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Hearing loss is the most common sensory deficit in humans. Identifying the genetic cause and genotype-phenotype correlation of
hearing loss is sometimes challenging due to extensive clinical and genetic heterogeneity. In this study, we applied targeted next-
generation sequencing (NGS) to resolve the genetic etiology of hearing loss in a Chinese Han family with multiple affected
family members. Targeted sequencing of 415 deafness-related genes identified the heterozygous c.481C>T (p.R161C) mutation
in SOX10 and the homozygous c.235delC (p.L79Cfs∗3) mutation in GJB2 as separate pathogenic mutations in distinct affected
family members. The SOX10 c.481C>T (p.R161C) mutation has been previously reported in a Caucasian patient with Kallmann
syndrome that features congenital hypogonadotropic hypogonadism with anosmia. In contrast, family members carrying the
same p.R161C mutation in this study had variable Waardenburg syndrome-associated phenotypes (hearing loss and/or hair
hypopigmentation) without olfactory or reproductive anomalies. Our results highlight the importance of applying
comprehensive diagnostic approaches such as NGS in molecular diagnosis of hearing loss and show that the p.R161C mutation
in SOX10 may be associated with a wide range of variable clinical manifestations.

1. Introduction

Hearing loss is the most prevalent neurosensory impairment
in humans, affecting over half a billion people worldwide [1,
2]. In a mammals’ inner ear, cochlear hair cells (HCs) take
responsibility to convert the mechanical sound waves into
electrical signals [3–5], which make the HCs very important
for hearing function. Many previous reports have already
shown that HCs can be injured due to genetic factors, noise,
ototoxic drugs, aging, or inflammation [6–13]; and it is esti-
mated that 50%-60% of early-onset hearing loss is due to
genetic factors [14, 15]. Based on the association with other
clinical features, approximately 70% of genetic hearing loss
is nonsyndromic and 30% is syndromic. Currently, more
than 100 genes for nonsyndromic hearing loss have been
identified, and over 700 different forms of syndromic hearing

impairment have been described [16, 17]. The extremely high
genetic and phenotypic heterogeneity sometimes makes the
diagnosis of genetic hearing loss challenging.

Mutations in SOX10 have been associated with various
forms of syndromic hearing loss. SOX10 is a transcription
factor involved in cell fate determination and cell lineage
development, especially in the forming and differentiation
of the neural crest [18]. A variety of mutations in SOX10
may result in various developmental defects including type
II (WS2, OMIM 611584) and type IV (WS4, OMIM
613266) Waardenburg syndrome (WS) featuring auditory
and pigmentary abnormalities, with the latter also exhibiting
short-segment Hirschsprung disease (HD, OMIM 142623)
[19–22]. Recently, mutations in SOX10 have been identified
in a few patients with Kallmann syndrome (KS, OMIM
308700) with deafness, which is characterized by
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hypogonadotropic hypogonadism, anosmia and hearing loss
[23–26]. However, it remains unknown if there is a specific
genotype-phenotype correlation between certain SOX10
mutations and Kallmann syndrome.

In the present study, we applied targeted NGS to identify
the genetic etiology of hearing loss in a moderate-sized
Chinese Han family with apparently complex inheritance.
In different affected family members, we identified separate
genetic causes in recessive mutation in the GJB2 gene and
dominant mutation in the SOX10 gene. Despite the fact that
SOX10 c.481C>T (p.R161C) mutation was previously associ-
ated with Kallmann syndrome, family members with this
mutation in our study had either normal or only WS2 (hear-
ing loss and hair hypopigmentation) phenotype, indicating a
rather variable clinical manifestation.

2. Subjects and Methods

2.1. Subjects and Clinical Assessments. The proband
(Figure 1(a), IV-1) with bilateral profound sensorineural
hearing loss was enrolled through the Department of
Otorhinolaryngology at Shanghai Ninth People’s Hospital.
Four other subjects (II1-1, II1-2, II-1, and II-2) from the
four-generation family and 100 Chinese Han normal hearing
controls were also included in this study. The clinical evalua-
tion included a detailed medical history questionnaire and a
thorough physical examination. Auditory evaluations were
performed in all participants, including otoscopic examina-
tion, otoacoustic emissions (OAEs), auditory evoked poten-
tials (AEPs), or pure-tone audiometry. High-resolution
computerized tomography (CT) scan of the temporal bone
was performed in proband IV-1. Sense of smell was evaluated
by self-report, questioning, or olfactory tests. Blood sample
was collected from the proband and her family members,
and total DNA was extracted from peripheral blood leuko-
cytes using standard protocols.

2.2. Ethics Statement. Written informed consent was
obtained from all study participants or their guardians. All
experimental procedures in this study were approved by the
Ethics Committee of Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine.

2.3. Targeted Genomic Enrichment and Massively Parallel
Sequencing. The quality and quantity of genomic DNA were
assessed by gel electrophoresis and spectrophotometry.
Libraries were prepared using the Illumina standard protocol.
Targeted enrichment of all exons and flanking splicing sites of
415 genes implicated in sensorineural hearing loss (for the list
of genes, see Supplementary Table S1) was completed using
MyGenostics Gencap™ capture kit (MyGenostics, Baltimore,
MD, USA) following the manufacturer’s protocol. The
enrichment libraries were sequenced on Illumina NextSeq
500 sequencer.

2.4. Bioinformatics Analysis. The high-quality reads were
mapped to the human genome sequence (hg19) with a
Burrows-Wheeler-Alignment Tool, and GATK Haplotype-
Caller was used to detect small insertions or deletions (InDels)
and Single Nucleotide Variants (SNVs) [27, 28]. The identified

SNVs and InDels were then annotated using the ANNOVAR
software [29]. The missense, frameshift, nonsense, and splic-
ing variants with a minor allele frequency < 1% were further
interrogated as candidate pathogenic mutations. For allele fre-
quencies, we used 1000 Genomes (http://www.1000genomes
.org/), ESP6500 (http://evs.gs.washington.edu/EVS/), and
ExAC (http://exac.broadinstitute.org/) databases. An ensem-
ble tool REVEL (rare exome variant ensemble learner) was
used to predict the pathogenicity of missense variants [30].
The ClinVar database and Human Gene Mutation Database
(HGMD) were used to further annotate known pathogenic
variants. Pathogenicity of the candidate variants was inter-
preted following American College of Medical Genetics and
Genomics (ACMG) standards and guidelines 2015 [31].

2.5. Sanger Sequencing. The candidate variants in SOX10
and GJB2 gene were amplified by polymerase chain reac-
tion (PCR) and analyzed by Sanger sequencing. The
primer sequences for PCR amplification are provided in
Supplementary Table S3.

3. Results

3.1. Clinical Findings. The female proband VI-1 was born
from nonconsanguineous parents (Figure 1(a)). She failed
the neonatal hearing screening, and further examination
revealed bilateral profound sensorineural hearing loss
(>95 dB, Figure 1(b)). Her computed tomography scan of
the temporal bone revealed slight dilation of the posterior
semicircular canals in both ears. When examined at 7 years
of age, she had normal dark irides, normal fundus oculi,
and no pigmentary alterations in the skin or hair. Dystopia
canthorum, limb anomaly, and Hirschsprung disease were
absent. Neurological examination was normal.

The proband’s mother III-2 had prelingual, bilateral, pro-
found hearing loss. Interview and visual inspection of III-2
did not find pigmentation defects and musculoskeletal
anomalies. The father III-1 had normal hearing but reported
to develop a white forelock at approximately 8 years of age
and prematurely gray hair at 20 years of age. The paternal
grandmother II-1 had severe congenital bilateral hearing loss
and reported a frontal white forelock and premature graying
of hair since approximately 15 years of age. All family mem-
bers reported normal sense of smell, which was confirmed by
olfactory tests. Both III-2 and II-1 had normal puberty and
spontaneous pregnancy.

3.2. Genetic Analysis Results. Targeted next-generation
sequencing of 415 deafness-related genes identified a homo-
zygous c.235delC (p.L79Cfs∗3) variant in GJB2 as the patho-
genic cause of hearing loss for the mother III-2 (Figure 2(a)).
In the proband IV-1 and her father III-1, we detected 10 and
12 rare (MAF < 0:01 in public databases) heterogeneous
nonsynonymous variants, respectively (Supplementary
Table S2). Of these, the c.481C>T (p.R161C) variant in
SOX10 has been previously reported resulting in Kallmann
syndrome in a Caucasian patient [32]. It substitutes a well-
conserved arginine by cystine in the high-mobility group
(HMG) domain of SOX10 (Figure 2(b)). This variant was
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not observed in genotyping of 100 Chinese Han normal
controls and was predicted as damaging by in silico
assessment with REVEL [30]. According to the 2015
ACMG guideline, c.481C>T (p.R161C) in SOX10 was
classified as likely pathogenic (PS1+PM2). Sanger
sequencing validated the presence of this variant in IV-1,
III-1, and II-1, three individuals with WS-associated
phenotypes (Figure 2(a)).

4. Discussion

The cause of hearing loss is extremely heterogeneous, and in
many regions of the world, deaf people tend to marry with
each other to form rather complex deaf families [33–40]. In
one such family, we identified two separate genetic causes
of hearing loss in distinct affected members, including the
recessive c.235delC (p.L79Cfs∗3) mutation in GJB2 (III-2)
and the dominant c.481C>T (p.R161C) mutation in SOX10
(II-1, III-1, and IV-1). While the c.235delC (p.L79Cfs∗3)
mutation in GJB2 is quite common and well characterized
in East Asians, the c.481C>T (p.R161C) mutation in SOX10

was far less frequent and its clinical manifestations were not
consistent in different reports [32, 41].

In this study, the clinical manifestations of the family
members carrying the c.481C>T (p.R161C) mutation in
SOX10 are distinct along three different generations: typical
WS2 phenotype (hearing loss and hair hypopigmentation)
in the paternal grandmother, hair hypopigmentation only
in the father, and hearing loss only in the proband. The
c.481C>T (p.R161C) mutation affected the HMG domain
of SOX10, which is the sequence-specific DNA-binding
domain, and was predicted to be damaging by in silico
assessment.

The same SOX10 c.481C>T (p.R161C) mutation has pre-
viously been reported in a Caucasian patient with Kallmann
syndrome, in whom the presence or absence of hearing loss
and pigmentation defect was not described (Table 1) [32].
Kallmann syndrome is a developmental disease that
combines congenital hypogonadotropic hypogonadism with
anosmia [42]. Our patients manifested hearing loss and hair
hypopigmentation, but no anosmia or delayed puberty. This
phenotypic difference suggests that other factors, such as
modifier gene or epigenetic events, might contribute to the
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Figure 1: Pedigree of the family and clinical findings of the proband IV-1: (a) pedigree and genotype showing the c.481C>T (p.R161C)
mutation in SOX10 and the c.235delC (p.L79Cfs∗3) mutation in GJB2; (b) auditory evoked potentials showing bilateral profound
sensorineural hearing loss.
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Figure 2: The GJB2 c.235delC (p.L79Cfs∗3) and the SOX10 c.481C>T (p.R161C) mutations identified in the family. (a) Sequence
chromatogram showing the genotyping results of the family members. The proband IV-1, her father III-1, and the grandmother II-1 had
heterogeneous SOX10 c.481C>T (p.R161C, arrow) mutation. The mother III-2 carried a homozygous GJB2 c.235delC (p.L79Cfs∗3)
mutation. (b) Alignment of SOX10 sequences from various species showing conservation of the arginine residue at position 161.

Table 1: Summary of clinical findings in patients with SOX10 c.481C>T (p.R161C) mutation.

Patient IV-1 III-1 II-1 Marcos et al.[32] Bademci et al.[41]

Age 7 y 34 y 60 y n.d. 9 y; 11 y

Gender F M F n.d. F; M

Hearing loss/inner ear imaging

Hearing loss Profound — Profound n.d. Profound

Abnormal semicircular canal Post. SCC dilatation NA NA n.d. n.d.

Pigmentation defects

Pigmentary disturbances of iris — — — n.d. n.d.

Iris heterochromia — — — n.d. n.d.

Skin depigmentation — — — n.d. n.d.

White forelock — + + n.d. n.d.

Premature graying — + + n.d. n.d.

Eye anomalies

Telecanthus — — — n.d. n.d.

Retinal pigmentation defect — — — n.d. n.d.

Gastrointestine

Constipation — — — n.d. n.d.

Hirschsprung disease — — — n.d. n.d.

Hypogonadotropic hypogonadism — — — + n.d.

Delayed puberty NA — — + n.d.

Anosmia or severe hyposmia — — — + n.d.

Genetic

SOX10 mutation c.481C>T c.481C>T c.481C>T c.481C>T c.481C>T
n.d.: not described; NA: not applicable; y: year.

4 Neural Plasticity



expression of the KS phenotypes. To date, the SOX10
c.481C>T (p.R161C) mutation has been identified in six
patients from three families (Table 1) [32, 41]. Hearing loss
was observed in four of the six patients and seems to be a
consistent feature in mutation carriers, while hypogonadism
and anosmia symptoms were described only in one patient.

Most of SOX10mutations are private and were identified
in sporadic cases, making it difficult to correlate the geno-
types with the distinct disease phenotypes. Herein, we identi-
fied a KS-associated SOX10 mutation in a family with WS2,
indicating that the same SOX10 mutation can underlie both
WS and KS. Among over 80 published SOX10 mutations,
three (p.Leu145Pro, p.Pro169Argfs∗117 and p.Glu189∗)
were also found to lead to different phenotypes (Figure 3)
[43–87]. Further investigation is needed to clarify the under-
lying mechanisms of incomplete penetrance and high pheno-
typic variability caused by SOX10 mutations.

Our study also demonstrates that targeted NGS is a pow-
erful strategy to discover causative genes in rare, heteroge-
neous disorders such as hearing loss. WS caused by SOX10
mutations can resemble nonsyndromic hearing loss in young
children who do not present with pigmentary abnormality.
Targeted NGS has the potential to identify such mutations
which would improve the management of hearing loss by
genetic counseling for the children and risk assessment of
the relatives.

Data Availability

The data supporting the findings of this study are available
within the article and the supplementary files.
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Figure 3: Schematic representation of the SOX10 domains and overview of SOX10 mutations and their associated phenotypes.
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