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Abstract: The generation of microstructured patterns on the surface of a specific polymeric material
could radically improve their performance in a particular application. Most of the interactions with
the environment occur at the material interface; therefore, increasing the exposed active surface
considerably improves their range of application. In this article, a simple and reliable protocol to
form spontaneous wrinkled patterns using a hydrogel layer is reported. For this purpose, we took
advantage of the doctor blade technique in order to generate homogenous films over solid substrates with
controlled thickness and large coverage. The hydrogel wrinkle formation involves a prepolymerization
step which produces oligomers leading to a solution with increased viscosity, enough for doctor
blade deposition. Subsequently, the material was exposed to vacuum and plasma to trigger wrinkled
pattern formation. Finally, a UV-polymerization treatment was applied to fix the undulations on top.
Interestingly, the experimental parameters allowed us to finely tune the wrinkle characteristics (period,
amplitude, and orientation). For this study, two main aspects were explored. The first one is related
to the role of the substrate functionalization on the wrinkle formation. The second study correlates
the deswelling time and its relationship with the dimensions and distribution of the wrinkle pattern.
In the first batch, four different 3-(trimethoxysilyl)propyl methacrylate (TSM) concentrations were
used to functionalize the substrate in order to enhance the adhesion between hydrogel film and
the substrate. The wrinkles formed were characterized in terms of wrinkle amplitude, wavelength,
pattern roughness, and surface Young modulus, by using AFM in imaging and force spectroscopy modes.
Moreover, the chemical composition of the hydrogel film cross-section and the effect of the plasma
treatment were analyzed with confocal Raman spectroscopy. These results demonstrated that an oxidized
layer was formed on top of the hydrogel films due to the exposure to an argon plasma.
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1. Introduction

Over the last few years, material surface micro-modification—both physically and
chemically—has become an important topic for researchers in the area of material science due to
its interesting characteristics which may be useful in various application fields such as optoelectronic
devices [1,2], smart fabrics [3], biocompatible surfaces for cell growth [4], cell contact screening
platforms [5], mechanical sensors, energy storage, and chemical detectors [6], among others.
Surface modifications (chemical or topographical) can be generated at different length scales on the
material surface by varying the experimental conditions for their fabrication. Chemistry and surface
microstructure play a fundamental role in the surface properties of the material and, for instance
in bio-related applications, these two characteristics significantly alter the way biological media
react [7]. In this context, surface properties have been reported to be critical in the development of
novel biomaterials. Accordingly, it has been possible to fabricate selective biofouling surfaces which
can stimulate cell growth while avoiding bacterial colonization, just by changing the scale of the
micro-patterns present on the surface [8].

Different methodologies for surface micro-modification have been carried out in the past years,
such as laser/electron-beam, micro- [9,10] or nano-lithography [11], magnetron sputtering [12],
photolithography [13], or chemical etching [14]. These methods have the advantage of allowing
high resolutions and control in surface patterning shapes and dimensions, but at the expense of long
fabrication times and expensive manufacturing processes. In previous studies, it was reported that the
morphologies and sizes of the patterns formed on top of the materials had an intimate relationship with
the thickness of the film itself. In fact, Zhang et al. [15] demonstrated that the dynamics of ultra-thin
molecular glass films were related to their thickness variation. They showed that below 30 nm, the film
presented a liquid-like behavior, which generated morphological changes in the patterns, increasing
their roughness together with the layer thickness. Recently, the research group of Chung et al. [16]
studied the relaxation dynamics of thin polymer films below glass transition temperature via the
compression of polystyrene films supported on polydimethylsiloxane substrates. They demonstrated
that the relaxation time and the morphology dynamics of wrinkled films were strongly dependent
upon the temperature of films which presented thicknesses below 100 nm.

In this study, we propose an alternative approach that takes advantage of surface instabilities to
spontaneously generate randomly distributed micro-patterns at affordable prices and in much lower
fabrication times than the techniques previously mentioned [17]. In addition, surface patterning based
on instabilities does not require expensive equipment for modifying the surfaces. Moreover, these
techniques allow users to control the dimensions and the distribution of these micro-patterns by
varying the experimental conditions.

Among the methodologies based on surface instabilities, which include among others
dewetting, breath figure formation, electrohydrodynamic patterning, thermal-gradient-induced surface
structuration, and reaction–diffusion surface patterning, wrinkle formation is probably one of the
most intensively explored approaches to produce micro- and nanometer size functionalized wrinkled
surfaces due to their interesting applications for the elaboration of optical surfaces, as templates for
microparticle arrays, the elaboration of flexible electronics, or the control of the adhesive properties of
the surface [8,18].

Different alternatives have already been reported to form wrinkled surface patterns.
However, most of the methodologies are based on the employment of an external stimulus
(temperature, mechanical stretching, etc.) applied over the top layer, which has different mechanical
properties (usually a rigid layer) from the material foundation (soft). Then, by removing the external
stimulus, the formation of a micro-wrinkled pattern is triggered due to mechanical stress mismatch [19],
which accommodates the stress by producing an out-of-plane deformation of the surface.

In this case, the rigid top layer was formed over a biocompatible hydrogel film via a controlled
deswelling process under a vacuum atmosphere. Then, by exposing the dried surface to argon plasma,
the wrinkled pattern was spontaneously formed on top in just half a minute [20,21]. Both processes
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were necessary to generate the wrinkled pattern. The pattern formation parameters, like plasma
exposure and vacuum time, were continuously varied in order to find the most optimal conditions to
generate a homogenous and scalable microtopography on the hydrogel film.

In parallel, we studied the adherence of the film with the substrate. Increasing the adherence is
crucial for some applications in which the layer needs to remain anchored for long periods of time
under stressful conditions [22,23]. Accordingly, we varied the functionalization parameters of the
substrate and observed the effect that these modifications had on surface pattern morphology and on
the bonding forces with the substrate.

Interestingly, the variation of deswelling time and substrate functionalization had a relevant effect
on pattern dimensions, whereas argon plasma exposure time had none. On the other hand, plasma
exposure generated chemical differences on the rigid top layer. It seems that this process incited the
creation of free radicals on the surface, which in the presence of air, quickly oxidized, forming a thin
rigid layer on top [24,25].

2. Results and Discussion

2.1. Functionalization Effect on Wrinkle Hydrogel Film Adherence

2.1.1. Layer Thickness and Contact Angle

The first series of experiments were focussed on the analysis of the functionalization step’s
role in the wrinkle formation. The substrate functionalization process was performed by following
the procedure explained in the experimental part reported by Yuk et al. [26], but by varying
the 3-(trimethoxysilyl) propyl methacrylate (TSM) solution concentration from 0.005% to 2% v/v.
The hypothesis is that based on the fact that TSM molecules are gradually chemisorbed on the silicon
substrate, the chemical composition of the SAMs can also be varied. The relationship between TSM
concentration and monolayer thickness is mainly based on the kinetic molecular law which establishes
that, according to the species concentration, the number of molecular shocks will vary [27,28]. In this
case, the TSM solution concentration influenced the effective collisions between the hydroxylated
surface obtained before piranha treatment and the methoxy groups belonged to the silane molecules.
The interaction between these radical groups generated a covalent anchoring between the TSM
molecules and the substrate surface. The thicknesses of the TSM layer were characterized by using
an ellipsometry technique together with static water contact angles. A multi-angle laser ellipsometer
model SE400Adv, from SENTECH Instrument GmbH (Berlin, Germany), was used to perform optical
measurements with variable incidence angles from 30◦ to 90◦ in steps of 0.5◦; the equipment possesses
an attached motorized goniometer from Hüber Diffraktionstechnik GmbH & Co. (Rimsting, Germany)
for control of the incidence angle variation. A stabilized He-Ne laser (λ = 633 nm) allowed us to obtain
measurements to a precision of ± 0.1 Å in the thin film thickness. It is important to mention that the
ellipsometry measurements were carried out over silicon waters (Si(100)) instead of glass substrates
because clear materials are not recommended for ellipsometry due to light intensity lost via backside
reflection processes. The TSM functionalization process was the same for silicon wafers as for the
glass substrates.

Water contact angle measurements were performed using a Theta optical tensiometer (Attension,
from Biolin Scientific, Gothenburg, Sweden), adding 4 µL of liquid phase over the solid sample.

As can be observed in Figure 1, the thickness of the TSM monolayer gradually increases with
the concentration of the solution used in each case (black line). The thickness grows from ~0.5 nm
to ~2.5 nm with the TSM concentration, which varies from 0.005% to 1% v/v. These results indicate
that, at low concentrations (0.005% v/v), it is not possible to form a homogeneous grafted TSM layer
on the silicon substrate surface. On the other hand, at 0.1% v/v, the TSM layer thickness increases
substantially, agreeing with theoretical TSM molecular length [29,30], making it possible to declare
that a TSM monolayer has been successfully grafted and self-assembled on top. Interestingly, after this
point (1% and 2% v/v), the thickness of the layer tends to increase (~2.5 nm), entering into a plateau
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zone which is characteristic of a TSM bilayer formation. In short, after 1% v/v, the TSM deposition
enters into a bilayer metastable regime [29].

Static water contact angles were also measured on the substrate surface (Figure 1, blue line).
These values could serve as an indirect method to evaluate the amount of TSM molecules grafted
onto the surface because the exposed vinyl groups of the methacrylate sector in their molecular
structure have a characteristic hydrophobic nature [31]. Consequently, as the TSM molecules attach
onto the surface, the substrate surface wettability decreases, increasing their contact angle. The results
demonstrate that by increasing the TSM concentration, the static water contact angle grows, showing
that substrate surface hydrophobicity increases with the TSM molecular amount present on the surface.

Figure 1. Above: Evolution of the thickness of the self-assembled 3-(trimethoxysilyl)propyl
methacrylate (TSM) monolayer (black line) and static water contact angle (blue line) as a function of
the TSM concentration employed ((a) 0.005%, (b) 0.1%, (c) 1%, and (d) 2% v/v). The data is plotted on a
logarithmic scale. Below: Water contact angle images of the wrinkled surfaces; the right contact angle
is drawn on each case.

2.1.2. TSM Concentration Effect on Wrinkled Pattern Morphology

Once the substrate silanization deposition was fully characterized, prepolymerized hydrogels
were deposited on top of the silanized glasses, using the same vacuum exposure time
(7 h) used previously. The films were obtained by using the same steps explained in the
methodology section.

Then, the wrinkled hydrogel films were characterized by using an AFM to measure the wrinkle
characteristics. The results obtained are depicted in Figure 2; the wrinkle wavelengths and amplitudes
according to TSM concentration are depicted in the Supplementary Materials section (Figure S1).
In Figure 2, four different AFM micrographs are shown according to TSM concentration (from 0.005%
to 2%). The wrinkle dimensions, amplitude (height), and wavelength (width) tend to slightly decrease
with the TSM concentration increase from 1.5 ± 0.3 µm to 1.2 ± 0.2 µm in amplitude and from
4.4 ± 0.7 µm to 3.4 ± 0.6 µm in wavelength for the most extreme cases (TSM concentrations of 0.005%
and 2%). This effect could be caused by the adherence variation between substrate and hydrogel film.
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Figure 2. AFM micrographs of hydrogel films at different TSM concentrations (0.005%, 0.1%, 1%,
and 2% v/v). A and W represent the mean amplitude and wavelength of the most extreme wrinkled
patterns. The scale bar in the image corresponds to 10 µm.

In Figure 3a–b, the roughness of the samples together with the aspect ratio of the wrinkles are
depicted. In both cases, the TSM concentration used to silanized the substrate was varied from 0.005%
to 2% v/v. As can be observed in Figure 3a, the roughness tends to decrease with TSM concentration,
similarly with the amplitude and the wavelength of the wrinkles, as was expected (Figure S1), because
smaller surface undulations produce a smaller roughness on top. Interestingly, in the case of the aspect
ratio (Figure 3b), the tendency is different. In fact, the aspect ratio values almost do not change at all
and remain close to ~0.35, which indicates that, independent of the TSM concentration used to silanize
the substrate, the ratio between the amplitude and wavelength of the wrinkled patterns does not
change, that is, although the dimensions of the wrinkled patterns (height and width) slightly decrease
with the increase of TSM concentration, they do so together, thus keeping their variation ratio similar
for all the cases.

Figure 3. (a) Wrinkled pattern roughness and (b) aspect ratio of the hydrogel films deposited over
silanized substrates at different TSM concentrations.

In order to confirm the increasing adherence between the hydrogel layer and the substrate surface
as a result of the increasing TSM concentration, cross-hatch adhesion tests were performed for each
sample using a Cross-hatch adhesion test kit, model CC1000 from Dyne Testing Ltd. (Lichfield, UK),
using a six-blade cutter spaced at 2 mm for coating thicknesses of no more than 60 µm, according to
the standards ASTM D3359 [32] and ISO 2409 [33]. The kit uses an adhesive roll tape appropriate for
soft coatings.

The results demonstrate that, at low TSM concentrations (0.005% v/v and 0.1% v/v), the adherence
was rather poor resulting in almost no material attached after tape peeling (less than 10%).
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Wrinkled surfaces prepared using 1% v/v TSM concentrations presented improved adhesion and
the remaining area after peeling increased up to 25 ± 2%. Finally, using a TSM concentration of 2% v/v,
the area of material which remained attached to the surface increased up to 73± 3%, close to three times
more than in the case of 1% v/v. These results are depicted in Table 1. The adhesion increase could be the
reason for the wrinkle dimension decrease; as the adhesion with the substrate increases, the hydrogel
film faces greater mechanical impediments, making it more difficult for the material to deform, thus
altering the wrinkle dimensions. However, it is difficult to categorically make this statement because, at
low concentrations, it becomes complicated to obtain homogenous TSM monolayers, thus producing a
higher hydrogel film detachment from the substrate. Therefore, the synergy between these two effects
could generate the wrinkle dimension variation on top of the film.

Table 1. Results of cross-hatch adhesion tests for hydrogel films deposited over silanized substrates at
different TSM concentrations.

TSM Concentration (v/v) Area Attached after Peeling

0.005% 5.3 ± 2%
0.1% 8.5 ± 3%
1% 25.0 ± 2%
2% 73.0 ± 3%

2.2. Effect of the Vacuum Exposure Time on the Wrinkle Dimensions

Once the prepolymerization step was achieved and the microgels were correctly deposited on
top of the functionalized substrates using a concentration of 2% v/v of TSM (higher adhesion results),
the retained water was eliminated from the film via a deswelling process under a rough vacuum
atmosphere at room temperature (10−2 torr, 22 ◦C). As a result, the second important experimental
parameter explored was the duration of the vacuum exposure. The vacuum exposure time was varied
from 2 to 14 h. The hydrogel films obtained after the vacuum treatment were exposed to Ar+ plasma
in order to trigger a polymerization on the deposited microgels [24,34]. The deswelling process is
responsible for generating surface instabilities on the materials, which, upon polymerization/oxidation
of the surface after Ar+ plasma etching, produce the spontaneous formation of wrinkled patterns on
top due to a stress/strain mismatch between the top rigid layer and the soft foundation [20]. By using
this strategy, it was possible to form homogeneously wrinkled and reproducible films of 8.7 ± 1.6 µm
thickness, and this value was confirmed via AFM measurements in masked regions of the samples.
An AFM micrography and a profile are depicted in Figure 4. Interestingly, the variation in TSM
concentration, vacuum time, or plasma exposure time does not affect considerably the thickness of the
hydrogel sample.

Figure 4. Cross-section profile obtained with AFM of a masked region from a sample deposited using
the doctor blade method. The scale bar corresponds to 20 µm.



Molecules 2019, 24, 751 7 of 17

Figure 5 shows the AFM micrographs of the micro-wrinkled patterns obtained via the variation
of vacuum exposure time. Five micrographs are shown with an increasing deswelling degree
(from 2 to 14 h of vacuum). As can be observed, the wrinkled pattern dimensions (wavelength
and amplitude) tend to decrease with a vacuum exposure time increase, resulting in wavelengths
of ~23.7 ± 0.9 µm for 2 h, to architectures with a wrinkle width of ~3.4 ± 0.6 µm for the samples
fabricated with 7 h of vacuum; a similar situation occurs with wrinkle amplitude (from 5.5 ± 0.4 µm
to 1.2 ± 0.2 µm). It is important to mention that at twice the time (14 h), flat surfaces were obtained
instead of wrinkled patterns. This effect could be related to the stiffness increase of the polymer
bulk with deswelling. The Young modulus of deswelled films was locally measured by using a force
spectroscopy method and analyzed using the Hertz model for indentation with conical/pyramidal
AFM tips over a soft flat surface [35,36]. The stiffness of the dried films varied from 0.6 ± 0.1 KPa
in the case of 2 h deswelling time to 1.4 ± 0.2 KPa in the case of 7 h, data which are in concordance
with the results obtained in González-Henríquez et al. [37]. As the water removed from the hydrogel
increases with deswelling time, the film becomes more rigid and therefore generates a smaller wrinkle
wavelength according to the equation obtained from the articles of Rodríguez-Hernández [19] and
Nania et al. [21,34]:

λ = A t

Es

(
1− v2

p

)
Ep (1− v2

s )

1/3

≈ A t
(

Es

Ep

) 1
3

(1)

where λ is the pattern wavelength, A is an arbitrary constant, t is the thickness of the top rigid layer,
E is the Young modulus, v is the Poisson ratio, and the subindices s and p refer to skin and polymer
bulk, respectively (i.e., to the rigid top layer and the soft foundation). In this case, the Poisson ratios
of both (rigid skin and soft foundations) are taken as 0.5 because the hydrogel, formed by a high
amount of water, is considered as an incompressible material. As can be concluded from Equation 1,
the stiffness of the foundation is inversely proportional to wrinkle wavelength dimensions generated
after plasma exposure. Interestingly, if the stiffness is higher enough to reach a critical value (14 h of
vacuum), the surface does not deform after the external stimulus application (argon plasma exposure).

Figure 5. AFM micrographs of HEMA-PEGDA575 samples at different vacuum exposure times, from
2 h to 7 h. A and W represent the mean amplitude and wavelength of the most extreme wrinkled
patterns. The scale bar corresponds to 10 µm.

In Figure 6 are plotted the tendency of both the amplitude and the wavelength of the wrinkled
patterns formed as a function of the vacuum exposure times. These results were obtained from a
specially designed image analysis code based on MatLab [8,37], which measures automatically the
width and the height of the wrinkles from a multi-level Otsu segmented image. The width of each
wrinkle is obtained from the image Hough transformation (ellipse adjustment) and the height is
estimated from a Gaussian single-peak fitting of the AFM micrograph profiles (Figure 5). As can be
observed in both line plots, the vacuum exposure time considerably affects the wrinkle dimensions,
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either the amplitude or the wavelength. This effect makes it possible to alter the morphology of the
patterns in an easy and reproducible way, just by changing the vacuum exposure time.

Figure 6. (a) Amplitude and (b) wavelength of the wrinkled patterns formed at different vacuum
exposure times.

Additionally, the formation of an oxidized layer on top of the material was corroborated by using
confocal Raman spectroscopy. Moreover, the chemical effect that generated the vacuum exposure time
on the films was detected by using this technique. Figure 7 shows some of the most relevant results of
the confocal Raman spectroscopy performed on samples with different vacuum exposure times.

Figure 7. Optical images, confocal Raman cross-sections, and spectra for the samples prepared at
increasing vacuum exposure time: (a) 2 h, (b) 5 h, (c) 7 h, and (d) 14 h.

First, the analyses were focused on the evaluation of some chemical changes produced at different
depths or strata of the film. From the Raman spectrum, we can estimate that when the samples were
exposed to 2 h and 5 h of vacuum, one intense band located at 1647 cm−1 is observed. This signal is
associated with -C=C- symmetrical stretching, commonly from the unreacted HEMA or PEGDA575

which remains after the thermal/photopolymerization. In the case of the sample prepared with 7 h and
14 h of vacuum, this signal completely disappears, indicating that the vacuum process over long
periods probably facilitates the evaporation of the unreacted monomers from the film.

According to the Raman spectroscopy cross-section mapping, the unreacted monomers
appear mainly in the valleys of the wrinkled patterns, probably due to a gravitational effect.
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Additionally, a thin layer on the top of the film was found in which the ratio of intensities between the
bands 1607 cm−1 and 1737 cm−1 was considerably lower. The first peak is related to the antisymmetric
stretching of the -C=C- bond, and the second with the >C=O stretching mode, which means that
the top layer possesses more >C=O groups, probably due to oxidation generated during the plasma
exposure process.

As mentioned before, the sample prepared with 14 h of vacuum did not present wrinkled
patterns, which probably occurred because the sample was totally polymerized due to the evaporation
of unreacted monomers, thus impeding the mechanical deformation of the top layer of the film.
This effect was in part demonstrated in previous studies performed by our research group [8,37].
Additionally, it is important to mention that the signal ratio between the bands 1607 cm−1 and
1736 cm−1, as indicated below, was slightly higher compared with that of the samples prepared at
2 h, 5 h, and 7 h of vacuum. Moreover, a signal located at 1412 cm−1, which could correspond
to the -CH3 bending and -CH2- symmetric scissoring modes, tended to disappear with the
increase of vacuum exposure time. This band is characteristic of HEMA monomer according to
González-Henríquez et al. [8]. Finally, for the sample obtained with 14 h of vacuum, one peak at
979 cm−1 was observed, which could be probably related to the in-phase wagging of >CH- group,
to the -C-C- skeletal stretching, or to the symmetrical -CH3 rocking modes from the terminal carbons
of the main chain. This signal is common from the poly(HEMA) chemical structure, indicating that
unreacted HEMA almost disappears from the film due to evaporation.

2.3. Plasma Exposure Time Variation

Finally, in order to understand the effect produced by the argon plasma exposure on the material
surface, samples with different exposure times were analyzed via confocal Raman spectroscopy and
3D optical profilometry. Raman spectroscopy results (Figure 8) show that the intensity ratio between
the signals located at 1607 cm−1 and 1736 cm−1, which corresponds to the antisymmetric stretching
of the -C=C- bond and to the >C=O stretching mode, respectively, were calculated using the sum
of two Lorentzian adjusted curves. Four samples, which correspond to different argon plasma time
exposures (10 s, 15 s, 30 s, and 45 s) were analyzed. For all the samples, the intensity ratio of the
band located at 1736 cm−1 is greater on the surface than in the deeper strata of the film, indicating
that a thin oxidized layer is formed on top of the samples. Interestingly, this ratio remains almost the
same value for all the cases, indicating that an increase in plasma time exposure does not produce
an over-oxidation of the surface. Apparently, the plasma time exposure increase generates a slight
variation in the oxidized layer thickness, but it is not possible to categorically affirm it due to the low
resolution of the confocal Raman spectroscopy in the cross-sectional direction.

Moreover, the results depicted above clearly indicate a lack of homogeneity in terms of chemical
composition in the samples irradiated below 30 s. In fact, according to the confocal Raman experiment,
in the samples fabricated after 10 s, 15 s, and 30 s of plasma exposure, it is possible to detect unreacted
monomers (HEMA and PEGDA575) evidenced by the presence of a band located at 1645 cm−1, which is
characteristic of -C=C- symmetrical stretching. In addition, in all the analyzed samples, a new
vibrational mode appears at 1681 cm–1, which could correspond to the >C=O stretching mode of
conjugated unsaturated aldehydes [38] or to the natural vibration of the -C=C-COOH group formed
after argon plasma exposure [39,40].
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Figure 8. Optical images, confocal Raman cross-sections, and spectral analysis for samples fabricated
at increasing plasma treatment time: (a) 10 s, (b) 15 s, (c) 30 s, and (d) 45 s.

In contrast to this, samples irradiated for 45 s provide wrinkled surfaces with a clear thin rigid
layer on top of a hydrogel substrate. The result of this transition can be easily observed in the 3D optical
profiler images depicted in Figure 9. These images were used as a complementary analysis for the AFM
micrographs. Profilometry allowed us to observe larger sectors of the sample, and to distinguish global
orderings that were not detectable in the “local” domains measured by the AFM. On the one hand,
Figure 9a–c indicates heterogeneous surfaces with wrinkles formed in domains, with preferential and
inconstant directions and thus with variable characteristics of amplitude and period. On the other
hand, Figure 9d clearly indicates the formation of a homogeneous wrinkled surface with a constant
wrinkle size. In summary, it can be concluded that those samples, with a homogeneous chemical
composition and a continuous thin rigid top-layer, also form homogeneous wrinkled surfaces.

Figure 9. Height profiles and three-dimensional reconstructions obtained from optical profilometry for
(a) 10 s, (b) 15 s, (c) 30 s, and (d) 45 s of argon plasma exposure time.
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3. Materials and Methods

3.1. Materials

All the solvents, monomers, and other reagents were used as received unless otherwise stated.
The hydrogels used to form the films were synthesized using 2-hydroxyethyl methacrylate (HEMA,
97.0%) as main monomer and poly (ethylene glycol) diacrylate (PEGDA)—with an average molecular
weight (Mn) of 575 g mol−1—as a crosslinking agent. The photoinitiator used in this synthesis
was 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959, 98.0%, Sigma-Aldrich,
St. Louis, MO, USA). All these reactives were purchased from Sigma-Aldrich (St. Louis, MO, USA).
A thermo-initiator, ammonium peroxodisulfate (APS, 98.0%, from Merck KGaA, Darmstadt, Germany),
was employed with the purpose of initiating the gelation reaction and obtaining an appropriate
viscosity for deposition.

Round glass coverslips (nominal thickness: 0.13–0.16 mm) from Ted Pella, Inc.,
(Redding, CA, USA) were employed as supports for depositing the hydrogel films.
1-Vinyl-2-pyrrolidone (NVP) stabilized with N,N′-di-sec-butyl-1,4-phenylenediamine, hydrogen
peroxide (30–32%), sulfuric acid (95–97%) Emparta® ACS, water for chromatography
LiChrosolv®, and Glacial acetic acid (100%) Emsure® ACS were obtained from Merck
KGaA (Darmstadt, Germany). Finally, 3-(trimethoxysilyl) propyl methacrylate (TSM, 98.0%),
from Sigma-Aldrich (St. Louis, MO, USA), was used to induce the substrate surface silanization with
the purpose of improving the adhesion of the hydrogel films.

3.2. Methods

3.2.1. Substrate Functionalization

First, the glass substrates were washed and sonicated for 5min in a solution of detergent and
distilled water to remove any trace of surface contaminants, such as grease. Then, the cleaned substrates
were submerged in a piranha solution (H2SO4:H2O2, 7:3) at 80 ◦C for 1 h [41]. This process generated
hydroxyl groups (-OH) on the substrate surface, making it highly hydrophilic. Finally, the substrates
were rinsed three times with MilliQ water and dried with a N2(g) flush (ultrapure).

The substrate functionalization was performed using a TSM solution (2% v/v) following the
procedure reported by Yuk et al. [26]. For this purpose, a 100 mL portion of deionized water was
acidified by adding glacial acetic acid drops until the solution reached a pH of 3.5. An aliquot of
40 mL was taken and mixed with 0.8 mL of N2(g) purged TSM solution, which was then vigorously
stirred for a few minutes. This solution was used to completely cover the substrate surface at
atmospheric conditions for 2 h, enough time to allow methoxy silane molecules to chemisorb on
the hydrophilic surface. Once the functionalization time was finished, the substrates were extensively
rinsed with ethanol three times and dried with N2(g).

In parallel, four different TSM solutions were prepared (0.005% v/v, 0.1% v/v, 1% v/v, and 2% v/v)
following the methodology proposed by Yuk et al. [26]. This study was carried out to understand
the TSM concentration influence that produced the self-assembled monolayer (SAM) on the
hydrogel adhesion. It was expected that a major concentration of TSM in the substrate surface would
produce a higher adhesion of the hydrogel film, thereby altering the wrinkled pattern morphology
due to variations in the mechanical conditions during deswelling. The wrinkled pattern formed on
top was characterized by AFM technique in each case; in addition, cross-hatch adhesion tests were
performed for the different TSM concentration cases.

3.2.2. Prepolymerization of the Hydrogel (Step 1)

The hydrogel synthesis was carried out in a glass vial and, accordingly, 1g of HEMA (monomer),
1g of PEGDA (crosslinking agent), and 10 mg of APS (thermo-initiator) were dissolved in 625 µL
of deionized water. In parallel, 17.5 mg of Irgacure 2959 (photoinitiator) was dissolved in 100 µL
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of NVP in a microcentrifuge tube. This solution was homogenized and poured into the glass vial
with the hydrogel mixture. Then, the vial was covered from light and purged with ultrapure N2(g)
in order to remove the remaining oxygen, which could generate undesired free-radical reactions.
Finally, the vial was heated in a thermoregulated bath at 50 ◦C for 30min until reaching an adequate
viscosity (80–120 cP) according to González-Henríquez et al. [8,37]. The solution viscosity was
measured in situ via the methodology explained in those articles, generating a pre-polymerized
hydrogel with a global conversion close to 50–60%.

3.2.3. Sample Deposition (Step 2)

The doctor blade system corresponded to a home-made assembly which used a syringe pump
(LSP01–1A/2A, Single Channel, Longer Precision Pump Co, Hebei, China) as a base. This equipment
allowed us to move the substrate precisely and horizontally with a controlled speed and high spatial
resolution (0.156 µm). An immobilized 90◦-beveled razor blade was gently positioned over the
substrate using a single axis translation stage from Edmund Optics Inc. (Barrington, NJ, USA).
This assembly allowed us to move the razor blade a predetermined distance from the substrate
surface. The thickness of the prepared film was directly correlated with this distance, the viscosity
of the polymer, and the coating speed inserted in the syringe pump, among other ambient factors.
The functionalized substrates were placed on the doctor blade mobile surface by fixing them with
double contact adhesive tape, and the distance between the knife and the substrate was set at 10 µm.
Then, an 8 µL portion of the oligomeric solution was placed on the substrate surface with a micropipette.
The speed of the mobile surface was set at 0.2 mm/s in order to generate a thin hydrogel film
homogeneously deposited on the substrate with high coverture.

3.2.4. Vacuum Exposure and UV-vis Photopolymerization: Spontaneous Formation of Wrinkled
Patterns (Step 3)

Once the films were successfully deposited using the doctor blade technique, the samples were
exposed to vacuum during different periods (2, 3, 5, 7, and 14 h) in order to remove occluded solvent
from the films. Interestingly, the material deswelling generated surface instabilities on the film due to
the polymerization gradient produced, leading to shear stress mismatch between the unpolymerized
and cured material layers. When the material was exposed to vacuum, the occluded water in the
hydrogel was eliminated, which, upon an external stimulus, produced the release of accumulated
stresses, triggering the formation of spontaneous wrinkled patterns on the hydrogel surface.
The amount of water evaporated during this process could generate different wrinkle morphologies
and sizes due to an increase or decrease in the stress released. The external stimulus applied to
hydrogel films was, in this case, an Ar+ plasma exposure, which probably oxidized and polymerized
the top layer of the film due to the generation of free radicals on the surface, that is, the combination of
plasma and vacuum exposure triggered the spontaneous formation of wrinkled patterns. If hydrogel
film is not exposed to plasma, the wrinkled pattern does not form, and a flat surface is obtained instead.
An argon sputter coater (Cressington, 108 AUTO, Watford, UK) coupled with a high-resolution film
thickness monitor (Cressington, MTM-20, Watford, UK) was used to generate Ar+ plasma etching on
the hydrogel film surface.

Finally, the sample was exposed to UV light in order to fully polymerize the film and fix the
wrinkled pattern onto the hydrogel surface. UV-photo polymerizations were carried out through
radiation exposure using a 9 W UV lamp with an emission peak centered at λ = 365 nm from Vilber
Lourmat Inc. (Marne-La-Vallée, France). Figure 10 shows a schematic description of the methodology
used in this study, starting with the synthesis and deposition until the wrinkled pattern formation via
deswelling and plasma exposure processes.

By following the indications explained, the glass substrates were functionalized with TSM at a
concentration of 2% (v/v) for 2h at room temperature [26]. Once the substrates were functionalized,
the hydrogel films were deposited on top by using the doctor blade approach.
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This methodology is highly innovative because it corresponds to a simple, cost affordable,
and easily scalable method to deposit films [42]. It becomes important to mention that the monomeric
mixture must be thermally polymerized (35 min at 50 ◦C) in order to obtain an appropriate solution
viscosity to reach a homogeneous deposition.

Figure 10. Schematic representation of the experimental procedure followed to form the spontaneous
wrinkled patterns on top of the hydrogel films.

The experimental settings employed for the preparation of the patterned surfaces play a major
role in the wrinkle characteristics. The conditions and parameters used during the functionalization
step, the duration of the vacuum exposure, and the plasma treatment were varied, providing an
interesting methodology to finely tune the wrinkle dimensions as well as the homogeneity and the
distribution of the surface patterns.

3.3. Characterization

The SAMs’ thicknesses for the four different TSM concentrations were obtained by ellipsometry.
In addition, water contact angle studies over functionalized glasses were carried out.

Optical microscopy (OM) was used as a first approach to observing the morphology of the sample
deposited over the TSM monolayer. A Bresser Trino Researcher II (40–1000×) trinocular microscope
(Rhede, Germany), coupled with a CCD color camera (5 Mp, Bresser GmbH, Rhede, Germany) and with
a cold light model CL-41 (OPTIKA©Srl, Ponteranica, Italy), was used for visualizing the topography
of the hydrogel wrinkled patterns.

Additionally, the tridimensional topography of the samples was obtained via AFM using an
AFM model NTEGRA Prima, from NT-MDT Co. (Moscow, Russia), in intermittent contact mode
at different scan ranges (20 × 20 µm2 and 50 × 50 µm2). Force spectroscopy measurements were
performed with a NaioAFM from Nanosurf Inc. (Woburn, MA, USA) using a tip specially designed
for this purpose (PPP-FMR from NanoWorld AG, Liestal, Switzerland). For these studies, the sample
was briefly imaged in AFM contact mode with the finality of identifying ridges and grooves in the
surface topography. Subsequently, 12 different points were selected in order to obtain statistically
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reliable information. The results were then analyzed using the Hertz model for indentation with
conical/pyramidal AFM tips over a soft flat surface [35,36]. Images were treated using the off-line
software Gwyddion 2.42 Freeware (Brno, Czech Republic) [43].

After the analysis of this data, the height and width of the hydrogel wrinkled patterns were
obtained using a MatLab code [37,42] specially designed for this purpose. In order to determine the
relation between the TSM concentrations (0.005, 0.1, 1, and 2% (v/v)) and the adhesion force generated
between the hydrogel deposited and the SAMs, cross-hatch adhesion tests were performed.

In parallel, confocal Raman spectroscopy studies were performed on the samples in order to
corroborate the formation of an oxidized layer on the top of the material. The chemical composition and
depth profiles of the polymeric films were determined using a CRM-Alpha 300 RA (WITec, Ulm, Germany)
equipped with a Nd:YAG dye laser (maximum power output of 50 mW at 532 nm). The Raman spectra
were taken point by point with a resolution step of 100 nm. Cross-section images were acquired using
this methodology, and the relative intensities between different Raman signals were analyzed to form
these images. Finally, a tridimensional representation of the surfaces was obtained using a profilometer,
whose results allowed us to determine the roughness of the films, which were compared to the values
obtained from AFM analysis. These cross-sectional profiles were obtained using a Zeta-20 optical profiler
(Zeta Instruments, San Jose, CA, USA) with different optical objectives (5×, 20×, 50×, and 100×).
The equipment has 13 nm in vertical resolution. The arithmetic average of the roughness absolute values
(Ra) was obtained using the Zeta3D™ metrology systems (San Jose, CA, USA).

4. Conclusions

In this study, wrinkled patterns were formed on the surface of hydrogel films via the exposition of
the samples to two different stimuli, namely, deswelling and surface oxidation. This was achieved via a
two-step process, first a vacuum exposure to extract surface or occluded water from the samples
followed by an argon plasma exposure step which produced surface oxidation via free-radical
generation on the top of the material. To deposit the samples, the doctor blade technique was used,
a methodology which is cost affordable and easily scalable, making it a very interesting solution for
industrialization processes. This technique allows fabricating homogenous films with a controllable
thickness and high surface coverage in short time periods.

The deposition parameters were tuned in order to generate a smooth and reproducible
surface. Round glass coverslips were used as substrates, which were first functionalized with
TSM solution with the purpose of enhancing surface adhesion between the hydrogel film and
the substrate. This functionalization allowed the adhesion to increase from 8% to approximately 70%.
These variations also produced changes on the pattern morphology due to a mechanical impediment
that generated the adhesion increase, thus making it more difficult for the film to deform and
therefore producing different patterns according to the functionalization degree of the substrate.
Similarly, deswelling time also produced important changes in the wrinkled surface pattern
morphology, varying the wrinkle width from ~24 µm to ~3.5 µm. In parallel, the chemical alteration of
the hydrogel was also analyzed by using confocal Raman spectroscopy, a technique allowing us to
demonstrate that a thin layer of oxidized hydrogel was formed on top due to plasma exposure.

Supplementary Materials: The Supplementary Materials are available online and include a figure with the
amplitude and wavelength of the wrinkled patterns obtained at different TSM concentration.
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