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ABSTRACT: As emerging contaminants, microplastics are challenging
to characterize, particularly when their size is at the nanoscale. While
imaging technology has received increasing attention recently, such as
Raman imaging, decoding the scanning spectrum matrix can be difficult
to achieve result digitally and automatically via software and usually
requires the involvement of personal experience and expertise. Herewith,
we show a dual-principal component analysis (PCA) approach, where
(i) the first round of PCA analysis focuses on the raw spectrum data
from the Raman scanning matrix and generates two new matrices, with
one containing the spectrum profile to yield the PCA spectrum and the
other containing the PCA intensity to be mapped as an image; (ii) the second round of PCA analysis merges the spectrum from the
first round of PCA with the standard spectra of eight common plastics, to generate a correlation matrix. From the correlation value,
we can digitally assign the principal components from the first round of PCA analysis to the plastics toward imaging, akin to dataset
indexing. We also demonstrate the effect of the data pretreatment and the wavenumber variations. Overall, this dual-PCA approach
paves the way for machine learning to analyze microplastics and particularly nanoplastics.

The demand for plastics in our modern civilization is
strong, and the global production of plastics has

surpassed 300 million tonnes per year since 2014.1 Due to
low recycling rates and poor waste management, unfortunately,
an appreciable amount of plastic waste has been released into
the environment. The negative effects of minute plastic debris,
including microplastics (1−5 mm) and nanoplastics (<1 μm),
on aquatic biota, terrestrial plants, and birds have attracted
increasing attention over the past decade.2 For human health,
despite inadequate evidence on the long-term consequences of
ingesting and inhaling microplastics and nanoplastics, some
much-needed preliminary data have suggested that these
plastic particles and cocontaminants (e.g., additives and toxic
compounds attached to the surface of the particles) are likely
harmful to human nervous, respiratory, kidney, digestive, and
excretory systems.3 It has been estimated that each of us may
consume up to 121,000 plastic particles each year.4 These
alarming numbers warrant comprehensive research into
microplastics and nanoplastics to better understand their
sources, fate, risks, and toxicity.
Raman spectroscopy has been recognized as one of the most

effective analytical methods to identify and characterize
microplastics.5,6 However, analysis of microplastics and
nanoplastics with Raman spectroscopy, particularly with
Raman imaging, can be difficult due to a number of challenges.
First, the Raman imaging usually deals with a large dataset (i.e.,
a spectrum matrix that contains hundreds or thousands of

Raman signal data). To illustrate, scanning an area containing
100 × 100 pixels generates 10,000 sets of spectra, with each set
of spectra containing an array of intensity data recorded over a
range of wavenumbers (such as −200 to 3700 cm−1). All these
hyperspectral data constitute a spectrum matrix containing
multiple dimensions (intensity, wavenumber, and spatial
coordinates). The high degrees of dimensionality often spell
trouble for the extraction of important microplastic informa-
tion. Second, spontaneous Raman scattering is commonly
weak and thus places a limitation on the intensity of the
collected signal data.7 This inherent weakness of the signal
underscores the importance of enhancing the signal-to-noise
ratio, such as by decreasing the spectrum background,
particularly for environmental samples. Third, sample prepara-
tion for Raman analysis can be complicated. Isolating target
particles from environment constituents is a demanding task,
often leading to inadequate removal of interferences (e.g.,
certain organic matter and particles).8 Moreover, the coexisting
ingredients in the plastics, such as pigments or dyes, biofilms
formed on the plastic surface, and derived surface groups due
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to weathering/aging, may create a hindrance to the
comprehension of the Raman data through considerably
modifying Raman spectra or completely masking polymer
signals.9

Several methods can be used to enhance the effectiveness of
Raman analysis. For example, improving the setup of a Raman
spectrometer through the optimization of optical structure was
demonstrated to significantly increase the signal-to-noise
ratio.10 A number of sample preparation techniques were
also considered to raise the signal quality.8,11 Data
interpretation is another critical aspect. In comparison with
the data from a single Raman spectrum, the large matrix
dataset generated by Raman imaging by its nature offers an
increased signal-to-noise ratio, from a statistical point of
view.12 In recent decades, data processing using chemometrics
has attracted increasing attention to decode and analyze the
complicated spectrum matrix toward automation and machine
learning.13,14

Multivariate statistical techniques applied in chemometrics
are known to be powerful tools to decode the multidimen-
sional Raman spectrum matrix.15 Various data mining
chemometrics are available nowadays, and principal compo-
nent analysis (PCA) is a potentially suitable algorithmic option
to decode the Raman spectrum matrix.16 In principle, PCA
works by reducing a large number of variables to a much
smaller set of orthogonal principal components that reflect the
variations in the dataset to a greatest extent. As a result, the
dimensionality is reduced considerably, while the relevant
information is retained.17 Through determining the number of
principal components and creating principal component score/
loading curves (so-called PCA spectra/intensities) to mimic
Raman spectra, the major spectrum information can be
extracted.18

In order to increase the accuracy of the PCA analysis, prior
to the PCA calculation, data preprocessing is commonly
essential. The data preprocess can effectively and intentionally
remove the background noise and the irrelevant intensity
variation.19 Furthermore, after the PCA analysis, principal
components can sometimes be difficult to interpret. Con-
sequently, the assignation of PCA spectra to certain chemicals
cannot be conducted automatically, but compared with the
standard Raman spectrum and justified by the naked eye
according to personal experiences.18 Therefore, an additional
step, such as by a subsequent algorithm analysis or by packaged
software, is preferred to facilitate the initial PCA analysis.
Putting together preprocessing, the initial PCA, and the
resultant analysis, a Raman spectrum can be automatically and
digitally analyzed, which is a further step toward machine
learning.13,14,20

In this work, we aim to improve a PCA-based algorithm that
we reported earlier,18 to enhance the extraction of important
information from the Raman spectrum matrix. First, several
data pretreatment methods are employed, including baseline
correction, wavenumber range selection, curve smoothing, and
cosmic ray removal. Then, we apply a dual-PCA process that
involves (i) an initial PCA analysis (first round) to create the
PCA spectra and generate the PCA intensity images and (ii) a
second round of PCA, by combining the PCA spectra created
in the first round of PCA with eight standard spectra of the
common plastics, to automatically and digitally assign the
principal components (of the first round of PCA) to the
suspected items via the correlation matrix (of the second round
of PCA), akin to an index.21 To validate the effectiveness of

this improved method, we test it first on a mixture of two
virgin microplastics and then on a sample collected during
lawn trimming in our gardens. The results from this study
might be useful in facilitating the development toward machine
learning for the analysis of microplastics and little-known
nanoplastics.

■ EXPERIMENTAL SECTION

Microplastics. All virgin microplastics (beads or pellets,
usually with diameters <1 mm), including polystyrene (PS),
polyethylene terephthalate (PET), polyethylene (PE), poly-
vinyl chloride (PVC), and polypropylene (PP), were
purchased from Sigma-Aldrich (Australia) and used as received
unless further indicated. Several Raman spectra were extracted
from the database when the standard plastic samples were not
available, inducing polyamide (PA or PA 6), poly(methyl
methacrylate), and polycarbonate (PC, be careful, it is different
from the principal components of PCA, marked as PC# in this
study, such as PC1, PC2, etc.).

Sample Preparation. A microplastic mixture including PE
and PVC was selected as a model to validate the algorithm
analysis.22 Basically, equal amounts (in volume) of PE and
PVC were mixed together in a mortar that was previously
cleaned with Milli Q water and ethanol. The microplastic
mixture was then uniformly distributed on a glass slide for the
Raman test.
A trimmer was operated to mimic mowing in our garden.23

We used an aluminum tray to collect the trimmer line debris.
In the tray, we used a glass slide to mimic the concrete curb,
soil, and grass. The trimmer line was gradually touched down
onto the glass slide, like normal use, for several seconds (be
careful not to break the glass to release small sharp pieces!), for
the trimmer line to scratch and mark the glass surface. The
scratches on the glass slide were directly tested by Raman.
During the sample preparation process, suitable personal

protective equipment should be worn, including a pair of
glasses to protect our eyes. Denim jeans, jacket, cotton gloves,
and boots are recommended as well.

Raman Analysis. Raman spectra were recorded in air using
a WITec confocal Raman microscope (Alpha 300RS,
Germany) equipped with a 532 nm laser diode (<30 mW),
as reported previously.11,22,24 A charge-coupled device (CCD)
detector was cooled at −60 °C to collect Stokes Raman signals
under a 20× or 100× objective lens at room temperature (∼24
°C).
To map an image, the stage-moving speed (controlled by a

piezo-driven scanning stage) for each Raman signal collection
at each pixel was varied, from 1 × 1 μm to scan an area of 88 ×
88 μm with 88 × 88 pixels, to 0.33 × 0.33 μm to scan an area
of 10 × 10 μm with 30 × 30 pixels, as indicated below. The
Raman scanning duration was changed accordingly. In the
former case, it was 7744 s (88 × 88); in the latter case, it was
900 s (30 × 30), where each pixel takes 1 s to collect the
Raman signal.
For Raman image mapping, the sample was scanned using a

20× or 100× objective lens. The different plastics exhibit
different Raman activities and emit different intensities of
Raman spectra, as suggested previously.22 For image mapping,
we select the characteristic peak that should be strong and not
overlapped with the peaks of the other plastic. For example, the
Raman signal at 1059 cm−1 was picked up to image the PE,
along with other characteristic peaks (1130, 1300, and 1450
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cm−1). The intensities at different peaks were mapped as
different colors of images.
Image Analysis: Logic-Based Algorithm. The collected

Raman signal was analyzed using WITec Project software. By
only picking up the net intensity of their characteristic peaks
for image mapping, the interference that might originate from
the background as noise (such as fluorescence) or organic
matter can be effectively and intentionally avoided by
subtracting the baseline of the collected Raman spectra to
obtain the net intensity (the peak area or sum, after automatic
integration via software). That is, the spectrum background has
been intentionally subtracted using the collected signal at both
sides of the selected Raman peak at the pixels as the
background. To further avoid the “bias and false” imaging, a
logic-based algorithm analysis is recommended.
From the Raman spectrum matrix, several images were

simultaneously mapped at different peaks, such as for PE at
1059, 1130, 1300, and 1450 cm−1. At these peak positions, the
intensity signal can be mapped in different colors. Two or
more images, which correspond to two or more different
characteristic peaks, can be merged, either by logic-OR, logic-
AND, or logic-SUBTRACT, as reported previously.12,24

In the case of “logic-OR,” any mapped signal at each pixel
from the “parent images” will be picked up and merged into a
new image (daughter image). Obviously, any “bias and false”
noise from the parent images (mapped at two different Raman
peaks) might be picked up. In the case of “logic-AND”, only
the signals at the same pixel that simultaneously appear in both
of the parent images can be picked up in a new “daughter
image.” While some signal might be lost, the noise is also
expected to be reduced in the daughter image. These
algorithms can be combined and mixed to analyze the “parent
images”, to generate a “daughter image”, a “granddaughter
image”, or even to generate an “offspring image” etc.
For the logic-based algorithm analysis, the ImageJ software

was employed. In general, the parent Raman images are
opened by the software and converted from the RGB to 8-bit
format. Then, the images are processed and merged with a
calculator of logic-OR or logic-AND. Another option for logic-
OR is conducted via color-merge-channels. After merging, the
new image is painted to the selected color in the displaying
value range of 0−30 (adjustable and depends), which can be
converted back to the RGB format as the daughter image.
These daughter images can be further analyzed with the
algorithm.
Data Analysis: PCA-Based Algorithm. The raw data

from the Raman scanning were analyzed by PCA in Origin
(Pro 2020) software. For our Raman setup, it generally exports
the Raman intensity data at 1028 individual wavenumbers. The
exported raw data of Raman intensity were then imported to
Origin, so that each row contains the Raman signals at the
same individual wavenumber, and each column contains a
whole set spectrum at different wavenumbers. Consequently,
in a data matrix, the total number of the rows is 1028, while the
total column number is the number of pixels from the scanning
array, which depends on the size of the pixel and the scanning
area/array. That is, each set of Raman spectrum has been
collected at each pixel, the number of which (pixel or column)
is 88 × 88 or 30 × 30 in this study.
To excite the Raman emission, a laser was employed. To

collect the Stokes Raman signal, a filter is generally used to
remove the laser. Even so, some laser residues survive the
filtration, to be collected and mixed with the Raman signal. To

remove this part of interference, we intentionally remove the
signal <200 cm−1, prior to the PCA analysis, as discussed
below. More spectrum pretreatments are also indicated below.
All of the pretreated data, excluding the wavenumber (or

wavelength) that can serve as the “observation label” or can be
removed from the data matrix but linked with the row
sequence number, participated in the PCA analysis, under the
parameters such as “correlation analysis”, “exclude missing
values of listwise”, “quantities of compute including
eigenvalues and eigenvectors”, etc. The principal component
number (PC#), or the number of components to extract, was
adjusted according to the estimation of how many items or
suspects could be located in the scanning area. Usually, five
principal components are enough.
After PCA, a scree plot, loading plot, and score plot were

provided. The principal component score, related to the
individual principal component, was combined with the Raman
wavenumbers (via the row sequence number of the data
matrix) to regenerate a curve, labeled as “PCA spectrum”, to
mimic and compare with the Raman spectrum. These
mimicked curves were compared with standard Raman spectra,
if available, to allow identification of plastics and other
suspected items.
The coefficients of the principal components, the extracted

eigenvectors, were combined with each mapping pixel’s
position of the scanning array (via the column sequence
number of the matrix) to map the images, the “PCA intensity
images”. The principal component loadings can also be used
for the image generation. Similarly, the mean and the standard
deviation of the descriptive statistics can also be mapped as
images. When the principal component number is higher than
three, only selected dimensional plots are presented due to the
presentation limit of the highest dimension of three.
The raw data of the Raman spectrum matrix can be

transposed for each row to contain a set of spectra. In this case,
the principal component loading will generate the PCA
spectrum to mimic the Raman spectrum, while the principal
component scores will be mapped as the PCA intensity images.

■ RESULTS AND DISCUSSION
Effect of Spectrum Pretreatment, Prior to PCA. To

enable an accurate PCA analysis to identify microplastics
efficiently, the raw spectrum can be pretreated. By doing so,
not only the noise can be effectively removed, but also the
biases can be significantly decreased. In Figure 1a, the
unprocessed Raman spectrum has a strong background,
which might originate from the pigment/dye or other additives
in the plastic material, or from the derivate surface groups due
to weathering/aging, or from the accompanied components
such as biofilms surviving the sample pretreatment.25 Being
considerably more intense than Raman scattering, the
background can shield the Raman signal. As a result, the
subsequent PCA likely yields nonessential results by
recognizing the background signal variations as dominant
principal components.26 It is thus important to correct the
baseline and minimize nontarget fluctuations in the Raman
signal.20 To remove the background, we used asymmetric least
squares, with the following parameters: asymmetric factor,
0.001; threshold, 0.05; smoothing factor, 6; number of
iterations, 10; and so on. After the baseline correction to
remove the spectrum background, the spectrum looks better.
To excite the Raman, we need a laser. Due to the laser’s

reflection or Rayleigh scattering, the Raman emission is mixed
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with the residue laser. As Raman scattering intensity is often
weaker than Rayleigh scattering intensity,27 this residue laser
should also be removed, as shown in Figure 1a,b. When we
delete the signal <200 cm−1 (not the fingerprint range) and
subject it to background correction, the baseline in the low
wavenumber range is flatter than that in Figure 1a, as circled in
Figure 1b. Similarly, we can also cut off the signal at the high
wavenumber range that does not contain plastic signal, such as
>3500 cm−1, to standardize it in the same wavenumber range
for comparison. By doing so, any significant unwanted
variations outside the selected wavenumber range can be
circumvented, facilitating the PCA identification of key
chemical information.
When the Raman signal is weak, the variation of the Raman

signal is significant and usually presents as a random noise, as
observed in Figure 1a,b. This kind of random noise (not the
spectrum background) may result from two main sources,
including the CCD detector (dark current and reading noise)
and the signal itself (shot noise); the impact of noise can be
strong under certain circumstances, such as short integration
time or use of a high wavelength laser.28 The noise can be
hopefully removed by smoothing. The result is shown in
Figure 1c. Herewith, we select an adjacent-averaging mode
with the points of window of 5. Consequently, the signal-noise
ratio can be increased.
Sometimes, cosmic rays are collected with the Raman

signal.29 Cosmic rays are randomly generated and result from
decay of radioactive atoms present within the CCD detector,
which is known to distort the principal component direction in
PCA.30 They should be removed before the PCA analysis,
particularly when the Raman spikes caused by cosmic rays
overlap the characteristic peaks, as presented in Figure 1d.
Here, we selected two spectra as examples. We used (i) a
percentile filter (points of window, 5; boundary condition,
none; and percentile, 50) and subsequently an FFT filter
(points of window, 5) to remove the cosmic rays. After
filtration, cosmic rays can be significantly decreased, if not
completely removed.
Not all of these pretreatments are compulsory and positive

for analysis. For example, depending on the pretreatment
algorithm and the signal-noise ratio of the raw spectrum, some

pretreatment might lead to the signal loss, such as when over-
conducting the baseline correction and over-smoothing the
curves. From our current experiences, we generally recom-
mend the pretreatment of the wavenumber range selection and
the cosmic ray removal, prior to the dual-PCA analysis.
Caution should be exercised in the use of other pretreatments,
depending on the raw data.

Dual-PCA: A Mixture of Two Virgin Microplastics. As
reported recently, when a sample surface is scanned, we can
map the specific molecular spectrum to visualize the sample by
generating an image.22 During this scanning process, a
spectrum matrix, akin to a hyperspectral database, is produced.
To decode this matrix toward imaging, PCA has been
demonstrated to enable effective extraction of spectrum
information.13,14,18 Ideally, PCA can decompose the spectrum
matrix to two new matrices, one containing the spectrum
profile to enable the identification of the target and another
containing the spectrum intensity to map the image.
Herein, we test a “known” sample first,22 which is a mixture

of virgin PVC and PE. After cutting off the wavenumbers to
focus on the wavenumber range of 200−3500 cm−1 and
removing the cosmic rays, the PCA can extract the several
main principal components. Their loading coefficients are
mapped as images and shown in Figure 2.

In Figure 2a, there are several particles. The squared area
contains two particles that were assigned to PVC and PE, as
confirmed and reported before (Figures S1 and S2, Supporting
Information).18,22 Herein, we pretreated the raw data and
subjected the spectrum matrix to the PCA analysis.
Accordingly, more accurate analysis results are obtained here
and marked as “After” (compared to “Before” the pretreat-
ment). In Figure 2b,c, for the PCA spectra of “After”,
according to characteristic peaks that are marked with dashed
lines, we can assign PC1 to PE and PC2 to PVC, which is
different from “Before” when we assigned PC1 to background/
PE, PC2 to PE, and PC3 to PVC, respectively.18 This can be
mainly attributed to the removal of the undesirable Rayleigh
scattering signal in the low-frequency region.31 The result
suggests the importance of selecting an appropriate wave-
number range.

Figure 1. Pretreatment of the Raman spectrum, including (a) baseline
correction, (b) wavenumber range selection, (c) curve smoothing,
and (d) cosmic ray removal. In (d), two spectra are pretreated to
remove the cosmic rays (arrowed).

Figure 2. First round of PCA analysis on the Raman spectrum matrix,
including a (a) photo image, (b,c) PCA spectra, and (d−f) PCA
intensity images mapping the loading coefficients of PC1−PC3,
respectively, the (g) mapped mean, and (h) standard deviation. In
(a), the squared area 88 μm × 88 μm was scanned to collect the
Raman signal with a pixel size of 1 μm × 1 μm, 0.5 s integration, to
generate a spectrum matrix containing 7744 (88 × 88) sets of Raman
spectra. In (b,c), the Raman spectra of PE and PVC are presented for
comparison, with the characteristic peaks marked with dashed lines,
after intensity off-setting. The PCA analysis was conducted “Before”
and “After” the raw data from the spectrum matrix were subjected to
pretreatment, as marked. The images in (d−h) are generated from the
PCA analysis after the spectrum pretreatment.
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When the loading coefficients of principal components are
mapped as images, Figure 2d−f is generated, which is also
different from “Before” (Figures S1 and S2, Supporting
Information). Herein, after the pretreatment, the clear patterns
of PE and PVC are mapped in (d,e), directly and certainly,
without interference from each other, suggesting the improve-
ment of the PCA analysis.
Another image in Figure 2f (and Figure S2, Supporting

Information) resembles the noise or the calculation variation,
as we cannot distinguish the patterns of PVC and PE. Although
the PCA spectrum of PC3 in Figure 2c is somewhat
comparable to that of PVC, the proportion of variation
explained by this eigenvalue (0.23%) is much lower than that
of PC2 (16.73%) and PC1 (81.59%). Consequently, it is
difficult to distinguish the PE from PVC in the mapping image
in (f).
The mapped mean (g) and deviation (h) enable visual-

ization of the distribution of the main signal collecting area and
the analysis uncertainty area. That is, from Figure 2g, we can
see that the signal is stronger in the top-half area than in the
bottom-half, mainly from PE. However, in this top-half area,
the analysis standard deviation is also higher in (h). This is
because the confocal Raman is focused on the top-half part so
that the signal over this part can be more efficiently collected.
Another possible reason is that, for this sample, the Raman
activity of PE is higher than that of PVC.
In Figure 2a, only parts of the two particles in the area have

been squared and scanned. In Figure 2d, once the top-half is
assigned to PE, the assignment can be reasonably expanded to
the whole item connecting this scanned area in (a). Similarly,
in Figure 2e, the same expansion can be conducted for the
bottom-half. We thus can assign the whole particle in Figure 2a
in the middle part to PE, and the bottom particle to PVC.14

Note that the precondition for this assignment expansion is
that each particle is made of the same plastic, uniformly.
Although we can generate images to visualize the

distribution of the two microplastics, we need Figure 2b,c to
compare the PCA spectrum with the Raman spectrum, using
the naked eye for the assignment. This kind of assignment has
limits and may create some bias. That is because, in Figure
2b,c, the comparison is not straightforward, even after the
improved PCA analysis. In the following, we will develop a
method to conduct the comparison and assignment automati-
cally and digitally, via a software algorithm, rather than via the
naked eye. The personal bias or human error can thus be
significantly decreased, if not completely overcome.
The five decoded PCA spectra from the first round of PCA

analysis are presented in Figure 3a. Figure 3b compares three
of them with the standard Raman spectra of plastics, which
include eight common plastics that we usually use in our daily
life. As mentioned in Figure 2b,c, the vision-based comparison
is complicated, even with the dashed lines to indicate the
characteristic peaks of each plastic (PE or PVC). In Figure 3b,
when the three PCA spectra are compared with eight Raman
spectra, the situation is much more complicated, and an
algorithm approach is thus preferred. An algorithm-based
comparison is to recognize a digital value to indicate the
similarity or difference, among a suspected spectrum and the
standard spectra, akin to an index.21 Fortunately, the
correlation of PCA analysis can be used for this comparison
and justification.
Taking the PCA spectrum of PC1 from the first round of

PCA for example, we compare it with the eight standard

spectra, in order to identify the type of plastic.21 To avoid the
comparison bias and to increase the accuracy, we pretreat the
spectrum, as discussed above. The pretreatment includes the
baseline correction, smoothing, and cosmic ray removal,
interpolating to adjust the wavenumber (x axis) and normal-
izing the intensity (y axis). After the pretreatment, the spectra
are presented in Figure 3c.
We then run a second round PCA analysis on this spectrum

matrix that contains one PCA spectrum and eight Raman
spectra. From the loading plot in Figure 3d, we can see that the
main eight plastics can be effectively separated and
distinguished from each other, which enables the assignment
of a suspected sample to one of those plastics. Due to the
presentation limitation, herein, only a three-dimensional plot
of PC3−PC4−PC5 (of the second round of PCA) is shown
(as x−y−z axis), and the rest are shown in Figure S3
(Supporting Information). In this three-dimensional plot, PC1
(of the first round of PCA) looks close to PE toward allocating
its assignment.
As discussed above, we run this second round PCA in order

to extract a new matrix, the correlation matrix, although there
might be other options and algorithms to obtain the
correlation as well. The data are shown in Table S1
(Supporting Information) and imaged in Figure 3e. The
“sword” shape matrix is dominated by the spectra of eight
plastics and is symmetrical along the diagonal. Only the top
part (or the left part) is contributed by the PCA spectrum of
PC1 (of the first round of PCA). We thus extract this part of
information and present it in Figure 3f. While the “sample of
PC1” has a correlation of “1” for itself, it yields the correlation
values of 0.9804 with PE, 0.8954 with PP, and 0.85268 with
PA. If we set a threshold value of 0.9 or take the maximum, we
can assign PC1 to PE, which agrees with the vision-based
justification in Figures 2b/3b, suggesting the success of the
digital assignment.
Similarly and in parallel, we combine each of the PCA

spectrum of PC2, PC3, PC4, and PC5 from the first round of
PCA and run the second round of PCA individually. We then
extracted their correlation values for comparison, and they are
listed in Figure 3g. Again, if we set a threshold value of 0.9 or
take the maximum, we can assign PC2 to PVC, similar to the
assignment of PC1 to PE. The correlation values of others are

Figure 3. Second round of PCA analysis on the first round of PCA
spectra of PC1−PC5 in Figure 2. (a) shows the PCA spectra extracted
from the first round PCA analysis. (b) PCA spectra of PC1−PC3 and
comparison with standard Raman spectra of eight common plastics,
after intensity off-setting. (c) Pretreated spectra in (b) for the second
round of PCA. After the second round of PCA analysis, the (d)
loading plot, the (e) correlation matrix, and the (f) correlation value
of PC1 (of the first round PCA) are shown. (g) Results of the
correlation value of PC1−PC5, when they are individually subject to
the second round of PCA analysis.
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low, all <0.4. Therefore, we assign them to noise, rather than
plastics.
This digitalized assignment from the PCA correlation value

of the second round of PCA in turn can support the
assignment of the mapping images in Figure 2. The mapped
images of the loading coefficients of PC1 and PC2 are thus to
visualize the distribution of microplastics, including PE and
PVC, while the rest are assigned to the noise or background.
The above analysis is for a sample that we tested before and

we know that it is a mixture of PE and PVC.18,22 In the
following part, we will validate this dual-PCA approach to
analyze an “unknown” sample.
Dual-PCA: An Unknown Sample for Validation. When

we use a trimmer in our garden, we might generate nylon
microplastics, or more seriously, nanoplastics.23 For compar-
ison with our new approach of dual-PCA, Figure 4 shows the
results when a previous approach is employed to generate
images.12,22 We extract the Raman peak intensity at the
characteristic peaks of the nylon and map them as images.

Figure 4a shows the photo image. We can hardly see and
assign nanoplastics, either due to light diffraction, the
resolution of the camera, or the absence of the molecular
information. Raman spectra are shown in Figure 4b, which
were collected during the scanning process. There are three
typical spectra, one with a relatively strong signal, one of
middle strength, and one that was collected from the blank
area as the spectrum background. Basically, all the Raman
signal is weak.
When mapped at the characteristic peaks of nylon, images

(c−j) are generated. We can see that the mapped pattern is
well matched with that in Figure 4a. However, most of them
are blurry, so the image certainty is low, due to the
contribution from the individual peak of the spectrum, rather
than from the whole set of spectra. If we did not remove the
spectrum background, the image in Figure 4d actually shows a
clear pattern. However, the molecular information is uncertain,
due to the presence of the background. When the individual
images are merged together for cross-checking and to increase

the signal-noise ratio, the image (j) gets more blurry, except
the bright dot (500−800 nm) at the right-bottom corner. The
logic-based algorithm is limited in its ability to increase the
assignment certainty, particularly when the signal is weak and
when the item size is at the nanoscale. The noise dominates
the images, as shown here.
In order to map an image with a higher certainty or signal-

noise ratio, we run the first round of PCA to decode the
spectrum matrix to map the PCA intensity images and
simultaneously generate the PCA spectra,18 and the second
round of PCA to assign the suspected materials, digitally and
automatically, after merging the PCA spectrum with eight
plastics’ standard spectra. The results are shown in Figures 5/6.

Figure 5 shows the results after the first round of PCA
analysis. We extract the PCA spectra and show them in Figure
5a. When compared with the standard Raman spectrum of
nylon (PA6) via the naked eye, we can suspect PC2 to be
nylon, PC1 to be the spectrum background, and PC3−PC5 to
be noise. The mapped images are shown in Figure 5(b−d),
including the loading coefficients of PC1 and PC2. The images
mapping other coefficients, the mean, and the standard
deviation are shown in Figure S4 (Supporting Information).
We then run the second round of PCA analysis in order to

assign the suspected items digitally.
Figure 6 shows the results after the second round of PCA

analysis. Again, we merge the PCA spectrum of PC2 (named as
“sample”) with the eight common plastics, as shown in Figure
3c. After the pretreatment, including baseline correction and
smoothing, interpolation, and normalization, we run PCA
analysis again. Similarly, we also show the loading plot in
Figure 6a, using a three-dimensional presentation including
PC3, PC4, and PC5. It looks like our sample is close to PP and
PA.
The correlation matrix is shown in Figure 6b, and the data

are shown in Table S2 (Supporting Information). When
extracted from the matrix, the correlation value of “sample” is
shown in Figure 6c. The highest value of correlation is 0.95339

Figure 4. (a) Photo image, (b) typical Raman spectra, and (c−j)
intensity images mapped at characteristic peaks of PA6/nylon, as
indicated under the images (with the peak width as well). The photo
image of 10 μm × 10 μm in (a) was scanned, and all Raman signals
were collected with a pixel size of 0.33 μm × 0.33 μm, 1 s integration,
to generate a matrix containing 900 (30 × 30) sets of Raman spectra.
In (b), the spectrum of PA6 is presented and compared with three
typical spectra collected during the scanning process, a relatively
strong one, a middle one, and a weak one. For images (c−j), the color
off-setting of 10% is carried out to pick the strong intensity at the
different peaks, except in (d), where the spectrum background has not
been removed. (j) is an image merged (c, e−i), using logic-OR/AND,
as suggested.

Figure 5. Results of the first round of PCA analysis on the raw Raman
data presented in Figure 4. (a) PCA spectra of PC1−PC5 and
comparison with the Raman spectrum of PA6, after intensity off-
setting. (b−d) Images mapping the loading coefficients of (b) PC1
and (c,d) PC2, respectively. (d) Another version of (c), using a three-
dimensional presentation.

Figure 6. Results of the second round of PCA analysis on the raw
Raman data presented in Figures 4 and 5. Taking PC2’s PCA
spectrum (of the first round of PCA) as “Sample”, and subjecting it to
the second round of PCA analysis, (a) shows the loading plot, (b)
correlation matrix, and (c) correlation values.
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for nylon of PA followed by 0.91139 for PP and 0.88269 for
PE. The higher correlation value yields a higher certainty,
which leads us to assign it to PA. We thus recommend that the
maximum correlation value should be taken. More research is
needed here to broaden the database and to cover more types
of plastics. In addition to the polymer information, the spectra
of comment coingredients, such as colorants and plasticizers,32

can also be added to the database.
The assignment to PA can be used in the images in Figure

5b,c, to visualize the distribution of PA including a wire
(diameter or width <1 μm) and a nanoplastic (size <1 μm),5,33

with a much higher certainty and clarity than that in Figure 4,
suggesting the advantage of this dual-PCA approach. In Figure
5d, we even can see an extra weak fragment or particle that is
mapped with a low PCA intensity. Note the intensity image is
not directly related to the physical size along the z axis
direction, no matter whether it is microplastic or nanoplastic.
That is, this dual-PCA can effectively pick up the strong signal,
along with the weak signal, and map them in the x/y axis plane.
Effect of Wavenumber Variation. Another advantage of

this dual-PCA approach is that the variation of the wave-
number/wavelength has a very limited effect on the assign-
ment, as shown in Figure 7. Wavenumber variation can be

caused by instrumental or measurement environmental
changes.34 Different detectors of the Raman setup to collect
the Raman signal can suffer from this kind of variation, either
due to the prism/transform issue or owing to the wavenumber
resolution and the measurement shift etc. Furthermore, the
change to the measurement environment (e.g., from the solid
phase to aqueous phase, to the adsorbed phase35) and the
change to the chemical bond situation (such as electronic
structure, geometric isomerism, and molecular conforma-
tion36) might shift the position of the peaks too. In the
meantime, the temperature fluctuation may also cause
wavenumber drifts at a rate of ∼0.1 to 0.4 cm−1/°C.37 From
our experiences of using different brands of the Raman setup,
also echoed by the literature report,35 this kind of wavenumber
variation might be as high as 10−20 cm−1, even when the
wavenumber calibration has been conducted prior to each test.
This is the reason why in Figure 7a we intentionally shift the
wavenumber to a lower range of down to −10 cm−1, or to a
higher range up to 10 cm−1, to demonstrate the effectiveness of
our dual-PCA method. Note that herein only partial spectra
are shown, but the whole set of spectra has participated in the
dual-PCA analysis.
Fortunately, after the dual-PCA analysis, the values of the

correlation are still located within an acceptable range. If we
assign the suspected item via the maximum value, there is no
change for us to assign it to PA again, as suggested in Figure
7b. The correlation values are listed in Table S3 (Supporting

Information). Despite this positive result, more research is
needed to better understand the robustness of the dual-PCA
method in response to spectral changes.

■ CONCLUSIONS
We successfully demonstrated a digital approach to enable the
identification and assignment of plastics, via two rounds of
PCA analysis. This paves the way for machine learning to
analyze the microplastics and particularly nanoplastics.
Before the analysis process demonstrated in this research can

been implemented as a software package, we need more
research to address several challenges, including (i) the
involvement of the Raman scanning process, to enable the
specific area to be selected for position/item-intentional
scanning, prior to the analysis, or for in-situ feedback from
the PCA analysis; (ii) a more accurate decoding in the first
round of PCA analysis to extract more meaningful information;
(iii) the involvement of more plastics to take part in the second
round of PCA analysis, even including some other items such
as dyes/pigments etc. from a universal database; and (iv)
combination with some supervised algorithms to finally realize
a machine learning process.
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