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Abstract
Chronic kidney disease (CKD) has become amajor health problemworldwide. This review describes the role of macrophages in
CKD and highlights the importance of anti-inflammatory M2 macrophage activation in both renal fibrosis and wound healing
processes. Furthermore, themechanisms bywhichM2macrophages induce renal repair and regeneration are still under debate
and currently demand more attention. The M1/M2 macrophage balance is related to the renal microenvironment and could
influence CKD progression. In fact, an inflammatory renal environment and M2 plasticity can be the major hurdles to
establishing macrophage cell-based therapies in CKD. M2 macrophage cell-based therapy is promising if the M2 phenotype
remains stable and is ‘fixed’ by in vitro manipulation. However, a greater understanding of phenotype polarization is still
required. Moreover, better strategies and targets to induce reparative macrophages in vivo should guide future investigations in
order to abate kidney diseases.
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Macrophage origin and heterogeneity
Macrophages belong to the mononuclear phagocytic system
(MPS) [1, 2] and comprise a heterogeneous population of cells
that have the capacity to perform a wide range of critical func-
tions [3]. They play an important role in tissue homeostasis and
immune responses in normal and diseased kidneys [2, 4]. Macro-
phages are present in all tissues and originate from common
myeloid progenitor cells in the bone marrow [1, 5] under the
influence of colony-stimulating factor 1 (CSF-1) [6]. Monocyte de-
velopment sequentially gives rise tomonoblasts, pro-monocytes
and finallymonocytes, which are released from the bonemarrow
into the bloodstream [7]. Monocytes thenmigrate from the blood
to the injured tissue and replenish tissue macrophage numbers,
especially during inflammation.Macrophages are crucial compo-
nents of innate immunity; their main function is to clear the
interstitial environment of extraneous cellular material [7] and
also to generate an adaptive immune response by serving as

antigen-presenting cells (APCs) and by recruiting other immune
cells such as lymphocytes [5, 8].

Macrophages are divided into different subpopulations based
on their functionality and anatomical location, e.g. Kupffer
cells, Langerhans cells and microglial cells [9]. They are defined
as tissue-resident phagocytic cells that contribute to critical roles
in homeostasis, surveillance and tissue injury and repair [5, 10].
In the tissue injury scenario, blood monocytes are recruited to
the site of damage and undergo differentiation in response to
microenvironment signals to which they are exposed [11]. There-
fore, macrophage infiltration in the kidney is a common feature
of chronic kidney disease (CKD) in humans, and the correlation be-
tween the degree of macrophage infiltration and the severity of
renal injury suggests an effector function for macrophages [10].
Hence, during CKD, resident and infiltratingmacrophages undergo
a range of activation responses such as phagocytosis and produc-
tion of pro-inflammatory cytokines and toxic metabolites [6].
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CKD is becoming one of the most important health problems
worldwide [12] and greatly affects patients’ quality of life [13].
There is broad agreement that all primary causes of CKD share
a common pathogenic pathway of progressive injury resulting
from the destructive consequences of scarring (fibrosis) [14].
The development of CKD is characterized by an accumulation
of extracellular matrix (ECM) proteins in the glomerulus and in-
terstitium [13], which is thought to be promoted by an aberrant
wound healing response involving tubular epithelial cells
(TECs), myofibroblasts, fibrocytes and immune cells, among
others, thus leading to progressive fibrosis in the kidney and
loss of viable nephrons [15].

Following recruitment to the damaged kidney, macrophages
can be broadly classified into two different subtypes, depending
on their local microenvironment: classically activated (M1) and
alternatively activated (M2) macrophages [10, 14, 16]. Although
they have been strongly associated with tissue injury [17], they
also have a critical role in both host defence and tissue repair
[18, 19]. Pro-inflammatory M1 macrophages are produced by ex-
posure to interferon (IFN)-γ or lipopolysaccharide (LPS) and are
considered pro-inflammatory due to their capacity to release
certain cytokines such as interleukin (IL)-1, IL-6 and tumour
necrosis factor (TNF)-α [20]. In contrast, M2 macrophages have
anti-inflammatory functions and express arginase, mannose
receptor and IL-10, among others (Table 1) [10, 20]. Alternatively
activated M2 macrophages can be further categorized into three
subgroups: M2a induced by IL-4 and/or IL-13, which display a
wound-healing (tissue repair) role; M2b induced by immune
complexes andM2c, with anti-inflammatory effects and induced
by IL-10, transforming growth factor (TGF)-β or glucocorticoids
[7, 21]. Thus, macrophages are highly heterogeneous cells that
exhibit distinct phenotypes and functionality in response to
microenvironment stimuli, leading to the previously described
classification system [5, 10]. Although extensive in vitro studies
have supported the phenotype classification, this doesnot neces-
sarily reflect their true phenotypes in vivo [5].

Pro-inflammatory M1 macrophages in CKD
Early phases of CKD trigger a remarkable infiltrate of immune
cells, firstly neutrophils, natural killer (NK) cells and T helper
(Th)1/17 cells, followed soon after by M1 macrophages [5]. At
sites of tissue injury, the interstitial microenvironment is domi-
nated by pathogen-associated molecular patterns (PAMPs) such
as adenosine triphosphate (ATP), high mobility group box 1
(HMGB-1) and uric acid, derived from damage-associated mo-
lecular patterns (DAMPs) released by necrotic cells [5, 21–24]. Dur-
ing toxic, infectious or traumatic injuries, PAMPs activate
resident macrophages as well as parenchymal cells via innate
pattern recognition receptors (PRRs) [25, 26], thus leading to the
secretion of pro-inflammatory cytokines and providing defence

against pathogens and also a functional barrier to prevent further
pathogen entries [5, 27, 28]. Inflammation kills host cells at the
site of infection,which causes somenon-specific collateral tissue
damage [26, 29]. In sterile kidney injury, PAMPs are often absent,
and DAMPs mostly drive the infiltration of inflammatory macro-
phages into the sterile kidney [5, 30, 31].

Macrophages detect endogenous danger signals via toll-like
receptors (TLRs) [21, 22, 30, 32], intracellular PRRs and the IL-1
receptor (IL-1R) through the adaptormoleculemyeloid differenti-
ation primary response gene 88 (MyD88) [33]. Thus, a TLR ligand
acting in an MyD88-dependent manner will induce TNF tran-
scription, which can act in conjunctionwith IFN-γ in an autocrine
manner to activate the macrophage population [7]. IFN-γ is re-
leased by NK cells in response to stress and infections, which
can prime macrophages to secrete pro-inflammatory cytokines
[34]. The combination of these two signals results in a macro-
phage population with enhanced microbicidal effects as well as
in increased production of pro-inflammatory cytokines (IL-6, IL-
1 and TNF-α), superoxide anions and oxygen and nitrogen radi-
cals. The two signals together also promote cytotoxic adaptive
immunity by upregulating major histocompatibility complex
class II (MHC II) in conjunction with co-stimulatory molecules
(CD40, CD80 and CD86) [35, 36]. Mulay et al. [26] support a theory
in which renal injury and inflammation are reciprocally en-
hanced in an autoamplification loop, referred to as necroinflam-
mation. Cell necrosis releases DAMPs and alarmins that activate
infiltrating monocytes via TLRs towards a pro-inflammatory
phenotype. Thus, infiltrating macrophages, in turn, further con-
tribute to necroinflammation due to the secretion of numerous
pro-inflammatory cytokines [26]; therefore, inhibiting activated
pro-inflammatory macrophages would prevent immunopathol-
ogy in injured kidneys.

TheseM1macrophages promote Th1 and Th17 responses and
are therefore involved in initiating and sustaining inflammatory
processes [7, 37]. In inflammation in mice, Ly6Chigh monocytes
are recruited and differentiated into M1 macrophages that
express CC-chemokine receptor 2 (CCR-2), thus responding to
CC-chemokine ligand 2 (CCL-2), an important chemokine re-
quired for monocyte/macrophage recruitment to damaged sites
[1, 38]. Pro-inflammatory macrophages also release matrix
metalloproteinases (MMPs) to enable their migration through
basement membranes and interstitial ECM networks [5, 39].
LPS/IFN-γ-activated M1 macrophages induce renal fibrosis by
secretion of MMP-9, which increase tubular cell ECM transition
via the β-catenin pathway [5]. The transcription factor IRF5 also
seems to play a key role in M1macrophage polarization, suggest-
ing that inhibiting IRF5 might be useful for chronic macrophage-
induced inflammation [40].

The pathogenic role of macrophages has been demonstrated
by depletion of kidney-resident macrophages with liposomal
clodronate (LC) in different types of experimental kidney disease

Table 1. Distinct macrophage populations

Macrophage phenotype Stimulation Effect Marker expression

M1 IFN-γ, TNF-α, LPS, GM-GSF Pro-inflammatory CD86, CD80, MHC II, Ly6Chi, TLR2, TLR4
M2a IL-4 and/or IL-13 Profibrotic MR/CD206, MHC II, Arg-1
M2b IC + LPS Immunoregulation CD86, MHC II
M2c IL-10, TGF-β, apoptotic cells, glucocorticoids Anti-inflammatory MR/CD206, B7-H4, TLR1, TLR8

Adapted from Anders and Ryu [21], Cao et al. [5] and Martinez et al. [50].

Depending on the microenvironment, macrophages can differentiate into specific populations with distinct functions.

GM-CSF, granulocyte macrophage colony-stimulating factor; IC, immune complexes; IL, interleukin; IFN, interferon; LPS, lipopolysaccharide; MHC II, major

histocompatibility complex class II; TLR, toll-like receptor; TNF, tumour necrosis factor.
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[41–43]. However, increasing evidence from extensive studies
shows that macrophages also play a reparative role during
disease progression.

Anti-inflammatory M2 macrophages in CKD
Macrophages that secrete anti-inflammatory cytokines and pro-
mote wound healing and tissue remodelling have been referred
to as alternatively activated macrophages (AAMs) [5, 10], also
calledM2. Themechanisms bywhich kidney-residentM1macro-
phages switch to an anti-inflammatory M2 phenotype are still
not well understood. Detailed studies in which renal injury re-
solves have identified that macrophages undergo a phenotypic
change during recovery and this confers a protective and repara-
tive role [44–46]. Moreover, depletion of macrophages during this
phase delays recovery, indicating a functional role for macro-
phages in renal repair [44]. Macrophages modulated ex vivo with
IL-4 and/or IL-13 (M2a) express high levels of mannose receptor
(CD206), produce anti-inflammatory IL-10 and have immunore-
gulatory functions [8, 47]. These cells secrete components of
the ECM and therefore their main functions seem to be asso-
ciated with wound healing and tissue remodelling and repair
[7, 10]. Martinez et al. [48] demonstrated that when ECM clearance
is deficient due to defects in the engulfment of dying cells,
functional markers of renal injury, such as serum creatinine,
blood urea nitrogen and proteinuria, progressively increase.
This process causes persistent inflammation and consequently
an increase in the M1:M2 ratio. Another category of AAMs is the
M2b macrophages, which represents crosstalk with B cells. This
category induces IL-10 secretion in addition to upregulating anti-
gen presentation and promoting Th2 responses [49]. Both M2a
and M2b macrophages have an immunoregulatory role through
downregulation of IL-12, IL-6 and TNF [7]. Moreover, M2c macro-
phages are induced by IL-10, TGF-β and glucocorticoids [50]; this
subset is known to exhibit anti-inflammatory cytokine produc-
tion and suppressive functions in vitro, and theyare often referred
to as deactivated [21]. Similarly to classically activated macro-
phages, wound healing macrophages can develop in response
to innate and adaptive signals [7]. IL-4 is one of the first signals
released during tissue injury by basophils and mast cells,
among others, and this early IL-4 production converts resident
macrophages into a population reprogrammed to promote
wound healing [7].

To date, the diverse roles ofmacrophages in in vivo studies are
still not fully understood, although it is generally known that
macrophages eagerly participate in the clearance of apoptotic
and necrotic cells in injury resolution and tissue remodelling
[5, 51, 52].

Persistent M2macrophages are associated with
fibrosis
Macrophage depletion via anti-macrophage serum or LC nearly
always reduced persistent inflammation and also the subse-
quent development of fibrosis [17, 21]. Nevertheless, renal fibro-
sis may not only be triggered by pro-inflammatory M1
macrophages, but instead by insufficient epithelial healing or
by profibrotic M2 macrophages and fibrocytes [21]. In the face of
ongoing damage, sustained M2 macrophage infiltration may re-
sult in constant production of several wound healing growth fac-
tors [3], andwhat initially begins as a reparativemechanismmay
subsequently become harmful. In fact, persistence of the wound
healing process could be pathological, resulting in irreversible fi-
brosis and progressive kidney tissue destruction [3]. On the other

hand, M2 macrophages may help to resolve inflammation
through high endocytic clearance capacities and the production
of trophic factors that promote angiogenesis and mediate
wound healing producing ECM [53, 54]. For instance, in vitro cyto-
kines such as IL-4 and IL-13 further promote the M2 phenotype,
which predominantly releases fibronectin 1 (FN-1) and other ECM
molecules that could contribute directly to renal fibrosis [55, 56].
Likewise, Kim et al. [57] recently demonstrated that M2 macro-
phages play a more important role than M1 macrophages in the
development of fibrosis in an in vitro cisplatin-treated culture. It is
important to note that these studies were performed in vitro, and
the role of macrophages as a contributing factor in the develop-
ment of renal fibrosis in vivo remains under discussion.

Members of the TGF-β superfamily are the most extensively
studied growth factors derived from macrophages, which are
mainly associated with an M2-like phenotype [58], among other
cell types such as TECs and myofibroblasts. Within the kidney,
macrophage-derivedTGF-βmaypromotefibrosis by paracrine ac-
tivation of matrix-producing myofibroblasts [59]. Unilateral ur-
eteral obstruction (UUO) is a well-characterized model to
investigate the factors that contribute to renal fibrosis [5]. There-
fore, many experimental approaches have been studied using
this fibrosis model. For instance, Braga et al. [60] demonstrated
that M2-phenotype macrophages contribute to renal fibrosis in
an MyD88-dependent manner and through TLR signalling path-
ways. Moreover, galectin-3, a nuclear M2 marker, has been
shown to be produced by kidney-resident macrophages and to
enhance renal fibrosis in UUO [61]. López-Guisa et al. [62] also de-
monstrated that macrophages expressing the marker mannose
receptor-2 (Mrc2) displayed a fibrosis-attenuating role in UUO
[62], as mice deficient in Mrc2 exhibited worsened renal fibrosis.
Indeed, to study themacrophage-specific role of TGF-β1 in the de-
velopment of renal fibrosis, Huen et al. [63] developedmicewith a
homozygous deletion of TGF-β1 in myeloid lineage cells and de-
monstrated that despite TGF-β1mRNA reduction and the preven-
tion of downstream Smad activation, interstitial fibrosis and
tubular injury were not significantly different after UUO com-
paredwith the control UUO group. Thus, they suggested that spe-
cifically targetingmyeloid TGF-β1maynot be sufficient to combat
the progression of renal fibrosis. Several studies targeting TGF-β1
have highlighted the complex role of cytokine in both injury
and wound repair processes, showing that further research is
necessary to clarify the functional impact of this complex.
Taken together, renal fibrosis may not only be triggered by pro-
inflammatory M1 macrophages, but M2 macrophages could
also contribute somehow to the development of fibrosis and pro-
gressive fibrotic scarring [3].

Further studies in experimental animal models of CKD, such
as diabetic nephropathy, undergo suggested that, at later disease
stages, macrophages confer a shift towards chronic activation of
the M2 phenotype [64, 65], which leads to glomerulosclerosis,
tubular interstitial fibrosis and eventually organ failure [65, 66].
Thus, distinct macrophage subsets can coexist in kidney tissue
and certain subsets can predominate at different disease stages,
from the beginning of kidney damage to the recovery phase [5].
Shen et al. [67] demonstrated that phagocytosis by M1 macro-
phages to remove dead cellsmayonly function in the early stages
of UUO, and M2 macrophages appeared to be the major cell type
in advanced stages. These results are in agreement with those
reported by Cao et al. [5], who described how, in CKD, due to pro-
gressive and persistent injury and inflammation, M1 macro-
phages persistently remained at sites of tissue injury and
consequently reduced numbers of M2-phenotype macrophages
were recruited into the kidney. Therefore,M2macrophages either
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coexist in small numbers or are absent because of permanent in-
flammation. Taken together, themechanisms regulating the dis-
tinct functions ofM2macrophages during tissue repair or fibrosis
remain largely unclear (Figure 1).

M2 macrophage cell-based therapy for renal
repair and regeneration
The kidney has limited regenerative capacity. Therefore, inter-
ventions such as gene and cell-based therapies are being exten-
sively developed as an alternative treatment modality for the
prevention of progression to end-stage renal failure [68]. Never-
theless, there are very few therapies that induce renal repair in
chronic nephropathies [69]. For instance, Flaquer et al. [70] de-
monstrated that hepatocyte growth factor (HGF) gene therapy
was able to enhance the amount of bone marrow–derived cells
in the diabetic kidney and showed that these cells located around
the glomeruli were mainly M2 macrophages. Thus, rodent
models are valuable for studying macrophage phenotypes in
the context of CKD [71].

Among potential strategies, macrophage cell-based therapy
provides a contrast of promising [18] and discordant results at
the same time [54, 72, 73]. Macrophages modulated ex vivo and
displaying an anti-inflammatory or reparatory activity have
been used as cell-based therapy in a number of mouse models
of CKD (Table 2). M2 macrophages must meet at least two condi-
tions if they are to be used as a therapeutic tool in vivo: first, the
ability to reach the injured tissue or organ, and second, a stable
phenotype [10]. These two conditions are particularly important,
since infused macrophages may be harmful if they switch from
an anti-inflammatory to a pro-inflammatory phenotype.

Professor David Harris’s group has extensively investigated
the effects of infusing in vitro–generated M2 macrophages in

rodent models of both acute kidney failure and CKD [18, 54, 72].
Using a mouse model of adriamycin nephropathy (AN), they de-
monstrated that a single intravenous injection of 1 × 106 macro-
phages generated by splenic CD11b+ cells and exposed to IL-10
and TGF-β (M2c) provided increased protection against renal
structural and functional injury compared with IL-4/IL-13-ex-
posed macrophages (M2a) [72]. These IL-10/TGF-β-modulated
M2 macrophages (M2c) expressed high levels of B7-H4, whereas
IL-4/IL-13-modulated macrophages (M2a) did not. Thus, these
authors attributed the greater potency of M2c macrophages to
the expression of the co-stimulationmolecule B7-H4, which sup-
presses T cell proliferation and induces regulatory T cells both
in vitro and in vivo. However, they also demonstrated that infused
M2cmacrophages did change their phenotype during the disease
course, although not towards a distinct M1 phenotype [72, 74]. In
a severe combined immunodeficient (SCID) mouse model of AN,
the infusion of M2 macrophages isolated from the spleen and
modulated ex vivo by IL-4 and IL-13was associatedwith an ameli-
oration of renal injury [54]. In contrast, a report by Cao et al. [18]
showed that using the same mouse model but with M2 macro-
phages isolated from the bone marrow (BM-M2 macrophages)
failed to reduce proteinuria and to preserve renal function,
owing to a change in macrophage phenotype. Therefore, these
studies demonstrated that transfused BM-M2 macrophages lost
their suppressive function in vivo due to their proliferation,
whereas splenic M2 macrophages (SP-M2) were protective be-
cause they did not proliferate. The enhanced proliferation of
BM-M2macrophages can be explained by their increased expres-
sion of macrophage colony-stimulating factor (M-CSF) receptor,
in comparison with SP-M2 macrophages [18], which could be
partly prevented by blocking CSF-1-mediated signalling. Transfer
of SP-M2 macrophages seems to protect against renal injury,
whereas transfer of BM-M2 macrophages appears to promote
renal fibrosis [18, 75]. However, the bone marrow, rather than

Fig. 1. M1/M2 macrophage balance depending on chronic kidney disease (CKD) progression. Renal function varies over time, depending on the type of injury, the

persistence and severity of the damage and the reparative ability of the kidney. In the early stages of CKD, pro-inflammatory macrophages (M1) infiltrate the injury

site and release pro-inflammatory cytokines, which promote an inflammatory state. If the injury resolves, renal function as well as renal mass ameliorate, depending

on damage severity and duration. Macrophages also switch to an anti-inflammatory (M2) phenotype, leading to a wound healing phase that may involve tissue

fibrosis. However, if there is no injury resolution, M1 macrophages persist at injured sites and there is a decrease in the number of M2 macrophages, which could also

subsequently undergo a phenotypic switch to M1. The continuous release of profibrotic and inflammatory factors promote renal fibrosis, leading to renal failure.
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the spleen, represents an accessible source of macrophage pre-
cursors for AAM therapy. Therefore, the source of origin of
macrophages is another critical issue to bear in mind due to
the contradictory outcomes that have been published recently.

Nowadays, the use of anti-inflammatory and regenerative
macrophage-derived molecules is increasing. Heme-oxygenase-
1 (HO-1), for example, is a protective and anti-inflammatory en-
zyme upregulated in response to renal injury, whereas its down-
regulation is associated with susceptibility to damage [76, 77].
Chen et al. [78] demonstrated that sustained overexpression of
HO-1 counteracted multiple detrimental renal fibrosis-asso-
ciated pathological processes in a UUO mouse model. On the
other hand, accumulating evidence suggests that TNF-α is in-
volved in diabetic nephropathy progression [79, 80]. Furthermore,
Awad et al. [80] demonstrated that blockade of TNF-α conferred
kidney protection by reducing albuminuria, plasma creatinine,
kidney macrophage recruitment and plasma cytokine levels.
Therefore, their results suggest that inhibition of TNF-α may be
a viable strategy to treat diabetic nephropathy in humans. More-
over, Lin et al. [81] found that the Wnt pathway may play an im-
portant role in tissue regeneration. They showed thatWnt7b was
produced by macrophages and was required to stimulate renal
repair and regeneration by acting on injured TECs to promote re-
generation of the tubule basement membrane, thereby re-estab-
lishing renal function and reducing renal fibrosis.

Therefore, macrophages have been shown to be important in
renal repair, wound healing and regeneration processes [5]. How-
ever, it is still unknown whether they can promote renal repair
processes directly by fusing with other cells or transforming
into new ones or indirectly by providing help to other cell types
[82, 83].

Macrophages: future challenges
Macrophages have been shown to participate actively in tissue
repair. Nevertheless, it is important to note thatmany intermedi-
ate phenotypes and many subpopulations are likely to coexist in
the same tissue. Moreover, macrophages do not remain in a

specific phenotype due to their cell plasticity; they may revert
to a resting state and can be subsequently reactivated, depending
on themicroenvironment [3]. Therefore, a greater understanding
is needed in this field [66]. Macrophage dynamics during the dif-
ferent phases of CKD progression are not fully known, and as-
sessment of the predominant macrophage phenotype may be
relevant in terms of defining the type of therapy [21]. AAMs
have been demonstrated to be protective in reducing renal injury
due to their anti-inflammatory role. However, whether these
macrophages could become fibrolytic to reduce renal fibrosis
still remains unknown [5]. Anders and Ryu [21] have proposed
to classify tissue macrophages according to their predominant
roles in different phases of kidney disease: pro-inflammatory,
anti-inflammatory, profibrotic and fibrolytic macrophages. How-
ever, there is a lack of information regarding macrophage types
and their dynamics, plasticity and function in human CKD.
Hence, more studies are needed before testing macrophage
cell-based therapy in humans, since macrophages represent a
spectrum of activated phenotypes rather than discrete stable
subpopulations [5, 84]. Therefore, better strategies to induce
truly regenerative and reparative macrophages in vivo need to
be developed.
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