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Abstract: This paper investigates the hybrid source localization problem using differential received
signal strength (DRSS) and angle of arrival (AOA) measurements. The main advantage of hybrid
measurements is to improve the localization accuracy with respect to a single sensor modality. For
sufficiently short wavelengths, AOA sensors can be constructed with size, weight, power and cost
(SWAP-C) requirements in mind, making the proposed hybrid DRSS-AOA sensing feasible at a
low cost. Firstly the maximum likelihood estimation solution is derived, which is computationally
expensive and likely to become unstable for large noise levels. Then a novel closed-form pseudolinear
estimation method is developed by incorporating the AOA measurements into a linearized form
of DRSS equations. This method eliminates the nuisance parameter associated with linearized
DRSS equations, hence improving the estimation performance. The estimation bias arising from
the injection of measurement noise into the pseudolinear data matrix is examined. The method of
instrumental variables is employed to reduce this bias. As the performance of the resulting weighted
instrumental variable (WIV) estimator depends on the correlation between the IV matrix and data
matrix, a selected-hybrid-measurement WIV (SHM-WIV) estimator is proposed to maintain a strong
correlation. The superior bias and mean-squared error performance of the new SHM-WIV estimator
is illustrated with simulation examples.

Keywords: hybrid localization; differential received signal strength localization; bearings-only
localization; maximum likelihood; pseudolinear estimator; least squares; instrumental variables

1. Introduction

Source localization plays an important role in wireless sensor networks, providing
location information about sensor nodes and emitters from sensor measurements. Several
sensor modalities have been considered for source localization such as angle of arrival
(AOA), differential received signal strength (DRSS), time of arrival, time difference of
arrival, and frequency difference of arrival. This paper develops new closed-form source
localization methods using hybrid DRSS-AOA measurements, built on pseudolinear DRSS
and AOA equations combined in a unique way to eliminate the undesirable nuisance
parameter associated with pseudolinear DRSS equations.

Source localization and tracking using AOA measurements has been an active re-
search area for several decades. The nonlinear relationship between source location and
sensor measurements is the key challenge with AOA localization. This challenge is also
shared to varying degrees by other sensor modalities. The pioneering work of Stans-
field [1] established the basis for most AOA localization algorithms proposed to this day.
The Stansfield estimator is a weighted least-squares estimator which requires prior knowl-
edge of the source range from each AOA sensor. The maximum likelihood estimator
(MLE) for AOA localization [2,3] solves a nonlinear optimization problem representing
the log-likelihood function by using iterative algorithms such as the Gauss–Newton and
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Levenberg–Marquardt algorithms [4]. While the MLE enjoys asymptotic efficiency and
unbiasedness, it is computationally expensive as a result of iterative computations and can
suffer from divergence issues caused by poor initialization and threshold effect [5]. This
makes the MLE unsuitable for most practical implementations.

The pseudolinear estimator (PLE) was developed as a closed-from alternative to the
MLE, where the nonlinear estimation problem is converted into a linear problem, allowing
for a computationally simple least squares solution [6]. An estimator identical to the PLE
was also presented in [7]. Despite its simplicity, the PLE was discovered to produce biased
estimates [3,8]. This led to an intensive research effort to reduce or eliminate the PLE bias
(see, e.g., [9–18]). Among those, two ideas that have gained popularity are bias compensa-
tion and weighted instrumental variables (WIV) [13]. The bias compensation method is
based on estimation and subtraction of bias, whereas the method of weighted instrumental
variables reduces bias by introducing an instrumental variable matrix, which is statistically
independent of measurement noise, into the WLS solution. In [19], a closed-form AOA lo-
calization algorithm is presented with no prior knowledge of AOA measurement variances.
AOA-based self localization algorithms built on the PLE were developed in [20,21].

Received signal strength (RSS) localization offers a low-cost alternative to other lo-
calization systems as RSS measurements are readily available in most wireless systems.
As different from RSS localization, DRSS localization methods use the differences between
RSS measurements taken at pairs of sensor nodes, which eliminates the requirement for
prior knowledge of transmit power at the source. This makes DRSS better suited for
practical applications [22–24]. DRSS values, measured in dB, correspond to the ratio of
source-sensor ranges from two sensors. Therefore, the DRSS source localization problem
is reduced into a circular intersection problem where each circle represents a locus of
possible source locations with the same range ratio from a pair of sensors as given by the
corresponding DRSS measurement (the Apollonian circles theorem [25]). The research
on DRSS localization has also focused on solving nonlinear and nonconvex optimization
problems. Some of the existing solutions for DRSS localization include the MLE [22],
weighted least-squares (WLS) [24,26,27], the generalized trust region subproblem (GTRS)
estimator [24], semi-definite programming [24,28] and the PLE with bias reduction [29,30].
The derivation of DRSS equations and a summary of basic methods for DRSS localization
are provided in [31].

Hybrid localization algorithms combining AOA and RSS measurements have been
reported in the open literature. The work in [32–37] uses different linearization methods to
convert both RSS and AOA equations into a linear form with a common unknown vector.
The source location is easily obtained by using the WLS. However, the WLS estimates
obtained from linearized RSS measurements have a bias problem, which has not been
widely discussed in the current research. In contrast, for hybrid localization methods using
TDOA-AOA measurements, besides the MLE and the WLS solution [38,39], the PLE with a
bias reduction method has also been developed. For example, the work in [40] proposes
bias compensation and weighted instrumental variable methods to reduce the bias.

Hybrid DRSS-AOA localization has not attracted much research despite the great
potential it offers as a feasible and low-cost localization method compared with RSS-AOA
and TDOA-AOA methods. The work in [41] proposes a hybrid RSS-AOA localization
algorithm that treats the transmit power as unknown parameter, based on second-order
cone programming relaxation techniques. In this paper, we present new hybrid localization
algorithms using DRSS and AOA measurements based on the PLE and its instrumental
variable variants. In DRSS localization, the knowledge of source transmit power is not
required and therefore its estimation is not necessary. The conventional MLE is also
derived, which is capable of achieving the Cramer–Rao lower bound (CRLB) with low
bias, but has convergence problems and suffers from high computational complexity.
The PLE is developed by converting the nonlinear measurement equations into linear
form. The PLE is a closed-form estimator and has the advantage of low computational
difficulty. In addition, the proposed PLE is free of nuisance parameter introduced into the
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linearized DRSS equations, thereby avoiding complications with constrained parameters in
the solution vector. The PLE can be solved by using least squares (LS) and WLS. However,
both these solutions have a bias problem due to the injection of measurement noise into
the data matrix during the linearization process. The bias problem can be mitigated
by introducing an instrumental variable matrix which correlates strongly with the data
matrix and is independent of noise. However, when the measurement noise is high,
the correlation between the instrumental variable matrix and data matrix is weakened.
This can be remedied by adopting a selective measurement method when constructing the
instrumental variable matrix, resulting in the selective-hybrid-measurement WIV (SHM-
WIV) estimator. The SHM-WIV estimator is shown to outperform the MLE, LS, WLS
and WIV estimators by way of simulation examples. The multipath effects on AOA and
DRSS measurements are ignored even though shadowing effects are taken into account by
lognormal noise on DRSS measurements.

The paper is organized as follows. Section 2 defines the hybrid localization problem
addressed in this paper. The MLE and CRLB for the hybrid DRSS-AOA localization
problem are presented in Section 3. In Section 4, linearized AOA and DRSS measurement
equations are derived, and it is shown how the nuisance parameter present in the linearized
DRSS measurement equation can be eliminated by incorporating the AOA measurements.
The hybrid DRSS-AOA equation free of nuisance parameter is then solved using LS, WLS,
WIV and SHM-WIV in Section 5. Comparative simulation results are demonstrated and
discussed in Section 6. Concluding remarks are made in Section 7.

2. Problem Definition

We consider a 2D DRSS-AOA localization problem depicted in Figure 1, where the
objective is to estimate the unknown source location p = [x, y]T from DRSS and AOA
measurements collected by N sensors at fixed and known locations ri = [xi, yi]

T , i =
1, . . . , N. The distance between the source and a sensor is given by di = ‖di‖ where
di = p− ri and ‖ · ‖ denotes the Euclidean norm. Letting r1 be the reference sensor location
for DRSS measurements, we set r1 = 0 after appropriate geometric translation with no loss
of generality.

Figure 1. DRSS-AOA localization geometry.
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The noisy AOA measurements at sensor i are given by

θ̃i = θi + ni, i = 1, . . . , N, (1)

where ni ∼ N (0, σ2
θi
) is an independent additive noise with zero mean and variance σ2

θi
.

The true angle θi is
θi = tan−1(y− yi, x− xi), θi ∈ (−π, π] (2)

where tan−1 is the 4-quadrant inverse tangent. The covariance matrix of the AOA measure-
ments [θ̃1, . . . , θ̃N ] is a diagonal matrix:

WAOA = diag(σ2
θ1

, . . . , σ2
θN
). (3)

The power difference (DRSS) measurements with respect to the reference sensor at r1
follow the propagation path loss model [24,26,29,30,42]

p̃i,1 = pi,1 + εi,1, i = 2, . . . , N, (4)

where pi,1 = 10γ log10
d1
di

is the true power difference between sensor i and the refer-
ence sensor (in dBm or dBW), γ is the path loss exponent which is assumed known a
priori, and εi,1 ∼ N (0, σ2

p1
+ σ2

pi
) is the log-normal noise representing shadowing effects

with variance σ2
p1
+ σ2

pi
, which is the sum of RSS log-normal noise variances at r1 and ri.

The covariance matrix of the DRSS measurements [ p̃2,1, . . . , p̃N,1] is

WDRSS = σ2
p1

1N−1 + diag(σ2
p2

, . . . , σ2
pN
) (5)

where 1N−1 is an (N − 1)× (N − 1) matrix of ones.
The (2N − 1)× 1 hybrid measurement vector combining the AOA and DRRS mea-

surements is

ψ̃ = ψ + β, (6)

where
ψ̃ = [θ̃1, . . . , θ̃N , p̃2,1, . . . , p̃N,1]

T , (7a)

ψ = [θ1, . . . , , θN , p2,1, . . . , pN,1]
T , (7b)

β = [n1, . . . , nN , ε2,1, . . . , εN,1]
T . (7c)

The covariance matrix of β is a (2N − 1)× (2N − 1) block-diagonal matrix

W = E{ββT} =
[

WAOA 0
0 WDRSS

]
. (8)

Observe that the AOA and DRSS measurement errors are not correlated. This is
because the AOA measurement errors arise from thermal noise and possibly some interfer-
ence at sensors while the log-normal noise in DRSS measurements is caused by shadowing.
The two noise sources are physically independent phenomena.

3. Maximum Likelihood Estimator

The likelihood function for the hybrid measurements is a multivariate Gaussian
pdf [43], which is given by

p(ψ̃|p̂) = 1
(2π)(2N−1)/2|W|1/2

× exp
{
− 1

2
(ψ̃−ψ(p̂))TW−1(ψ̃−ψ(p̂))

}
,

(9)
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where | · | denotes matrix determinant or scalar absolute value, and

ψ(p̂) = [θ1(p̂), . . . , , θN(p̂), p2,1(p̂), . . . , pN,1(p̂)]T (10)

is the (2N− 1)× 1 vector of DRSS-AOA estimates constructed by substituting the estimated
source location p̂ = [x̂, ŷ]T for the true source location p:

θi(p̂) = tan−1(ŷ− yi, x̂− xi), θi(p̂) ∈ (−π, π], i = 1, . . . , N, (11a)

pi,1(p̂) = −10γ log10
‖p̂− ri‖
‖p̂‖ , i = 2, . . . , N. (11b)

The maximum likelihood estimate (MLE) of the source location is obtained by maxi-
mizing the log-likelihood function ln p(ψ̃|p̂) over p̂, which is equivalent to

p̂ML = arg min
p∈R2

hT(p)W−1h(p), (12)

where
h(p) = ψ̃−ψ(p). (13)

The nonlinear minimization problem in (12) can be solved numerically by an iterative
search algorithm such as the steepest-descent, Levenberg–Marquardt, trust region and
Gauss–Newton method [44]. In this paper, the Gauss–Newton method is adopted, which
calculates the MLE using the following iterations:

p̂(j + 1) = p̂(j) + (JT(j)W−1J(j))−1JT(j)W−1h(p̂(j)), j = 0, 1, . . . (14)

Here J(j) is the (2N − 1)× 2 Jacobian matrix of ψ(p̂) evaluated at p = p̂(j):

J(j) = [JT
θ1
(j), . . . , JT

θN
(j), JT

p2,1
(j), . . . , JT

pN,1
(j)]T , (15)

where

Jθk (j) =
[− sin θi(p̂(j)), cos θi(p̂(j))]

‖p̂(j)− ri‖
, i = 1, . . . , N (16a)

Jpi,1(j) =
10γ

ln(10)

(
(ri − p̂(j))T

‖ri − p̂(j)‖2
2
+

p̂T(j)
‖p̂(j)‖2

2

)

=
10γ

ln(10)

− cos θi(p̂(j))
‖p̂(j)−ri‖

+ cos θ1(p̂(j))
‖p̂(j)‖

− sin θi(p̂(j))
‖p̂(j)−ri‖

+ sin θ1 p̂(j)
‖p̂(j)‖

T

, i = 2, 3 . . . , N.

(16b)

The GN is initialized by p̂(0), which needs to be selected carefully.
Being asymptotically efficient and unbiased, the MLE is often considered to be a

benchmark in performance comparisons. However, the iterative methods used in MLE
calculation can diverge if they are poorly initialized or the noise is too large, causing
threshold effects (sharp degradation in estimation performance as the measurement noise
increases above a threshold value). Furthermore, the MLE algorithms have a large compu-
tational complexity.

The Cramer–Rao lower bound for the hybrid DRSS-AOA localization problem is given
by [43]

CRLB =
(

JT
0 W−1J0

)−1
, (17)

where J0 is the Jacobian matrix in (15) evaluated at the true source location p.
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4. Pseudolinear Equations for Hybrid Measurements
4.1. Linearized AOA Equations

According to [6,40], the pseudolinear form for AOA measurements is

Aθi p = bθi + eθi , i = 1, . . . , N (18)

where
Aθi = [sin θ̃i,− cos θ̃i], (19a)

bθi = [sin θ̃i,− cos θ̃i]ri, (19b)

eθi = di sin ni ≈ dini. (19c)

The approximation in (19c) is valid for sufficiently small AOA measurement noise.

4.2. Linearized DRSS Equations

The DRSS measurement Equation (4) can be rewritten as

10
p̃i,1
10γ di = 10

εi,1
10γ d1, i = 2, . . . , N. (20)

Squaring both sides of the above equation yields

Ai,1y = bi + ei, i = 2, . . . , N (21)

where

Ai,1 = [−2× 10
p̃i,1
5γ rT

i , 10
p̃i,1
5γ − 1] (22a)

y =

[
p
‖p‖2

]
(22b)

bi = −10
p̃i,1
5γ ‖ri‖2 (22c)

ei =

(
10

εi,1
5γ − 1

)
d2

1 (22d)

A key challenge with the linearized DRSS Equation (21) is the presence of a nuisance
parameter, viz., ‖p‖2, in y, that depends on the source location, thereby creating an
undesirable nonlinear constraint in the solution. This constraint must be imposed on
the estimate of y to assure good estimation performance.

4.3. Linearized DRSS-AOA Equations

Here we show how the nuisance parameter in the linearized DRSS equation can be
eliminated by using hybrid DRSS-AOA measurements, leading to a linear matrix equation
free of nuisance parameter and nonlinear constraints. To do this, first consider the noiseless
DRSS equation

pi,1 = −10γ log10
di
d1

, i = 2, . . . , N (23)

which can be rewritten as
10−

pi,1
10γ ‖p‖ = di. (24)

Next, consider the triangle formed by the corner points p, r1 and ri, which shown in
Figure 2. From the dot products ri · p and ri · di, we obtain

cos α1i =
rT

i p
‖ri‖‖p‖ ⇒ ‖p‖ =

rT
i p

‖ri‖ cos α1i
, (25a)
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cos α2i = −
rT

i di

‖ri‖di
⇒ di = −

rT
i di

‖ri‖ cos α2i
. (25b)

Figure 2. Triangle formed by corner points p, r1 and ri.

The angles of the triangle α1i and α2i are easily obtained from the AOA angles θ1 and
θi as follows:

ϑ1i = ∠ri (26a)

α1i = θ1 − ϑ1i, −π < α1i ≤ π (26b)

α2i = π − θi + ϑ1i, −π < α2i ≤ π (26c)

where ∠ denotes the vector angle. Note that both α1i and α2i are wrapped to the interval
(−π, π].

Substituting (25a) and (25b) into (24) yields

10−
pi,1
10γ

rT
i p

‖ri‖ cos α1i
= −

rT
i di

‖ri‖ cos α2i
(27a)

10−
pi,1
10γ rT

i p cos α2i = −rT
i di cos α1i. (27b)

Finally, plugging di = p − ri into (27b), we obtain the following linearized DRSS
equation incorporating AOA, which is free of nuisance parameter:

Āpi,1 p = b̄pi,1 (28)

where

Āpi,1 =

(
10−

pi,1
10γ cos α2i + cos α1i

)
rT

i

and
b̄pi,1 = ‖ri‖2 cos α1i.

Replacing the true AOA and DRSS values with noisy measurements, (28) becomes

Api,1 p = bpi,1 + epi,1 , (29)

where epi,1 is given by (A5) in Appendix A, and
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Api,1 =

(
10−

p̃i,1
10γ cos α̃2i + cos α̃1i

)
rT

i (30a)

bpi,1 = ‖ri‖2 cos α̃1i (30b)

α̃1i = α1i + n1 (30c)

α̃2i = α2i − ni. (30d)

As AOA and DRSS measurement errors are zero mean, we have

E{epi,k} ≈ 0. (31)

Stacking N AOA measurements and N − 1 DRSS measurements, we obtain the lin-
earized DRSS-AOA matrix equation:

Ap = b + e, (32)

where

A = [AT
θ1

, . . . , AT
θN

, AT
p2,1

, . . . , AT
pN,1

]T , (33a)

b = [bθ1 , . . . , bθN , bp2,1 , . . . , bpN,1 ]
T , (33b)

e = [eθ1 , . . . , eθN , ep2,1 , . . . , epN,1 ]
T (33c)

and
E{e} ≈ 0. (34)

Note that (32) does not have a nuisance parameter. Therefore it can be solved without
any constraint on the unknown vector as described in the next section.

5. Hybrid Pseudolinear Estimators
5.1. LS Solution and Bias Analysis

The least-squares solution for the linear matrix equation Ap ≈ b (see (32)) is [43]

p̂LS = arg min
p∈R2

‖Ap− b‖2 (35a)

= (ATA)−1ATb. (35b)

Substituting (32) into (35b), the least-squares estimate in terms of the pseudolinear
noise vector e can be written as

p̂LS = (ATA)−1ATb

= (ATA)−1AT(Ap− e)

= p− (ATA)−1ATe.

(36)

The least-squares estimation bias is

δLS = E{p̂LS} − p = −E{(ATA)−1ATe}, (37)

and the error covariance matrix of the estimate is

CLS = E{(p̂LS − p)(p̂LS − p)T}
= E{(ATA)−1ATeeTA(ATA)−1}.

(38)



Sensors 2021, 21, 7159 9 of 20

For sufficiently large N and under mild assumptions, Slutsky’s theorem [45] allows
(37) to be approximated by the product of expectations:

δLS ≈ −E
{

ATA
2N − 1

}−1

E
{

ATe
2N − 1

}
. (39)

Using (33), the cross-correlation between A and e is

E{ATe} =
N

∑
i=1

E{AT
θi

eθi}+
N

∑
i=2

E{AT
pi,1

epi,1}. (40)

According to (19a) and (19c), even for small AOA noise, we have [40]

E
{

AT
θi

eθi

}
≈ σ2

θi
di 6= 0. (41)

An approximate expression for E{AT
pi,1

epi,1} can be derived from (30a) and (A4). Firstly,
expanding the cosine terms of Api,1 and approximating Api,1 using (A3), we obtain

Api,1 ≈
(

C1i cos α2i + cos α1i − C2iεi,1 cos α2i

+ C1ini sin α2i − n1 sin α1i

− C1i
n2

i
2

cos α2i + C3iε
2
i,1 cos α2i

− C2iniεi,1 sin α2i −
n2

1
2

cos α1i

+ C2i
n2

i
2

εi,1 cos α2i + C3iniε
2
i,1 sin α2i

− C3i
n2

i
2

ε2
i,1 cos α2i

)
rT

i .

(42)

Taking the expectation of AT
pi,1

epi,1 yields

E
{

AT
pi,1

epi,1

}
≈
(
− C2

1i‖ri‖
σ2

θi

2
cos2 α2i − C1i‖ri‖

σ2
θi

2
cos α2i cos α1i

+ 3C1iC3i‖ri‖σ2
pi,1

cos2 α2i + C3i‖ri‖σ2
pi,1

cos α2i cos α1i

+ C2
1i‖di‖

σ2
θi

2
cos3 α2i + C1i‖di‖

σ2
θi

2
cos2 α2i cos α1i

− 3C1iC3i‖di‖σ2
pi,1

cos3 α2i − C3i‖di‖σ2
pi,1

cos2 α2i cos α1i

− C2
1i‖di‖σ2

θi
sin2 α2i cos α2i + C1i‖ri‖

σ2
θ1

2
cos α2i cos α1i

+ ‖ri‖
σ2

θ1

2
cos2 α1i − C1i‖p‖

σ2
θ1

2
cos α2i cos2 α1i

− ‖p‖
σ2

θ1

2
cos3 α1i + ‖p‖σ2

θ1
sin2 α1i cos α1i

+ C2
1i‖ri‖σ2

θi
sin2 α2i − ‖ri‖σ2

θ1
sin2 α1i

)
‖ri‖rT

i

(43)

It is clear that E
{

AT
pi,1

epi,1

}
cannot be guaranteed to be zero for all i = 2, . . . , N. Thus,

E
{

AT
pi,1

epi,1

}
6= 0.
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Based on (41) and (43), we conclude that

E{ATe} =
N

∑
i=1

E
{

AT
θi

eθi

}
+

N

∑
i=2

E
{

AT
pi,1

epi,1

}
6= 0 (44)

which means δLS 6= 0 and the least-squares estimate (35b) is biased.

5.2. WLS Solution and Bias Analysis

The weighted least-squares estimate for p is obtained from [43]

p̂WLS = arg min
p∈R2

(
Ap− b

)TW−1
PLE
(
Ap− b

)
(45a)

= (ATW−1
PLEA)−1ATW−1

PLEb. (45b)

where WPLE is the weighting matrix that approximates the covariance of the noise vector e:

WPLE = E{eeT} =

W11 W12 W13
WT

12 W22 W23
WT

13 WT
23 W33

. (46)

The entries of WPLE are given by

W11 = E{e2
θ1,k
} ≈ ‖p‖2σ2

θ1
, (47a)

W12 = E{eθ1,k [eθ2,k , . . . , eθN,k ]} = 01×(N−1), (47b)

W13 = E{eθ1 [ep2,1 , . . . , epN,1 ]}

≈
[
‖r2‖2‖p‖ sin α12 − ‖r2‖‖p‖2 sin α12 cos α12,

. . . , ‖rN‖2‖p‖ sin α1N − ‖rN‖‖p‖2 sin α1N cos α1N

]
σ2

θ1
(47c)

W22 = E{[eθ2 , . . . , eθN ]
T [eθ2 , . . . , eθN ]}

≈ diag(. . . , ‖di‖2σ2
θi

, . . .)i=2,...,N , (47d)

W23 = E{[eθ2 , . . . , eθN ]
T [ep2,1 , . . . , epN,1 ]}

≈ diag

(
. . . ,

(
C1i‖ri‖2‖di‖ sin α2i

− C1i‖ri‖‖di‖2 sin α2i cos α2i

)
σ2

θi
, . . .

)
i=2,...,N

(47e)

W33 = E{[ep2,1 , . . . , epN,1 ]
T [ep2,1 , . . . , epN,1 ]}

= [β2,1, . . . , βN,1]
T [β2,1, . . . , βN,1]σ

2
θ1

+ diag

(
. . . ,

(
C1i‖ri‖2 sin α2i

− C1i‖ri‖‖di‖ sin α2i cos α2i

)2
σ2

θi
, . . .

)
i=2,...,N

+ [η2,1, . . . , ηN,1]
T [η2,1, . . . , ηN,1]WDRSS. (47f)

where
β2,i = ‖ri‖2 sin α1i − ‖ri‖‖p‖ sin α1i cos α1i, (48a)

η2,i = C2i‖ri‖‖di‖ cos2 α2i − C2i‖ri‖2 cos α2i. (48b)
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Note that di, ri, α1i, α2i, C1i and C2i require prior knowledge of the source location p,
which is not available. We replace p with p̂LS to calculate those terms.

Substituting (32) into (45b), we have

p̂WLS = p− (ATW−1
PLEA)−1ATW−1

PLEe (49)

whence the estimation bias is obtained as

δWLS = E{p̂WLS} − p = −E{(ATW−1
PLEA)−1ATW−1

PLEe}. (50)

Similar to (39), for large N, (50) can be approximated as

δWLS ≈ −E
{

ATW−1
PLEA

2N − 1

}−1

E
{

ATW−1
PLEe

2N − 1

}
. (51)

As A and e are correlated as shown in Section 5.1, E{ATW−1
PLEe} 6= 0, which implies

δWLS 6= 0 and the WLS estimate is biased.

5.3. WIV Solution

The bias in the LS and WLS estimates can be significantly reduced by employing the
method of instrumental variables. A weighted instrumental variable (WIV) estimator is
obtained by introducing an IV matrix G which is strongly correlated with the matrix A
while being statistically independent of e. The WIV solution is given by [45]

p̂WIV = (GTW−1
PLEA)−1GTW−1

PLEb. (52)

The IV matrix G is selected such thatE
{

GTW−1
PLEA

2N−1

}
is nonsingular andE

{
GTW−1

PLEe
2N−1

}
→

0 as N → ∞ [46]. A practical IV matrix that meets these requirements can be constructed
from an initial source location estimate, such as the LS or WLS estimate, as described
below. This procedure is based on [47]. Consider the following row partitioning of the IV
matrix G:

G = [GT
θ1

, . . . , GT
θN

, GT
p2,1

, . . . , GT
pN,1

]T , (53)

where

Gθi =
[

sin θ̂i, cos θ̂i

]
, i = 1, . . . , N (54a)

Gpj,1 =

(
10−

p̂j,1
10γ cos α̂2j + cos α̂1j

)
rT

j , j = 2, . . . , N. (54b)

Here the AOA, triangle angle and DRSS estimates are obtained from the initial source
location estimate p̂ = [x̂, ŷ]T as

θ̂i = tan−1(ŷ− yi, x̂− xi), θ̂i ∈ (−π, π] (55a)

α̂1j = θ̂1 − ϑ1j, −π < α̂1i ≤ π (55b)

α̂2j = π − θ̂j + ϑ1j, −π < α̂2j ≤ π (55c)

p̂j,1 = 10γ log10
‖p̂‖
‖p̂− r j‖

. (55d)

The bias of the WIV estimate is given by

δWIV = E{p̂WIV} − p

= −E{(GTW−1
PLEA)−1GTW−1

PLEe}
(56)
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which, for sufficiently large N, can be approximated as

δWIV ≈ −E
{

GTW−1
PLEA

2N − 1

}−1

E
{

GTW−1
PLEe

2N − 1

}
(57)

where

E
{

GTW−1
PLEe

2N − 1

}
≈ 0.

As a result, δWIV ≈ 0 and, therefore, the WIV estimate is approximately unbiased.

5.4. SHM-WIV Solution

A selective hybrid measurement method is introduced here to keep the IV matrix
G, constructed from an initial source location estimate, and the data matrix A strongly
correlated as there is a high probability that G and A lose correlation when the measurement
noise is large [18]. The principle of selective hybrid measurements is to decide which rows
of G should remain identical to those of A based on a measure of difference between them.

Consider the difference between the first N rows of A and G corresponding to the
AOA measurements:

Aθi −Gθi =
[
sin θ̃i − sin θ̂i, cos θ̃i − cos θ̂i

]
= 2 sin

(
θ̃i − θ̂i

2

)[
cos
(

θ̃i+θ̂i
2

)
, − sin

(
θ̃i+θ̂i

2

)]
.

(58)

The common factor sin
(
(θ̃i − θ̂i)/2

)
suggests that it will be appropriate to use the

angle difference |θ̃i − θ̂i| as a measure of row difference [18], which leads to the following
criterion for using θ̂i, instead of θ̃i, in the ith row of the IV matrix G:

|θ̃i − θ̂i| ≤ λ1. (59)

The recommended range of values for the threshold is 5σθi ≤ λ1 ≤ 20σθi , i = 1, . . . , N.
Following extensive simulation studies, we have concluded that selecting λ1 in this range
achieves the intended effect of making the IV matrix strongly correlated with the data
matrix. In general, the larger the angle noise, the larger λ1 should be.

The row difference between A and G for the DRSS measurements is

Api,1 −Gpi,1 =

(
10

p̃i,1
−10γ cos α̃2i + cos α̃1i

)
rT

i −
(

10
p̂i,1
−10γ cos α̂2i + cos α̂1i

)
rT

i

=

((
10

p̃i,1
−10γ − 10

p̂i,1
−10γ

)
(cos α̃2i − cos α̂2i) +

(
10

p̃i,1
−10γ − 10

p̂i,1
−10γ

)
cos α̂2i

+ 10
p̂i,1
−10γ (cos α̃2i − cos α̂2i) + (cos α̃1i − cos α̂1i)

)
rT

i

(60)

where the following terms determine the magnitude of difference∣∣∣∣10
p̃i,1
−10γ − 10

p̂i,1
−10γ

∣∣∣∣ (61a)

| cos α̃1i − cos α̂1i| =
∣∣∣∣2 sin

(
α̃1i + α̂1i

2

)
sin

(
θ̃i − θ̂i

2

)∣∣∣∣ (61b)

| cos α̃2i − cos α̂2i| =
∣∣∣∣2 sin

(
α̃2i + α̂2i

2

)
sin

(
θ̃1 − θ̂1

2

)∣∣∣∣. (61c)
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From (61a) we obtain the following criterion for using p̂i,1, instead of p̃i,1, in G:

| p̃i,1 − p̂i,1| ≤ λ2 (62)

where the recommended range for λ2 is 5σpi,1 ≤ λ2 ≤ 20σpi,1 with σpi,1 =
√

σ2
p1
+ σ2

pi
.

This range was confirmed to yield satisfactory estimation performance through extensive
simulation studies.

Equations (61b) and (61c) result in the same criterion as (59). Thus, applying the dif-
ference measures in (59) and (62) to (60) yields the hybrid measurement selection criterion:

| p̃i,1 − p̂i,1||θ̃1 − θ̂1|+ | p̃i,1 − p̂i,1|+ |θ̃1 − θ̂1|+ |θ̃i − θ̂i| ≤ λ1λ2 + λ2 + 2λ1. (63)

We refer to the WIV estimate incorporating (59) and (63) in the construction of the IV
matrix G as the selective hybrid measurement WIV (SHM-WIV) algorithm.

6. Simulation Results
6.1. Simulation Set-Up

The RMSE and bias performance of the MLE, LS, WLS, WIV and SHM-WIV algorithms
is compared using Monte Carlo simulations. The simulated network topology has ten
sensor nodes at fixed locations and a source, all contained within a 60 m × 60 m region.
The path loss exponent is assumed to be γ = 4. The range of AOA and DRSS measurement
noise is indicated by a noise index given in Table 1. The average SNR values for AOA and
DRSS measurements are also included. AOA and DRSS measurements have different SNR
values because the AOA noise power is the variance of the additive thermal (Gaussian)
noise and the DRSS measurements are corrupted by the shadowing log-normal noise.
The AOA measurements are obtained from an antenna array with m = 10 elements,
using [48]

SNRi =
6

m3σ2
θi

, i = 1, . . . , N (64)

which assumes the Cramer–Rao lower bound is achieved. The DRSS SNR values are for a
source with transmit power of 40 dBm (10 W). The MLE uses the iterative Gauss–Newton
method with initialization obtained from the LS estimate. The SHM-WIV threshold values
are given in Table 2.

Table 1. Noise index for AOA/DRSS measurements.

Index 1 2 3 4 5 6 7

σθi (degrees) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
σpi,1 (dBm) 1 1.5 2 2.5 3 4 5

AOA SNR (dB) 32.95 26.92 23.40 20.90 18.96 17.38 16.04
DRSS SNR (dB) −22.70 −23.20 −23.70 −24.20 −24.70 −25.70 −26.70

Table 2. λ1 and λ2 for SHM-WIV.

Noise Index 1 2 3 4 5 6 7

AOA λ1 6.5σ 6.5σ 6.5σ 6.5σ 6.5σ 18σ 20σ

DRSS λ2 6.5σ 6.5σ 6.5σ 6.5σ 6.5σ 18σ 20σ

6.2. Fixed Source Location

We start with a fixed network topology simulation where the source is stationary
at a fixed location p = [10, 56]T as shown in Figure 3. The simulations consist of 10,000
Monte Carlo runs. Figures 4 and 5 present the RMSE and bias results versus noise index.
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The MLE achieves the CRLB at small noise (noise index 1 and 2), but starts to diverge
for large noise. The LS exhibits significant bias and poor RMSE compared to the other
estimates for all noise levels. The WLS has a better bias and RMSE performance than the
LS, but still shows a large bias and deviates from the CRLB for large noise. The WIV attains
the CRLB when the noise index is below 6, but its RMSE rapidly deviates from the CRLB at
noise index 7. The SHM-WIV exhibits the best overall RMSE and bias performance for the
entire noise range.

For noise index 1 and 4, individual location estimates along with mean locations for
the simulated algorithms are shown in Figures 6 and 7, respectively, to demonstrate the
spread of estimates. The standard deviations of Monte Carlo simulation results that led
to the bias and RMSE values plotted in Figures 4 and 5 are listed in Table 3. The standard
deviation is left blank for algorithms that exhibit divergence.

The total run times of the simulated algorithms are listed in Table 4. We observe that
the LS runs the fastest; however, it has a poor performance. The WLS is approximately
three times slower than the LS due to weighting matrix computation. The MLE and WLS
have comparable run times, even though the Gauss–Newton iterations can take longer
time depending on initialization. The WIV is roughly five times slower than the LS because
of computational overheads associated with weighting matrix and IV matrix computations.
The SHM-WIV is slightly slower than the WIV method because of the additional SHM step.

(0, 0)

(0, 50)

(50, 0)

(50, 50)

(25, 5)

(25, 45)

(12, 15)

(12, 35)

(37, 15)

(37, 35)

(10, 56)

Anchors position

Target position

Figure 3. DRSS-AOA geometry with fixed source location.
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Figure 4. RMSE versus noise with fixed source location.
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Figure 5. Bias versus noise with fixed source location.
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(a) Location estimates
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Figure 6. (a) Plot of individual location estimates for noise index 1; (b) Plot of mean location estimates
for noise index 1.
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Figure 7. (a) Plot of individual location estimates for noise index 4; (b) Plot of mean location estimates
for noise index 4.
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Table 3. Standard deviations of Monte Carlo results for bias/RMSE values.

Index bias/RMSE MLE LS WLS WIV SHM-WIV

1 Bias 0.0007 0.0069 0.0004 0.0002 0.0001
RMSE 0.0024 0.0098 0.0183 0.0147 0.0044

2 Bias 0.0013 0.0095 0.0013 0.0002 0.0003
RMSE 0.0037 0.0115 0.0268 0.0019 0.0110

3 Bias 0.0017 0.0113 0.0029 0.0012 0.0008
RMSE 0.0053 0.0123 0.0351 0.1219 0.0203

4 Bias 0.0033 0.0170 0.0045 0.0018 0.0012
RMSE 0.1676 0.0159 0.0417 0.1596 0.0237

5 Bias 0.0184 0.0062 0.3103 0.0020
RMSE 0.0206 0.0503 0.4246 0.0453

6 Bias 0.0233 0.0070 0.0044 0.0041
RMSE 0.0294 0.0641 0.4337 0.4022

7 Bias 0.0288 0.0125 56.8201 0.0048
RMSE 0.0302 0.0771 5682 0.4105

Table 4. Total simulation run time in MATLAB.

MLE LS WLS WIV SHM-WIV

Time (s) 15.7860 5.5127 14.5313 24.3188 25.7447

6.3. Randomized Source Location

In these simulations 100 source locations are generated randomly in the 60 m × 60 m
region, and, for each source location, RMSE and bias are evaluated using 10,000 Monte
Carlo runs. The RMSE and bias results are shown in Figures 8 and 9, respectively. The MLE
has a divergence problem across the whole noise range. Among the remaining algorithms,
the LS has the largest bias and RMSE. The WLS shows improved performance compared
to the LS. The WIV and SHM-WIV have the best RMSE and bias performance with the
SHM-WIV slightly outperforming the WIV at large noise levels.
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(a) RMSE capped at 8 m
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(b) Unlimited RMSE

Figure 8. (a) RMSE versus noise with randomized source location (RMSE is capped at 8 m); (b)
RMSE versus noise with randomized source location (MLE is missing in (a) as it diverges for entire
noise range).
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(a) Bias capped at 2 m
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Figure 9. (a) Bias versus noise with randomized source location (bias is capped at 2 m); (b) Bias versus
noise with randomized source location (MLE is missing in (a) as it diverges for entire noise range).

7. Conclusions

A new pseudolinear hybrid DRSS-AOA localization method, free of nuisance param-
eter (squared source range from the reference sensor), was developed by exploiting the
geometric relationship between AOA and DRSS measurements. To solve the resulting
linear matrix equation for the source location, several variants of the pseudolinear esti-
mator were proposed. These estimators are closed-form, leading to fewer computational
steps than the MLE. However, the LS and WLS solutions have severe bias problems as
verified by the simulations. The WIV estimator, on the other hand, was seen to be capable
of alleviating the bias problem, achieving approximately zero bias for a large number
of sensor measurements and small noise. The SHM-WIV was developed to guarantee
a strong correlation between the IV matrix and the linearized data matrix for the WIV
method as this correlation can be weakened when the noise is large. Simulation studies
were carried out to compare the performance of the proposed estimators in fixed and
randomized localization geometries. It was observed that the MLE has severe stability
issues and cannot be considered an optimal solution at large noise. In the simulation
studies the SHM-WIV outperformed all the estimators with an RMSE close to the CRLB
and bias approaching zero.
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Appendix A. Derivation of Linearized DRSS Equation Noise

From (29), we have

epi,1 = Api,1 p− bpi,1

=
(

10
p̃i,1
−10γ cos(α2i − ni) + cos(α1i + n1)

)
rT

i p− ‖ri‖2 cos(α1i + n1).
(A1)
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Expanding (A1), we obtain

epi,1 = 10
p̃i,1
−10γ ‖ri‖2 (cos α2i cos ni + sin α2i sin ni)

− 10
p̃i,1
−10γ ‖ri‖‖di‖(cos2 α2i cos ni + sin α2i cos α2i sin ni)

+ ‖ri‖‖p‖
(

cos2 α1i cos n1 − sin α1i cos α1i sin n1

)
− ‖ri‖2 (cos α1i cos n1 − sin α1i sin n1) .

(A2)

When the measurement noise is sufficiently small, we have

cos ni ≈ 1−
n2

i
2

, (A3a)

sin ni ≈ ni, (A3b)

and

10
p̃i,1
−10γ = 10

pi,1
−10γ 10

εi,1
−10γ

≈ 10
pi,1
−10γ

1− εi,1

10γ
ln 10 +

(
εi,1
−10γ ln(10)

)2

2


≈ 10

pi,1
−10γ − εi,1

10γ
10

pi,1
−10γ ln 10 + 10

pi,1
−10γ

ε2
i,1 ln2(10)

200γ2 .

(A3c)

Substituting (A3) into (A2) yields

epi,1 ≈ −C1i‖ri‖2 n2
i

2
cos α2i − C2i‖ri‖2εi,1 cos α2i

+ C2i‖ri‖2εi,1
n2

i
2

cos α2i + C3i‖ri‖2ε2
i,1 cos α2i

− C3i‖ri‖2ε2
i,1

n2
i

2
cos α2i + C1i‖ri‖2ni sin α2i

− C2i‖ri‖2εi,1ni sin α2i + C3i‖ri‖2ε2
i,1ni sin α2i

+ C1i‖di‖‖ri‖
n2

i
2

cos2 α2i + C2i‖di‖‖ri‖εi,1

(
1−

n2
i

2

)
cos2 α2i

− C3i‖di‖‖ri‖ε2
i,1

(
1−

n2
i

2

)
cos2 α2i − C1i‖di‖‖ri‖ni cos α2i sin α2i

+ C2i‖di‖‖ri‖εi,1ni cos α2i sin α2i − C3i‖di‖‖ri‖ε2
i,1ni cos α2i sin α2i

+ ‖ri‖2 n2
1

2
cos α1i + ‖ri‖2n1 sin α1i − ‖p‖‖ri‖

n2
1

2
cos2 α1i

− ‖p‖‖ri‖ cos α1i sin α1in1

(A4)

where C1i = 10−
Pi,1
10γ , C2i =

ln 10
10γ 10−

Pi,1
10γ and C3i =

ln2 10
200γ2 10−

Pi,1
10γ . Neglecting the second and

higher-order noise terms in (A4), epi,1 can be further simplified:

epi,1 ≈ −C2i‖ri‖2εi,1 cos α2i + C1i‖ri‖2ni sin α2i

+ C2i‖ri‖‖di‖εi,1 cos2 α2i − C1i‖ri‖‖di‖ni sin α2i cos α2i

+ ‖ri‖2n1 sin α1i − ‖ri‖‖p‖n1 sin α1i cos α1i.

(A5)
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