative, non–small cell lung cancer.38 This test 
can be performed and claimed multiple times, which might en-
courage higher claims than actual testing costs. This fee struc-
ture, therefore, does not optimize clinical practice and 
necessitates routine review and adjustments. Conversely, the 
Netherlands introduced a payment bundle that covers genomic 
tests with a fixed rebate, encouraging health institutions to con-
sider clinical utility–driven testing strategies in balancing off 
CGS tests against inexpensive alternatives.39 As current health 
technology assessment (HTA) practices can overlook how 
health system incentives are associated with utilization and up-
take, simulation models, particularly systems dynamics, can fill 
this gap by analyzing time-to-treatment and total cost of care 
episodes under varying conditions in clinical services.40-44

Evidence, assessments, and approval 
processes
Recommendations for CGS implementation  
need to be evaluated for impact
Professional societies and expert consortia have issued recom-
mendations to guide CGS implementation, addressing proc-
esses such as test requisition, data management, and clinical 
follow-up.45-49 However, evaluations of these recommenda-
tions are lacking due to implementation barriers, including a 
lack of confidence and knowledge among health care pro-
viders, concerns about infrastructure costs within health sys-
tems, and reluctance of payers to cover and reimburse 
services.22,50-53 The lack of robust evaluations from multiple 
stakeholder perspectives can result in conflicting implementa-
tion approaches that increase risks of unintentional harm and 
reduce clinical utility while increasing costs to health sys-
tems.54-56 For example, the American College of Medical 
Genetics and Genomics recommends opportunistic screening 
of existing genomic information for additional actionable in-
formation in a “minimum gene list” whenever whole-exome 
or genome sequencing is conducted.57 In contrast, the 
European Society of Human Genetics discourages opportun-
ity screening, except for the purposes of evidence generation 
to inform future policymaking.58 Rigorous studies of CGS 
are needed to better ensure that implementation recommenda-
tions optimize benefits and minimize risks.

Demonstrating the value of CGS from multiple perspectives 
through a combination of economic modeling, prospective tri-
als, and real-world data analyses may be particularly important 
to help different stakeholders prioritize needed infrastructure. 
Until then, health systems would likely be wary about adopting 
emerging applications, payers would be reserved about cover-
ing these services,50,59-61 and regulators would be cautious 
about approving their use.61-63

Addressing uncertainty in decision-making 
—“daring to change” in systems and laboratories
Insurers and payers seek answers on the added value and cost- 
effectiveness of CGS, but estimating monetary and patient 
outcomes is challenging and relies on model-based economic 
evaluations.64,65 Given the complexity and scope of imple-
mentation, fully and consistently capturing the added value 
is not always feasible, which may lead to uncertainty in 
decision-making for payers, hospitals, and laboratories. This 
uncertainty relates to the fact that choices need to be made 
without having complete insight into all added values com-
pared with current technologies. A decision is needed, fol-
lowed by more improvements and valuation of CGS in the 
patient journey with the data available.

Apart from impacts on costs and effects for society, the edu-
cational, technical, and material requirements to support CGS 
implementation are also substantial, and institutions may lack 
confidence in their financial and human resources to adopt and 
sustain recommendations provided by decision-makers 
fully.66-68 To prevent further delays in patients’ access to in-
novative technologies, discussions with payers and other rele-
vant parties are therefore needed to transition towards more 
suitable assessment and adoption strategies in the face of 
this decision uncertainty.

Implementation and usage of CGS also require laboratories 
to transform their workforce and design. These changes can 
alleviate the financial burden to meet demand, enhance testing 
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scope and capacity, and support ordering institutions as a 
valuable resource. Laboratories should consult with other 
stakeholders to explore solutions to address the complexities 
of these adjustments. Implementing CGS depends on macrole-
vel (eg, design, equipment) and microlevel (eg, workforce, 
tasks) changes in the laboratory space, and the hope that these 
modifications can bring changes that cannot be empirically 
measured but can, nonetheless, offer significant value.

A unified HTA pathway and the need for life-cycle 
evidence
Traditional HTA processes, designed for “on/off” health sys-
tem decisions and often for drug assessments, and the siloed na-
ture of resource allocation decisions across and within systems 
may limit the optimization of CGS-related health and economic 
outcomes.69,70 A unified HTA pathway with model- and data- 
sharing is crucial to avoid opportunity costs from uncoordin-
ated, unstandardized, and delayed prioritization of HTA assess-
ments. Neglecting these issues may result in structural 
inefficiencies, with a lack of consideration for technological 
changes, fiscal sustainability, and evidentiary uncertainty com-
promising the optimal and equitable adoption of genomic tech-
nologies.71-74

Establishing a unified, life-cycle HTA (LC-HTA) approach 
towards incremental evidence development, based on real- 
world data, could be one approach to facilitating CGS imple-
mentation.69,72 Life-cycle HTA is defined as standardized data 
and methods that enable iterative and ongoing evidence ap-
praisals throughout technology life-cycles as part of a learning 
health care system.69 Its framework incorporates standard 
HTA concepts with on-market evidence that follows initial 
regulatory authorization and conditional health system reim-
bursement and risk-based pricing strategies based on the value 
of information analysis and payers’ risk tolerance for in-
creased flexibility.72 Managed and time-limited access in reim-
bursing expensive therapies is central to LC-HTA and has 
been piloted in many countries worldwide, including publicly 
funded health care systems, such as the United Kingdom, 
Canada, and Australia, and primarily private systems such 
as the United States.75-77 Oncology remains the most common 
indication for managed access, and to date, agreements have 
yet to consider CGS access.

Achieving LC-HTA in an international context requires 
capacity-building and investment in learning health care infra-
structure to enable ongoing monitoring, evaluation, and delib-
eration. It also necessitates wide stakeholder engagement for 
endorsement, collaborative evidence generation, and cross- 
jurisdictional data sharing. Life-cycle HTA deliberation proc-
esses should be embedded into health systems to adapt to the 
evolving field of genomic medicine. With proper design, these 
efforts could mitigate uncertainty and ensure value-centered 
and cost-effective CGS implementation in clinical practice.

Building a robust patient-centered evidence base on 
CGS outcomes that integrates patient perspectives 
and preferences
Beyond system readiness is the need for high-quality genetic- 
testing services that value patient and family perspectives 
and preferences—with patients and families being informed, 
respected, and involved in their care in meaningful ways 
throughout their clinical journey.78,79 This journey involves 
numerous relationships and interactions, spanning diagnostic 

assessments, genomic testing, and complex decision-making 
processes. Therefore, effective, efficient, and equitable CGS 
implementation requires meaningful engagement of patients 
and families that facilitates active involvement and improve-
ment in their care.80,81

The current evidence base on CGS outcomes focuses on a 
narrow subset of measures, such as diagnostic yield, rather 
than outcomes recommended by HTA agencies, such as 
quality-adjusted life-years (QALYs).82,83 Studies generating evi-
dence on the health outcomes of CGS using metrics such as the 
QALY would significantly improve the evidence base for imple-
mentation. That said, preference-based, health-related 
quality-of-life instruments commonly used to generate QALY 
weights, such as EQ-5L, might not fully capture the patient- 
related benefits of CGS.84 To date, few studies have utilized 
instruments that thoroughly assess psychosocial outcomes or 
investigated the broader impacts on patients’ and families’ well- 
being (eg, via nonclinical routes). However, evidence suggests 
that these outcomes are highly valued by patients and families, 
along with access to genomic testing and a timely diagnosis.85,86

The complexity of genomic information and actionability cre-
ates challenges for its valuation, necessitating additional consid-
eration for non-health outcomes.87 The application of 
approaches, such as cost-consequences analysis or multicriteria 
decision analysis—which allow evidence on QALY outcomes to 
be considered alongside broader measures of patient benefit— 
should be encouraged.

Regardless of which measures are used to quantify the ben-
efits of CGS for patients and their families, a coordinated glo-
bal effort is required to ensure a multifaceted, robust evidence 
base on CGS outcomes. Data collection should be harmon-
ized, where possible, to ensure sufficient data are collected, 
keeping in mind, for example, relatively small rare-disease 
populations.82,88
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