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The immune phenotypes
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colorectal cancer

Yihao Mao1†, Yuqiu Xu1†, Jiang Chang1†, Wenju Chang1,2†,
Yang Lv1†, Peng Zheng1, Zhiyuan Zhang1, Zhiqiang Li3,
Qi Lin1,2, Wentao Tang1,2, Dexiang Zhu1,2, Meiling Ji1,2,
Guodong He1,2, Qingyang Feng1,2* and Jianmin Xu1,2*

1Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China, 2Shanghai
Engineering Research Center of Colorectal Cancer Minimally Invasive, Shanghai, China,
3Department of General Surgery, No.2 Hospital, Nanping, China
The tumor microenvironment (TME) plays a crucial role in tumor progression

and metastasis. However, the immune phenotypes of colorectal cancer (CRC)

and the underlying immune escape mechanism have not been studied

sufficiently. A total of 1802 and 619 CRC samples from the microarray and

TCGA cohorts were enrolled, respectively. The ssGSEA algorithm and

unsupervised clustering were used for TME cell infiltration speculation

and immune phenotype recognition in the above cohorts. A total of 447

samples from Zhongshan Hospital were collected for validation.

Immunohistochemistry was performed in this cohort to quantify TME cell

infiltration. The single-cell RNA-seq (scRNA-seq) data of 252,940 cells from

60 CRC samples was analyzed for further mechanistic exploration. CRC

samples can be classified into three distinct immune phenotypes. Subtype 1,

the immune-active subtype, was characterized by high infiltration of activated

adaptive immune cells. Subtype 2, the immune-desert subtype, featured high

tumor purity and low infiltration of immune and stromal cells. Subtype 3, the

stroma-rich subtype, had high infiltration of stromal cells. The stroma-rich

subtype conferred a significantly worse prognosis. The three subtypes had

different immune escape mechanisms. The immune-active subtype has the

highest immune checkpoint expression level. In comparison, the immune-

desert subtype had the lowest immunogenicity and defective antigen

presentation. The stroma-rich subtype lacked activated immune cells. In

conclusion, distinct immune phenotypes and immune escape mechanisms

may provide inspirat ion and direct ion for further research on

CRC immunotherapy.
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1 Introduction

Colorectal cancer (CRC) is estimated to be the third most

commonly diagnosed and cause of death in both men and

women in the USA in 2022 (1). The tumor microenvironment

(TME), defined as the surrounding environment of a tumor,

comprises tumor cells, immune cells, stromal cells, blood vessels,

and other mesenchymal cells. The TME plays a crucial role in

tumor progression and metastasis (2).

Researchers have focused on the CRC TME from multiple

perspectives. Multiple TME cells were found to have prognostic

value and predict therapeutic benefit (3, 4). As a classic example,

Immunoscore, which quantifies the in situ T cell infiltration in

CRC tissue, was validated to be a valuable prognostic factor (5)

and was recommended in the European Society for Medical

Oncology (ESMO) guidelines (6). However, numerous studies

have only focused on one or a few types of TME cells. Moreover,

most of them were based on pathology levels with limited sample

sizes. Confusing, even contradictory results were obtained. As

CRC is a highly heterogeneous cancer, we assumed that the same

type of TME cell might play different roles in different

CRC tissues.

Recently, emerging papers have explored the CRC TME

using bioinformatic-based methods, such as CIBERSORT (7),

MCPcounter (8), TIMER (9), etc. However, because of the

limitations of the above methods, such as only relative

infiltration results provided or limited predictable cell types,

the landscape of TME cell infiltration patterns in CRC samples

has not been systematically clarified to date, nor has the immune

escape mechanisms elucidated.

In this study, we comprehensively explored the TME cell

infiltration pattern in four independent cohorts. CRC samples

can be divided into three immune phenotypes with distinct TME

cell infiltration patterns and their underlying immune escape

mechanisms. Additionally, the different clinical, prognostic, and

genomic characteristics were described.
2 Materials and methods

2.1 Study population

Four cohorts were enrolled in this research, as illustrated in

Figure S1. The microarray cohort was composed of 1802 CRC

samples from the GSE14333 (10), GSE17538 (11), GSE33113

(12), GSE37892 (13), GSE38832 (14), GSE39084 (15), GSE39582

(16), and KFSYSCC datasets, which are publicly available. The

dataset selection criteria were as follows: (1) transcriptomic data,

including microarray data using Affymetrix HG-U133A (GEO

accession number GPL96) or HG-U133 Plus 2.0 (GEO accession

number GPL570) platforms or RNA-Seq data, were available; (2)

basic clinicopathological information, including AJCC/UICC

TNM stage and survival information (overall survival (OS) or
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disease-free survival (DFS)) was available; (3) the sample size

was larger than 50. The transcriptome and clinical data of

GSE14333, GSE17538, GSE33113, GSE37892, GSE38832,

GSE39084, and GSE39582 were downloaded from the Gene

Expression Omnibus (GEO) repository (https://www.ncbi.nlm.

nih.gov/gds/). The expression matrix and clinical information of

KFSYSCC were acquired from the supplementary material of a

previous publication (17). The TCGA cohort included 619 CRC

samples from the TCGA-COAD and TCGA-READ datasets

(18). The RNA-Seq (RSEM normalized), copy number

variation (CNV), mutation, images of pathology slides, and

clinical data were downloaded from Genomic Data Commons

(GDC, https://portal.gdc.cancer.gov/) in Dec. 2019. The

Zhongshan cohort consisted of 447 consecutive CRC patients

who received radical primary tumor resections without prior

treatment in Zhongshan Hospital (Shanghai, China) from 2008

to 2009. Demographics and clinical data were collected

retrospectively. Cancer stages were determined according to

the 8th edition of the AJCC/UICC TNM classification. The

scRNA-seq cohort was composed of scRNA-seq data of 252940

cells from 60 CRC samples with clinicopathological information

and cell annotation available. Such data were retrieved from a

previous high-quality publication (19).

The microarray cohort was utilized to discover the

infiltration pattern of TME cells. Subsequent pattern validation

was conducted in the TCGA and Zhongshan cohorts. Due to the

relatively shorter follow-up time of the TCGA cohort (median

follow-up time, 21.9 months), survival-related analysis was

performed in the microarray and Zhongshan cohorts (median

follow-up time, 49.0 and 62.5 months, respectively). Further

mechanistic exploration was performed in the TCGA and

scRNA-seq cohorts. This study was approved by the Clinical

Research Ethics Committee of Zhongshan Hospital, Fudan

University. Informed consent was obtained from all patients in

the Zhongshan cohort for the acquisition and use of tissue

samples and clinical data.
2.2 Microenvironmental cell infiltration
speculation and validation

We used the voom function [in R package “limma” (20)] to

transform the RSEM normalized TCGA RNA-Seq expression

matrix. The ComBat algorithm [“ComBat” function in R

package “sva” (21)] was applied to calibrate the heterogeneity

among different datasets in microarray and TCGA datasets. The

PCA plots illustrating the effect of calibration were shown in

Figure S2. We used the ssGSEA algorithm [“gsva” function in R

package “GSVA” (22)] for infiltration speculation of 31

microenvironmental cells based on transcriptomic data as

previously described (23, 24). The gene signature used in our

study was mainly based on the signature described in

CHAROENTONG P et al. (25), XIAO Y et al. (23) (which was
frontiersin.org
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a modification of the LM22 signature of CIBERSORT), and

MCPcounter (8). The detailed gene signature is described in

Table S1.

To validate the accuracy of our methods, we compared our

calculation results with the estimation of the cell abundances by

CIBERSORT and MCPcounter (Tables S2 and S3). The

comparison results showed high accordance between methods.
2.3 Pseudo-bulk analysis

We applied a pseudo-bulk approach to infermicroenvironmental

cell infiltration in the scRNA-seq cohort. Raw UMI counts for each

gene were summed across each sample and resulted in sample-level

UMI counts using the AggregateExpression function (in R package

“Seurat” (26)) as previously described (27). Genes with less than 50

reads across samples were excluded from further analysis. The

sample-level expression matrix was averaged and voom-

transformed for further infiltration speculation as described above.
2.4 Unsupervised clustering based on the
TME cell infiltration pattern

For TME cell infiltration pattern discovery and validation, a

nonnegative matrix factorization algorithm (NMF) (“nmf”

function in R package “NMF” (28)) was performed for

unsupervised clustering on the scaled ssGSEA results. We used

the “nmfEstimateRank” function (30 runs) to choose the optimal

number of clusters based on the Cophenetic correlation

coefficient changing. The highest clustering number before the

Cophenetic correlation coefficient dropping most was selected as

the optimal clustering number.
2.5 Immunohistochemistry and slide
image analysis

Immunohistochemistry (IHC) and hematoxylin and eosin

(HE) staining were performed on formalin-fixed, paraffin-

embedded TMA as described previously (29). The following

cells and their corresponding markers were evaluated by IHC:

CD4+ T cells (CD4, BX50023, Biolynx), CD8+ T cells (CD8,

M7103, Dako), B cells (CD19, #90176, CST), Treg cells (FOXP3,

MAB8214, R&D), mast cells (mast cell tryptase, ab2378,

Abcam), macrophages (CD68, GA609, Dako), fibroblasts (a-
SMA, GM085102, GeneTech), and endothelial cells (VWF,

ab6994, Abcam). The infiltration of each cell was recorded as

the mean number of cells in tumor tissue from three random

high-power fields (HPF, 200×).

HE stained diagnostic slides of the TCGA dataset were

retrieved from the GDC Data Portal. The infiltration of

tumor-infiltrating lymphocytes (TILs) was recorded as the
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mean number of lymphocytes in tumor tissue from three

random HPFs. Furthermore, the infiltration of stromal cells

was evaluated as the mean proportion of stromal cells in

tumor tissue from three randomized HPFs. Tumor necrosis in

HE slides was characterized by degraded tumor cells, presented

as amorphous coagulum with nuclear debris (Figure 3G) (30).

Pathologists annotated the necrosis area in each diagnostic slide

and the proportion of necrosis was calculated by ImageJ (US

National Institutes of Health, Bethesda, MD, USA). The above

results were all assessed by two independent pathologists who

were blinded to the clinical data and the results were averaged.
2.6 Single-cell RNA sequencing data
analysis

Pre-processed expression transcript count matrices of

371,223 tumor and adjacent normal cells from 62 CRC

patients were downloaded from the GEO repository

[GSE178341 (19)]. After excluding cells from tumor samples

sorted by CD45 MACS and normal samples, 252,940 cells from

60 CRC samples were utilized for further analysis. The main

scRNA-seq analysis was performed using Seurat v4.0.2 (26). The

data were normalized, scaled and principal components

computed. The Uniform Manifold Approximation and

Projection (UMAP) method was used for dimensional

reduction. Cell clusters were identified mainly by referring to

the cluster annotations provided by the authors. The

differentially expressed genes of the specific cluster were

calculated by the FindMarkers function. Gene set enrichment

analysis (GSEA) was performed on the results of the differential

gene expression analysis by clusterProfiler 4.0 (31). Gene Set

Variation Analysis (GSVA) was conducted between two cell

clusters by the “gsva” function (in R package “GSVA” (22))

based on 50 hallmark gene sets in MSigDB 7.5.1 (32).
2.7 Genomic analysis in TCGA cohort

TCGA level 3 mutation data were downloaded from the

GDC Data Portal. The mutation load was defined as log2(non-

silent mutation number + 1). The neoantigen data were

downloaded from The Cancer Immunome Atlas (TCIA,

https://tcia.at/) (25). The cancer-testis antigen (CTA) scores

and homologous recombination deficiency (HRD) scores were

downloaded from the supplementary material of a previous

publication (24). The intratumor heterogeneity (ITH), defined

as the subclonal genome fraction measured by ABSOLUTE, was

retrieved from an earlier publication (24). The GISTIC2.0 results

of In silico Admixture Removal (ISAR) calibrated SCNV data

(minus germline CNV) were obtained from a previous

publication (24). The GISTIC2.0 thresholded result of 2 or -2

was defined as deep CN alterations called amplifications and
frontiersin.org

https://tcia.at/
https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
depletions. While the result of 1 or -1 was defined as shallow CN

alterations, which were called gains and losses, respectively. The

SCNV load was calculated as the percentage of altered cytobands

in each sample. T cell & B cell receptor (TCR&BCR) diversity

scores (Shannon Entropy, Evenness, and Richness) were

obtained from a previous publication (24). The immune

cytolytic activity score (CYT), which is highly correlated with

CD8+ T cell activation, was defined as the log-average

(geometric mean) of GZMA and PRF1 expression as

previously described (33).
2.8 Mutations and CNVs comparison
between subtypes

Mutations and CNVs were compared between every two

subtypes. To adjust the difference in mutation burden between

subtypes, we adopted the method based on logistic regression as

described in a previous publication (23). Specifically, the subtype

was modeled as a logistic function as subtype ~ mutation burden

+ gene mutation status. If the P-value of a specific gene mutation

status adjusted for mutation burden less than 0.05, such gene

was defined as differentially mutated between subtypes. Notably,

gene mutations with an overall mutation rate of less than 2.5%

were excluded from the comparison. CNVs were compared

similarly. Gains/amplifications and losses/deletions were

compared between every two subtypes separately. For gains/

amplifications comparison, losses/deletions events were set to

zero. The subtype was modeled as a logistic function as subtype

~ CNV burden + gene gain/amplification status. If the P-value of

a specific gene gain/amplifications adjusted for CNV burden less

than 0.05, such gain/amplification was defined as differentially

distributed between subtypes. The losses/deletions comparisons

were performed similarly. The above calculations were

performed using the “glm” function in R.
2.9 Statistical analysis

All statistical analyses were performed in R software, version

3.6.1 (The R Foundation for Statistical Computing, http://www.

rproject.org/). Continuous and ordered categorical variables were

compared using Student’s t-tests or Kruskal–Wallis tests with post

hoc pairwise Dunn’s-tests. Unordered categorical variables were

compared by Pearson c2 test or Fisher exact test. Spearman

correlation analyses were employed to evaluate correlations

between continuous variables. Survival analyses were performed

using Kaplan–Meier analyses and survival differences between

groups were compared by log-rank tests. Prognostic factors were

identified by univariate and multivariate Cox regression analyses.

Factors with univariate regression P<0.1 were further enrolled in

multivariate analyses. A two-sided P<0.05 was considered

statistically significant unless additionally stated.
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3 Results

3.1 Microenvironmental cell infiltration
pattern in CRC

We used the ssGSEA algorithm to estimate the absolute

infiltration abundance of 31 different TME cells in 1802 samples

of the microarray cohort and 619 samples of the TCGA cohort.

After normalization, a nonnegative matrix factorization (NMF)

algorithm, an unsupervised clustering method, was applied to

classify CRC samples into different subtypes based on TME cell

infiltration. The optimal cluster number of 3 was selected by the

Cophenetic correlation coefficient in both datasets (Figures S3

and S4). Thus, we classified 1802 samples into three distinct

TME cell (TMEC) subtypes (Figure 1A). Subtype 1, named as

immune-active subtype (marked by red), was characterized by

high infiltration of adaptive and innate immune cells, especially

activated adaptive immune cells, such as activated CD4 T cells,

activated CD8 T cells, and activated B cells, and low infiltration

of stromal cells. Subtype 2, named as immune-desert subtype

(marked by blue), featured low infiltration of most immune and

stromal cells. And subtype 3, named as stroma-rich subtype

(marked by yellow), had high infiltration of adaptive and innate

immune cells, as well as stromal cells but low infiltration of

activated adaptive immune cells compared with subtype 1. The

above infiltration pattern was also validated in the TCGA dataset

(Figure 1B). To further validate the above immune phenotypes,

the major TME composition was evaluated in the Zhongshan

cohort by IHC and in the scRNA-seq cohort by dimensional

reduction. As the normalized infiltration quantity and main cell

types visualized in Figures 1C, D, and Figure S6, respectively, a

distinct TME cell infiltration pattern was validated as described

above in the Zhongshan and scRNA-seq cohorts.

Moreover, we evaluated the pathological presentation of three

distinct subtypes in diagnostic slides of 499 TCGA and 447

Zhongshan samples. The representative pathology features of

each subtype were illustrated in Figure 1E. As shown in Figure

1F, tumor tissue in subtype 1 featured a median stromal proportion

with high tumor-infiltrating leukocytes (TILs) infiltration. Subtype

2 had high tumor purity and low TME cell infiltration. And

mesenchymal cells infiltrated extensively in subtype 3. Then we

evaluated the TILs and stromal cell infiltration pathologically in

TCGA diagnostic slides. TILs infiltratedmost in subtype 1 and least

in subtype 2 (median, 47 vs. 8 vs. 29, P<0.001), while subtype 3 had

a significantly higher stromal cell proportion (median, 0.047 vs.

0.037 vs. 0.098, P<0.001).

Furthermore, we explored other characteristics of each

subtype. We used the ESTIMATE algorithm to calculate

Immune Score, Stromal Score, and tumor purity for each

sample. As shown in Figure 1H, Subtype 1 had the highest

Immune Score, median Stromal Score, and relatively low tumor

purity. And subtype 2 featured the lowest Immune Score and

Stromal Score but the highest tumor purity. Subtype 3 had a
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FIGURE 1

The landscape of TME cell infiltration pattern in CRC. (A, B) Heatmaps illustrating the infiltration of 31 TME cells in microarray (A) and TCGA
(B) cohorts. Both were divided into three subtypes by unsupervised clustering. (C) Heatmap and clustering of major TME cells infiltration in
Zhongshan cohort. (D) UMAP of all cells in the scRNA-seq cohort split by TMEC clusters (left) and the fraction of major cell types in three
clusters (right). (E) The representative pathology presentation of each subtype in the TCGA (18) and Zhongshan cohort (red, subtype 1; blue,
subtype 2; yellow, subtype3; from top to bottom). (F) The number of TILs (up) and proportion of stromal cells (down) among three subtypes per
high power field (HPF, 200x) in the TCGA cohort. (G) Sankey plot illustrating the distribution of CMS subtypes and TMEC subtypes in the
microarray cohort. (H) The distribution of Immune Score, Stromal Score, tumor purity, macrophage M1/M2 ratio, Th17/Treg ratio, Th1/Th2 ratio,
adaptive immune cells, activated adaptive immune cells, innate immune cells, and stromal cells among subtypes in the microarray cohort. *P <
0.05; ***P < 0.001; ns, P > 0.05.
Frontiers in Immunology frontiersin.org05

https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
median Immune Score, the highest Stromal Score, and relatively

low tumor purity (all P<0.001). Additionally, the macrophage

M1/M2 ratio was the highest in subtype 1 (P<0.001), while the

Th17/Treg ratio was the highest in subtype 2 (P<0.001). Samples

in subtype 3 had the highest Th1/Th2 ratio (P<0.001), and the

proportion of activated adaptive immune cells was the highest in

subtype 1 (P<0.001). The above characteristics were all validated

in the TCGA dataset (Figure S7).
3.2 TMEC subtypes and
clinicopathological features

The corre la t ions between TMEC subtypes and

clinicopathological features of the microarray, TCGA, and

Zhongshan cohorts were presented in Tables S4, S5, and S6,

respectively. Subtype 3 had more samples with advanced stages

(P<0.001 in the microarray cohort; P=0.001 in the TCGA cohort;

P=0.003 in the Zhongshan cohort). Subtype 1 was associated

with more right colon cancer (P<0.001 in both microarray and

TCGA cohorts; P=0.001 in the Zhongshan cohort). Additionally,

the dMMR/MSI-H samples were significantly enriched in

subtype 1 (P<0.001 in all cohorts). Moreover, we compared

the distribution of Consensus Molecular Subgroups (CMS) (34)

and TMEC subtypes, illustrated as Sankey plots in Figure 1G and

Figure S8. Subtype 1 was mainly composed of CMS1 (MSI

immune), CMS2 (Canonical), and CMS3 (Metabolic) samples.

The majority of subtype 2 samples were from CMS2. CMS2 and

CMS4 (Mesenchymal) samples constituted most of subtype 3.

The above features were presented in the both microarray and

TCGA cohorts.
3.3 TMEC subtypes and CRC prognosis

TMEC subtypes also play an important role in CRC

prognosis. Analyses related to overall survival (OS) were

performed in 1281 samples from the microarray cohort and

447 samples from the Zhongshan cohort with available OS data.

The analyses related to disease-free survival (DFS) were

performed in 1107 samples from the microarray cohort and

357 samples from the Zhongshan cohort of stage I-III with DFS

data available. Subtype 3 conferred significantly worse OS and

DFS, while subtype 1 and 2 had similar prognoses (Figures 2A,

B). Next, we conducted univariate and multivariate Cox

regression analyses of clinicopathological factors and TMEC

subtypes for OS and DFS (Tables S7, S8, and Figures 2C, D,

respectively). Multivariate analyses showed that subtype 3 was

an independent prognostic factor of DFS in both the microarray

and Zhongshan cohorts (P=0.013, HR=1.722, 95% CI=1.121-

2.646; P<0.001, HR=2.316, 95% CI=1.434-3.741, respectively)

(Figures 2C, D). For OS, subtype 3 only showed independent

prognostic value in the Zhongshan cohort (P=0.012, HR=1.636,
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95% CI=1.114-2.401) but not in microarray cohort (P=0.195,

HR=1.151, 95% CI=0.931-1.423).

Furthermore, we analyzed the prognostic value of different

TME cells in all samples and each subtype in the microarray

dataset for OS (Figure 2E) and DFS (Figure S9). Interestingly, the

same cell type may play converse prognostic roles in different

TMEC subtypes. In subtype 2, the majority of immune and

stromal cells were presented as protective factors of survival,

even immunoinhibitory cells such as MDSCs and M2

macrophages, which indicated heterogeneous immune

networks in different TMEC subtypes.
3.4 Possible immune escape mechanism
of distinct TMEC subtypes

The distinct characteristics of TMEC subtypes made us

wonder whether they had different immune escape

mechanisms. Previous studies summarized vital factors

leading to tumor immune escape as follows: (1) defective

antigen presentation; (2) tolerance and immune deviation;

(3) infiltration of immune-suppressive cells; and (4)

immune-suppressive mediator secretion (35, 36). As multi-

omics data were available for the TCGA dataset, we explored

the possible immune escape mechanism of the three

TMEC subtypes.

3.4.1 Defective antigen presentation
Defective antigen presentation was composed of at least two

aspects: alteration of tumor immunogenicity and down-

regulation of antigen presentation pathway. For tumor

immunogenicity evaluation, subtype 1 had the highest

mutation burden and neoantigen load (Figure 3A) (both P <

0.001), which could be easily speculated for the highest

proportion of dMMR/MSI-H samples. Subtype 3 featured the

highest SCNV load (Figure 3A). The CTA and HRD scores of

subtype 3 were higher than those of subtype 1 (P = 0.008 and P <

0.001, respectively) but not subtype 2 (both P > 0.05)

(Figure 3A). Additionally, subtype 3 had the highest ITH level

(P < 0.001) (Figure 3A). The necrosis level between subtypes was

not significantly differentiated (P = 0.167) (Figure S10). Subtype

2 showed the lowest BCR and TCR richness diversity (both P <

0.01) (Figure 3B), which was positively correlated with cytolytic

activity (Figure 3D). Pathway enrichment analysis found that

antigen presentation pathways were significantly enriched in

tumor cells of subtype 1 (Figure 3C). For antigen presentation

pathway-related gene expression, subtype 1 had higher

expression of most MHC-related genes, while the expression

of subtype 2 was the lowest (all P < 0.01) (Figure 3F). Overall, the

three subtypes all had impaired antigen presentation to some

extent, but subtype 2 had the lowest immunogenicity and

antigen presentation gene expression level.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
3.4.2 Tolerance and immune deviation
Tumors were also known to induce immune tolerance by

upregulating immune inhibitors and downregulating immune

stimulators. The relative expression levels and mean log2(copy

number) value of immune inhibitors and immune stimulators

were illustrated in Figure 3F. Subtype 1 had the highest
Frontiers in Immunology 07
expression level of most immune inhibitors and some immune

stimulators, which indicated pro-tumor and anti-tumor

immunity activation. The activation level of most of the above

genes was the lowest in subtype 2. Subtype 3 highly expressed

TNF/TNF-receptors. Some differentially expressed genes, such

as SLAMF7, LAG3, CTLA4, BTLA, TNFSF8, et al. in the two
B

C

D

E

A

FIGURE 2

(A, B) Kaplan-Meier analysis of OS (A) and DFS (B) in microarray and Zhongshan cohort. (C, D) Univariate and multivariate Cox regression of
clinicopathological factors and TMEC subtypes for DFS in microarray (C) and Zhongshan cohort (D). (E) The prognostic value of different TME
cells in all samples and each subtype in the microarray cohort for OS.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
modules might be attributed to SCNV. Correlation analyses

found that immune cytolytic activity was positively associated

with most immune checkpoint expression (Figure 3D).

Generally, subtype 1 had a high expression of both immune

stimulators and immune inhibitors, whose expression level was

the lowest in subtype 2.
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3.4.3 Infiltration of immune-suppressive cells
Next, we compared the infiltration of each cell type between

subtypes, illustrated as volcano plots (Figure 3E). Compared to

subtype 2 and subtype 3, subtype 1 had significantly more

activated CD4 and CD8 T cell infiltration. Subtype 2, as an

immune-cold subtype, had the least adaptive and innate
B

C

D E

A
F

FIGURE 3

(A) The mutation load, neoantigen load, SCNV load, CTA, HRD, and ITH among TMEC subtypes. (B) The BCR and TCR richness of different
subtypes. (C) Pathways enriched in tumor cells among TMEC subtypes in the scRNA-seq cohort. (D) The correlation between immune cytolytic
activity and tumor immunogenicity factors, TILs, stromal cells, and immune checkpoint molecules. (E) The comparison of each cell type
between subtypes. (F) The relative expression levels to the median value and mean log2(copy number) value of immune inhibitors and immune
stimulators among three subtypes. ***P < 0.001; **0.001 < P < 0.01; *0.01 < P < 0.05; ns: P > 0.05.
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immune cell infiltration among the three subtypes. Subtype 3

had more enriched fibroblasts and endothelial cells than the

other two subtypes. Immune-suppressive cells, such as Tregs,

MDSCs, and M2 macrophages, were more abundant in subtype

1 and 3. Furthermore, we explored the more detailed difference

within major cell types in the scRNA-seq cohort. The proportion

of CXCL13+ CD8 T cells was significantly reduced in subtype 2

(Figure 4A). The expression level and percentage of exhaustion

markers of CD8 T cells were both higher in subtype 1

(Figure 4B). Additionally, this such difference was validated at

the bulk level. We used the gene signature from a high-quality

publication (37) for exhausted T cell infiltration speculation and

compared the infiltration of exhausted T cells in each subtype

(Figure 4C). Subtype 1 had a significantly higher exhausted T cell

proportion than the other two subtypes (P < 0.001), as well as a

significantly higher ratio of exhausted T cells to CD8 T cells (P <

0.001). The fraction of Tregs was higher in subtype 1 and 3

(Figure 4D). For macrophages, subtype 3 had a lower proportion

of pro-inflammatory C1QC1+ TAMs and a lower a higher

proportion of SPP1+ TAMs (Figure 4E), which are involved in

angiogenesis (38). A major feature of subtype 3 was extensive

infiltration of fibroblasts, scRNA-seq analysis showed that the

GREM1+ cancer-associated fibroblasts (CAFs) percentage was

significantly higher in this subtype (Figure 4F). Further GSVA

results showed preferential enrichment of the EMT pathway of

GREM1+ CAFs compared to CXCL14+ CAFs (Figure 4G). Bulk

analysis in the microarray cohort proved that high GREM1+

CAF infiltration was related to a worse prognosis (Figure 4H).
3.4.4 Immune suppressive mediator secretion
Furthermore, we investigated the fourth aspect of the

immune escape mechanism. The relative expression levels to

the median value and mean log2(copy number) value of

chemokines and receptors, interferons and receptors,

interleukins and receptors, and other cytokines in the three

subtypes were compared, and cytokines with P < 0.01 were

illustrated in Figure 4H. Most cytokine and receptor expression

was negatively correlated between subtype 1 and subtype 3, and

the expression level of subtype 2 was the lowest on most

occasions. Subtype 1 expressed higher levels of pro-immune

chemokines, such as CXCL9, CXCL10, and CXCL11, which

could recruit effector T cells and NK cells (39). The IFN-g, which
robustly stimulated anti-tumor immunity, was expressed at

higher levels in subtype 1. Pro-immunity IL-2 and IL-15 were

accumulated in subtype 1. IL-34, CCL2, CCL-3, CXCL8, and

some of their receptors CCR5, CXCR1, and CXCR2, which

promoted the homeostasis of myeloid cells (40), were

expressed extens ive ly in subtype 3 . Mesenchymal

development-related PDGFs and PDGFRs (41) and cell

adhesion-related SELP, ICAM1, and ITGB2 were enriched in

subtype 3. However, IDO, which contributed to peripheral

tolerance, was significantly highly expressed in subtype 1 (P <
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0.001) (Figure S11A), indicating the existence of inhibitory

cytokines in the inflamed microenvironment. Notably, subtype

2 expressed a significantly higher level of VEGFA. Moreover,

STING, a crucial factor in the cGAS–Sting pathway, which

contributes to the initiation of innate immunity and

recognition of the tumor, was highly expressed in subtype 1

(P < 0.001) (Figure S11B), suggesting the impaired immunity

initiation in subtype 2 and 3.
3.5 TMEC subtype-specific
genomic alterations

Other than the heterogeneous immune escape mechanism

among the TMEC subtypes, we further explored subtype-specific

genomic alterations in the TCGA cohort. First, we explored the

activation of each subtype in a comprehensive cancer

development-related pathway collection (42, 43). As presented

in Figure 5A, the TP53, NRF2, and PI3K pathways were

upregulated in subtype 1, while the MYC and PI3K pathways

were enriched in subtype 2. Hippo, NOTCH, Hedgehog, TGF-b,
Wnt, and RAS pathways were activated in subtype 3. As for

other cancer development-related pathways, cell cycle, genomic

repair, protein expression, metabolism, and immunity pathways

were generally upregulated in subtype 1. The immunity and

stromal pathways, which were highly enriched in subtype 3, were

relatively suppressed in subtype 2.

Next, we compared subtype-specific gene mutations in the

TCGA cohort. Due to the high percentage of MSI-H patients in

subtype 1, it is easy to speculate that most mutations were

enriched in subtype 1. However, most mutations in MSI-H

patients were random and irregular. Therefore, we focused on

the comparison among MSS/MSI-L patients. As shown in

Figure 5B, after adjusting for mutation burden, KRAS, ZFHX4,

SCN1A, MXRA5, WBSCR17, WDR87, COL5A2, KMT2B,

DSCAML1, KCNT2, PCDHGA3, CECR2, AKAP3, and GNAS

were highly mutated in subtype 1. The mutation frequencies of

HECW1, MYO5A, and ADAM29 were higher in subtype 2, while

TP53 was mutated more in subtype 3 (all adjusted P <0.05).

As the CNV load of subtype 1 was significantly lower than

that of the other two subtypes, the proportion of alterations in

most cytobands was the lowest among subtypes (Figure 5C).

However, after adjusting for CNV burden, most cytobands in

Chr12 were more frequently amplified in subtype 1.

Additionally, 18p11.31-18q12.2 amplification was enriched in

subtype 1. Subtype 2 exhibited more frequent 17p11.2-17q24.3

gain/amplification. Moreover, chr18 loss/deletion was more

frequent in subtype 2 and 3.

4 Discussion

The development of personalized cancer medicine has

garnered the concern of CRC subtyping. The CRC subtyping
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system developed from pathological staging and mutation-based

subtyping to omics-based subtyping (34). However, the large-

scale comprehensive presentation of the CRC TME cell

infiltration pattern and subsequent subtyping research were
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rare and insufficient. This study systematically showed the

immune phenotypes of primary TME cells in four

independent cohorts for cross-validation. CRC samples can be

mainly divided into three subtypes: immune-active, immune-
B C

D

E

F

G

HA

H

FIGURE 4

(A) UMAP of CD8 T cells in scRNA-seq cohort split by TMEC clusters (left) and the fraction of cell subsets in three clusters (right). (B) The
average expression of exhaustion markers and expression percentage of CD8 T cells among three clusters. (C) The distribution of exhausted T
cells infiltration and the ratio of exhausted T cells to CD8 T cells infiltration among each subtype. (D-F) UMAP of CD4 T cells (D), monocytes/
macrophages (E), and fibroblasts (F) in the scRNA-seq cohort split by TMEC clusters (left) and the fraction of cell subsets in three clusters (right).
(G) GSVA results of hallmark pathways between GREM1+ CAFs and CXCL14+ CAFs. (H) Kaplan-Meier analysis of GREM1+ CAFs in microarray
cohort. (E) The relative expression levels to the median value and mean log2(copy number) value of chemokines, interleukins, other cytokines,
and their receptors among three subtypes. ***P < 0.001; **0.001 < P < 0.01; *0.01 < P < 0.05; ns: P > 0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
desert, and stroma-rich. The major characteristics of each

subtype were summarized in Figure 6. The immune-active

subtype features highly activated adaptive immune cell

infiltrate, more right colon, more dMMR/MSI-H, and more

CMS1 samples. The immune-desert subtype was characterized

by low infiltration of most TME cells, more left colon, and more

CMS2. The stroma-rich subtype presents the distinctiveness of

high infiltration of both immune cells and stromal cells,

advanced stages, poor prognosis, and more CMS4 samples.
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Similar TME subtypes can also be observed in ovarian cancer

(44) and TNBC (23).

The potential immune escape mechanism of each subtype

may have important clinical implications. The immune-active

subtype has increased immune-suppressive cells, high immune-

suppressive cytokine levels, and upregulated immune inhibitors,

implying that both intense tumor-suppressing and tumor-

promoting immune responses exist. Theoretically, this subtype

may benefit most from immune checkpoint inhibitors (ICIs), the
B

C

A

FIGURE 5

TMEC subtype-specific genomic alterations in the TCGA cohort. (A) Heatmap illustrating activation of comprehensive cancer development-
related pathways among three TMEC subtypes. (B) Subtype-specific gene mutation frequency among MSS/MSI-L samples in three TMEC
subtypes. (C) Subtype-specific SCNVs of each TMEC subtype (top three plots) and comparison of SCNVs between every two subtypes.
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most studied immunotherapy targeting the TME in CRC, and

MSI status is a solid predictive marker for ICI efficacy (45).

However, not all dMMR/MSI-H patients respond to anti-PD1/

anti-PD-L1 therapy. Previous studies reported an ORR of 31% in

refractory mCRC (35) and 44% in the first-line setting (46). Most

dMMR/MSI-H CRCs are of the immune-active subtype, and

targeting the potential immune escape mechanism may be a

novel strategy to improve efficacy. Strategies such as erasing the

infiltration of immunosuppressive cells, neutralizing

immunosuppressive cytokines, and combining other

checkpoint inhibitors can be considered to further activate

tumor immunity.

The immune-desert subtype has decreased immune-

promotive cells, low immune-promotive cytokine levels,

downregulation of immune inhibitors, and defective antigen

presentation. Nevertheless, OS is similar to the immune-active

subtype, implying that the survival impairment of stromal cells has

neutralized the survival benefit of high infiltration of activated

adap t i v e immune ce l l s . Even the infi l t r a t i on o f

immunosuppressive cells, such as MDSCs and Tregs, may

improve prognosis, which shows the complexity and

heterogeneity of the CRC TME. The major difference between

the immune-desert subtype (“cold tumor”) and the other two

subtypes (“hot tumor”) is the antigen presentation defect.

Therefore, increasing tumor immunogenicity may induce

immune cell chemotaxis and transform a “cold tumor” into a

“hot tumor”. Chemotherapy and radiotherapy can cause tumor

cell death with the subsequent release of cellular fragmentation and

cancer-associated neoantigens, which are presented to APCs to
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increase tumor immunogenicity (47). The use of pembrolizumab

plus FOLFOX achieved an ORR of 55% in the first-line setting

(48). However, the synergistic effect of pembrolizumab and

radiotherapy was not as expected, which only achieved an ORR

of 4.5% in 22 pMMR/MSSmCRC patients (49). Further researches

on a dual checkpoint inhibitor (anti-PD-L1 + anti-CTLA-4)

following radiotherapy are underway (NCT02701400,

NCT03122509). Other novel approaches, such as tumor

vaccines, and oncolytic viruses, are under early-phase research.

The stroma-rich subtype, which takes up nearly half of the

samples, has a similar immune escape mechanism to the

immune-active subtype but decreased immune-promotive

cells. This subtype is “hot” but has the worst survival. The

primary reason may be the pro-tumoral effect of excessive

stromal cell infiltration, excluding activated adaptive immune

cells from the tumor. Anti-fibroblast, anti-TGF-b pathway, anti-

angiogenesis, anti-immunosuppressive cytokines, or the

combination of the above therapy may be expected to

transform it into an immune-active subtype. Dual

antagonizing of TGF-b and PD-1/PD-L1 showed promising

results in preclinical researches (50). The combination of

vactosertib (a small-molecule inhibitor of TGF-b) and

pembrolizumab showed an ORR of 15.2% in previously

treated MSS mCRC patients (51). Furthermore, the

REGONIVO (regorafenib + nivolumab) trial reported an

inspiring 36% ORR in unselected mCRC patients (52), which

implies the potential for ICI and anti-angiogenesis. Previous

studies have shown that CAFs secret tumorigenic factors,

modulate the immunosuppressive TME, and create an ECM
FIGURE 6

Summary of clinical features, immune escape mechanisms, and subtype-specific genomic alterations of three TMEC subtypes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
barrier to block CD8 T cells from accessing the tumor (53).

Multiple strategies targeting CAFs are under research, such as

normalizing the phenotype of CAFs, inhibiting CAF generation

and activation, reducing the CAF secretome (54), etc., and

awaiting the results.

Additionally, the limitationof this studycannotbe ignored.The

major one is that the immune escape mechanism speculation was

mainly based on in silico analysis, and numerous results only

reflected the correlation but not the causation. Further in vitro

and in vivo experiments were needed. Moreover, the unsupervised

clustering method limited the clinical application of TMEC

subtypes. It is difficult to classify a new sample into a certain

subtype. Therefore, we plan to develop a trained classifier and

validate it in a large-scale cohort afterwards.

In conclusion, we systematically presented the immune

phenotypes of CRC. CRC samples can be divided into three

subtypes with distinct TME cell infiltration patterns, clinical

features, genomic characteristics, and underlying immune

escape mechanisms. The results may provide inspiration and

direction for further research on CRC immunotherapy.
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by Clinical Research Ethics Committee of Zhongshan

Hospital, Fudan University. The patients/participants provided

their written informed consent to participate in this study.
Author contributions

YM, YX, QF, and JX contributed to the planning of the

study. YM, YX, and QF collected the data and performed most of

the bioinformatics analysis. YL and WC verified the numerical

results by an independent implementation. YM, QF, YX, and YL

drafted and revised the manuscript. All authors contributed to
Frontiers in Immunology 13
the interpretation of data and review of the manuscript. All

authors reviewed and approved the final manuscript.
Funding

This work was supported by the National Natural Science

Foundation of China (No. 82002517, 82072678), Shanghai Sailing

Program (20YF1407100), Clinical Research Plan of SHDC

(SHDC2020CR1033B, SHDC2020CR5006), and Shanghai

Science and Technology Committee Project (18140903200).
Acknowledgments

We would like to thank the staff members of the TCGA

Research Network, Gene Expression Omnibus (GEO)

repository; as well as all the authors for making their valuable

research data public.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.968089/full#supplementary-material
References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J
Clin (2022) 72(1):7–33. doi: 10.3322/caac.21708

2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression
and metastasis. Nat Med (2013) 19(11):1423–37. doi: 10.1038/nm.3394

3. Feng Q, Chang W, Mao Y, He G, Zheng P, Tang W, et al. Tumor-
associated macrophages as prognostic and predictive biomarkers for
postoperative adjuvant chemotherapy in patients with stage II colon cancer.
Clin Cancer Res (2019) 25(13):3896–907. doi: 10.1158/1078-0432.CCR-18-
2076

4. Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in
cancer prognosis and therapeutic efficacy. Nat Rev Cancer (2020) 20(11):662–80.
doi: 10.1038/s41568-020-0285-7
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.968089/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.968089/full#supplementary-material
https://doi.org/10.3322/caac.21708
https://doi.org/10.1038/nm.3394
https://doi.org/10.1158/1078-0432.CCR-18-2076
https://doi.org/10.1158/1078-0432.CCR-18-2076
https://doi.org/10.1038/s41568-020-0285-7
https://doi.org/10.3389/fimmu.2022.968089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2022.968089
5. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, et al. International
validation of the consensus immunoscore for the classification of colon cancer: a
prognostic and accuracy study. Lancet (2018) 391(10135):2128–39. doi: 10.1016/
S0140-6736(18)30789-X

6. Argiles G, Tabernero J, Labianca R, Hochhauser D, Salazar R, Iveson T, et al.
Localised colon cancer: ESMO clinical practice guidelines for diagnosis, treatment
and follow-up. Ann Oncol (2020) 31(10):1291–305. doi : 10.1016/
j.annonc.2020.06.022

7. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

8. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol (2016) 17(1):218. doi: 10.1186/
s13059-016-1070-5

9. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for
comprehensive analysis of tumor-infiltrating immune cells. Cancer Res (2017) 77
(21):e108–e10. doi: 10.1158/0008-5472.CAN-17-0307

10. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al.
Metastasis-associated gene expression changes predict poor outcomes in patients
with dukes stage b and c colorectal cancer. Clin Cancer Res (2009) 15(24):7642–51.
doi: 10.1158/1078-0432.CCR-09-1431

11. Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, et al.
Experimentally derived metastasis gene expression profile predicts recurrence
and death in patients with colon cancer. Gastroenterology (2010) 138(3):958–68.
doi: 10.1053/j.gastro.2009.11.005

12. de Sousa E Melo F, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH,
et al. Methylation of cancer-stem-cell-associated wnt target genes predicts poor
prognosis in colorectal cancer patients. Cell Stem Cell (2011) 9(5):476–85. doi:
10.1016/j.stem.2011.10.008

13. Laibe S, Lagarde A, Ferrari A, Monges G, Birnbaum D, Olschwang S. A
seven-gene signature aggregates a subgroup of stage II colon cancers with stage III.
OMICS (2012) 16(10):560–5. doi: 10.1089/omi.2012.0039

14. Tripathi MK, Deane NG, Zhu J, An H, Mima S, Wang X, et al. Nuclear
factor of activated T-cell activity is associated with metastatic capacity in colon
cancer. Cancer Res (2014) 74(23):6947–57. doi: 10.1158/0008-5472.CAN-14-1592

15. Kirzin S, Marisa L, Guimbaud R, De Reynies A, Legrain M, Laurent-Puig P,
et al. Sporadic early-onset colorectal cancer is a specific sub-type of cancer: a
morphological, molecular and genetics study. PLoS One (2014) 9(8):e103159. doi:
10.1371/journal.pone.0103159

16. Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene
expression classification of colon cancer into molecular subtypes: characterization,
validation, and prognostic value. PLoS Med (2013) 10(5):e1001453. doi: 10.1371/
journal.pmed.1001453
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