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Photonic reservoir computing 
based on nonlinear wave dynamics 
at microscale
Satoshi Sunada1,2* & Atsushi Uchida3

High-dimensional nonlinear dynamical systems, including neural networks, can be utilized as 
computational resources for information processing. In this sense, nonlinear wave systems are 
good candidates for such computational resources. Here, we propose and numerically demonstrate 
information processing based on nonlinear wave dynamics in microcavity lasers, i.e., optical 
spatiotemporal systems at microscale. A remarkable feature is its ability of high-dimensional and 
nonlinear mapping of input information to the wave states, enabling efficient and fast information 
processing at microscale. We show that the computational capability for nonlinear/memory tasks is 
maximized at the edge of dynamical stability. Moreover, we show that computational capability can 
be enhanced by applying a time-division multiplexing technique to the wave dynamics. Thus, the 
computational potential of the wave dynamics can sufficiently be extracted even when the number 
of detectors to monitor the wave states is limited. In addition, we discuss the merging of optical 
information processing with optical sensing, revealing a novel method for model-free sensing by using 
a microcavity reservoir as a sensing element. These results pave a way for on-chip photonic computing 
with high-dimensional dynamics and a model-free sensing method.

Reservoir computing (RC)1, originally referred to as an echo state network2 or a liquid state machine3, is a com-
putational paradigm that uses high-dimensional dynamical systems and has been regarded as a powerful tool 
for solving highly complex and abstract computational tasks. The computational paradigm has recently been 
implemented in a variety of physical systems and devices, such as optoelectronic systems4, photonic systems5, 
memristors6, spin systems7, and soft materials8. (See ref. 9 for a comprehensive review on physical RC). In particu-
lar, the photonic implementation of RC is expected to open the path to ultrafast and efficient processing beyond 
traditional Turing-von Neumann computer architecture10–15.

A key principle of the RC is high-dimensional mapping of the input information based on the 
high-dimensionality of the reservoir dynamical systems; the computational capacity is dependent on the num-
ber of linearly independent internal states of a dynamical system in response to an encoded input16. Moreover, 
nonlinearity and a short-term memory effect, inherent in dynamical systems, also play a crucial role in solving 
computational tasks requiring nonlinearity or memories. Thus, infinite dimensional nonlinear systems represent 
good candidates for use as reservoirs.

One such representative infinite dimensional system is a delay system, where reservoir networks can virtu-
ally be constructed in a time domain17. To date, numerous experimental studies of the photonic RC with delay 
systems have been performed because of the easy implementation in optoelectronic or photonic systems, such 
as lasers with delayed feedback10,11,18,19. The information processing, including prediction10 and speech recog-
nition11, has been demonstrated. However, the drawback is the requirement of long delay lines to make many 
virtual nodes in the RC, which could lead to impractically large systems, inhibit stable operation, and may prevent 
practical deployment.

In this study, we propose the use of a microcavity laser, i.e., a microscale spatially extended optical system, 
as a reservoir. Originally, microcavities have mainly been utilized to realize a low threshold laser source and to 
modify quantum effects by implementing the strong optical confinement effect, which is caused by the differ-
ence in refractive indexes between inside and outside the cavity20. Furthermore, various shapes of microcavity 
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lasers, inspired by wave/quantum chaos, have recently been utilized to control the emission properties21,22. An 
interesting feature of such microcavity lasers is the ability to exhibit a variety of spatiotemporal wave dynamics 
through the interplay of a gain medium and cavity shape23,24. Unlike previous work, we utilize such wave dynam-
ics in microcavity lasers driven by an input signal for RC and numerically demonstrate that RC-based informa-
tion processing can efficiently be achieved at microscale owing to the spatial degrees of freedom based on the 
high-dimensional dynamics with a long memory effect.

In addition, we discuss the application of microcavity-based processing by using the sensitivity of wave 
dynamics in a microcavity in an external perturbation. We propose the use of a microcavity as a sensing element 
as well as a reservoir, resulting in high-dimensional mapping. The merging of optical sensing and the reservoir 
suggests the possibility of novel sensing without complex post processing and theoretical sensing models. As a 
proof-of-concept demonstration, we show fast sensing of external reflective index by using the microcavity RC.

Microcavity-based RC
Figure 1(a) shows a schematic of the proposed system, which consists of a microcavity coupled to an input wave-
guide and probes (detectors) to form the RC output ŷ. The microcavity includes a nonlinear gain medium, and 
the cavity shape is designed as the Bunimovich stadium25, in which ray orbits are proven to be fully chaotic and 
the corresponding wave patterns are complex (Fig. 1b). An optical signal encoded with a phase modulation is 
injected from the input waveguide and is able to reach all parts of the cavity owing to the chaotic multiple reflec-
tions at the cavity boundary while nonlinearly amplified by the gain medium. A feature of the stadium cavity is 
the frequency dependence of its wave pattern, resulting from multiple reflections and the resulting wave mixing 
(interference) in the cavity; the speckle-like wave pattern is sensitive to the input frequency (Fig. 2a). Actually, as 
demonstrated in Fig. 2b, the spatial correlation between two wave patterns excited by the input with frequencies 
ω0 and ω ω ω= + Δ0  decreases as Δω increases. This means that the information can be encoded into the wave 
patterns with instant frequency by phase-modulating the input light. Moreover, the gain medium plays an impor-
tant role in adding an additional nonlinearity and memory effect for the amplification. The emitted signals from 
the cavity are detected at the probe points with the sampling time interval τs. In the simulation, N probes are 
assumed to be placed around the cavity.

For RC, we consider the linear readout = ∑ =ŷ t w x t( ) ( )i
M

i i1 , where xi is the detected intensity at probe i, 
( ∈ …i N{1, 2, , }), at time τ=t n s ( ∈ … ∞n {1, 2 , }), and wi is a readout weight. The goal of the processing is to 
approximate a functional relation between input signal u n( ) and target signal y n( ) using output ŷ. To this end, a 
finite set of training data =u n y n{ ( ), ( )}n

T
0 is utilized to determine the readout weights, such that the mean square 

error ∑ | − |ˆT y n y n1/ ( ) ( )n
2 is minimized. In the training process, we simply use the least-squares method.

Results and Discussions
To gain an insight into the computational capability of the microcavity-based RC, the numerical simulation was 
performed using the Maxwell-Bloch (MB) model, in which the gain medium is modeled as a simple two-level 
system26. Although the MB model is a simple model of microcavity lasers, the dynamical lasing phenomena can 
qualitatively be examined27,28. We assumed that the cavity is two-dimensionally extended on a plane, and that the 
electric field is polarized perpendicular to the plane. For generality, all variables were made dimensionless (see 
Methods for details), and we discuss the RC capability in reference to the dimensionless variables.

Figure 1.  Microcavity laser for RC. (a) Schematic of RC using a microcavity laser. The cavity shape is designed 
as the Bunimovich’s stadium, known as a chaotic cavity, and the cavity is coupled to an input waveguide. The 
incident light encoded by the signal u is injected to the cavity. The emitted light intensities are detected by the 
probes, represented by the green triangles, and then used for the output ŷ. The lower figure in (a) shows the 
refractive index distribution of the stadium cavity coupled to an input waveguide. = .n 3 3in  and = .n 1 0out  
denote the refractive indices inside and outside the cavity and waveguide, respectively. (b) An example of the 
intensity pattern responding to the input light, the frequency of which is tuned to a resonant frequency of the 
cavity ω0. The boundary of the cavity coupled to the waveguide is represented by the white curve. The green 
triangles represent the probe points to detect the intensity signals. In the simulation, the normalized pumping 
power ≈∞W W/ 1th  was set, where Wth is the threshold pumping power.
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For the simulations, the refractive index nin inside the cavity was set to be 3.3, and the length L of the major 
axis of the stadium cavity was ≈1.67λ, where λ is the wavelength of the input light in vacuum. (If λ = 0.85 μm, L 
would be 1.42 μm). τs was fixed to be close to the lifetime τc of the cavity without a gain medium. (See Methods for 
discussions concerning the actual experiments). The input information u n( ) was encoded in the input light phase 
as φ =t m u n( ) ( )a , where ≈ .m 0 1a  is the modulation amplitude. u(n) holds for the time interval τs. The center 
frequency of the input light was locked to a resonant frequency ω0. Under these conditions, a variety of intensity 
signals were measured in response to the modulated signal, as demonstrated in Fig. 3.

Nonlinear-memory capacity.  For the evaluation of the computational capability, we used a simple func-
tion approximation task, ν τ ν= −y n u n( ) sin[ ( )]/ , where ν  and τ  are the task parameters that control the 

Figure 2.  Dependence of intensity patterns on input frequency. (a) Examples of the intensity patterns in a 
stadium cavity. The intensity pattern changes according to the frequency detuning Δω of the input light from a 
resonant frequency ω0 of the cavity. Δωi denotes the average mode-interval of the cavity. (b) Spatial correlation 
between two intensity patterns with frequencies ω0 and ω ω ω= + Δ0  is plotted as a function of the normalized 
frequency detuning ω ωΔ Δ/ i. The spatial correlation was calculated as ω σ σ= 〈 − − 〉ω ω ω ω ω ωC I I I I( ) ( ) ( ) /( )

0 0 0
, 

where 〈·〉 denotes the spatial average, and ωI r( ) represents the intensity pattern for frequency ω. ω ωI ( )0
 and σω ω( )0

 
denotes the spatial average and standard deviation, respectively. In the simulation, =∞W 0 was set.

Figure 3.  Demonstration of emission dynamics. (a) A schematic of the stadium-shaped microcavity laser 
coupled to an input waveguide. The blue triangles denote the probe positions. (b) Intensity signals xi detected by 
the probes i = 1, 2, 3 and 4. The input light is phase-modulated with a signal u.
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required nonlinearity and memory, respectively29. The input signal u n( ) is an identically distributed random 
sequence generated from a uniform distribution between −[ 1, 1]. The goal of the task was to reproduce the non-
linearly converted signal y n( ) with a delay of τ  (see the inset of Fig. 4a). To evaluate both the ability to adapt 
nonlinear tasks and memory capacity of the RC, we introduced the correlation between the target signal y and 
output ŷ,

τ
τ

σ σ
=

〈 − 〉
ν

ˆ

ˆ
NM y n y n( ) ( ) ( ) ,

(1)y y

2

2 2

where 〈·〉 is the mean over time step n, σz denotes the standard deviation of =z y or ŷ. Next, the nonlinear- 
memory capacity was defined as the sum of τνNM ( ), with τ to infinity:

∑ τ= .ν
τ

ν
=

∞
NMC NM ( )

(2)0

NMCν corresponds to the linear memory capacity MC in the limit of ν → 030. With the nonlinear-memory 
capacity ν≠NMC 0, one can evaluate both the nonlinearity and memory effects in microcavity lasers at the same 
time.

We examined the lasing dynamics in the stadium cavity and obtained NMCν from the intensity signals 
detected by each probe. In the simulation, =T 1000 samples were used for the training, and the τνNM ( ) and 
NMCν were evaluated for the T samples. Figure 4 shows the numerical results of τνNM ( ) and NMCν with various 
values of the pumping power ∞W  to activate the gain medium. (When =∞W 0, the cavity is a passive cavity with-
out gain. See Methods for ∞W ). As shown in Fig. 4a, τνNM ( ) decreases with increasing τ, but the decrease becomes 
moderate by increasing ∞W  in a range of ≤ ≤ .∞W W0 1 79 th, where Wth denotes the threshold pumping power. 
The pumping compensates for the loss of the input information by the nonlinear amplification effect in the gain 
medium and the reservoir (cavity) can have a longer memory and becomes adaptive to nonlinear tasks. 

Figure 4.  Nonlinear memory capacity of a stadium-shaped microcavity laser. (a) τνNM ( ) for ν = .2 0. ∞W W/ th 
denotes the pumping power normalized by the threshold pumping power. In the simulation, =N 11 probes 
were used. The inset shows an example of the RC output ŷ n( ) for ≈ .∞W W/ 1 79th , denoted by the crosses, and 
the target signal y(n) for ν = 2 and τ = 1 (solid black curve) in time τt/ s. (b) NMCν as a function of the 
normalized pumping power ∞W W/ th. When >∞W W/ 1th , a single mode (SM) lasing starts, and multimode 
(MM) lasing occurs when > .∞W W/ 1 79th . For the large pumping power ∞W , the loss of the input information is 
compensated, and a long memory effect can be achieved. In addition, nonlinear gain saturation plays an 
important role in introducing additional nonlinearity in the reservoir. However, consistency decreases when 
MM lasing occurs. Consequently, NMCν is maximized around the edge of the stability. (c) Consistency as a 
function of ∞W W/ th. See Methods for the measurement method of the consistency.
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Accordingly, τνNM ( ) and the resulting NMCν increase with increasing ∞W  (Fig.  4b). However, when 
> .∞W W1 79 th, multimode lasing occurs and NMCν decreases. Consequently, NMCν of the RC with the micro-

cavity laser is maximized around the edge of the phase transition, ≈ .∞W W/ 1 79th .
The decrease in NMCν can be explained by the loss of the consistency31, or the so-called echo-state prop-

erty2, which is an important condition for RC29,32. In the multimode lasing regime, the spontaneous multi-modal 
oscillations appear, leading to different results, even from the same input, depending on the initial state of the 
reservoir. Thus, the appearance of irreproducibility prevents consistent processing of the input information. We 
measured the consistency, defined as the mean correlation between the output signals starting from two differ-
ent initial states. (see Method for further detail). As shown in Fig. 4c, the decrease in consistency is linked to the 
degrade of NMCν. If consistency can be kept in the multimode lasing regime, better performance may be achieved 
through nonlinear mixing of different spatial modes.

As shown in the above-mentioned results, the effects of the gain medium, as well as the high-dimensionality 
of the wave states, play a crucial role in enhancing the computational capability of the RC frameworks. The com-
pensation of the short memory, inherent in compact RC systems, and additional nonlinearity caused by the inter-
action with the gain medium are an advantage, compared to conventional passive photonic integrated RC12,14,15 
where nonlinearity is introduced only as part of the measurement process.

Effect of cavity shapes.  The cavity shapes play a crucial role in the quality of light confinement and the 
wave dynamics. In the stadium cavity, the chaotic multiple reflections lead to efficient wave mixing dynamics, 
enabling high-dimensional mapping of the input information into complex wave patterns, as demonstrated in the 
previous subsection. To gain a further insight into the effect of the wave-chaotic cavity on the RC performance, we 
also numerically examined the laser dynamics in a non-chaotic cavity where the internal ray orbits do not exhibit 
chaos. For the non-chaotic cavity, we chose a circular-shaped cavity (Fig. 5a) and compared the RC performance 
with that obtained in the stadium-shaped lasers with the same area and same pumping power condition in a 
consistency regime.

Figure 5b shows the performance comparison for nonlinear tasks, where τνNM ( ) is plotted as a function of the 
nonlinear parameter ν when the delay is τ = 0. Clearly, τ =νNM ( 0) of the stadium-shaped laser can outperform 
that of the circular-shaped laser for all values of ν, which may partly be attributed to a strong wave mixing effect 
in the stadium cavity. As shown in Fig. 5c, however, for tasks requiring memory with a delay parameter τ  1, the 

τνNM ( ) of the circular-shaped laser is relatively higher than that of the stadium-shaped laser because the circular 
cavity has a longer cavity-lifetime (lower loss rate)22. These results suggest a trade-off between the cavity shapes 
exhibiting a long-memory effect and nonlinearity. In terms of ray-wave correspondence33, the effect of the cavity 
shape becomes more dramatic for a larger value of a size parameter defined by λn L/in ; it is expected to lead to a 
larger difference in the RC performance. The investigation concerning the aforementioned factors will be an 
important issue in the RC.

The number of probes.  In the microcavity-based RC, the number of the signals detected by the probes, N, 
corresponds to the number of reservoir nodes used to calculate the output ŷ, and it generally affects the capacity 
to approximate the target signal y t( ). To obtain a rich variety of responses from the reservoir nodes, the probes 
should at least be placed at a wavelength-scale distance from each other because shorter distance between the 
probes results in similar responses, i.e., ≈x xj i ≠j i( ). This implies that the maximum number of the probes to be 

Figure 5.  Performance comparison of stadium- and circular-shaped lasers. (a) A schematic of the circular-
shaped laser coupled to an input waveguide. The blue triangles denote the probe positions. (b) Adaptivity to 
nonlinear tasks, where τ =νNM ( 0) is shown as a function of the nonlinear parameter ν. (c) Linear memory 
capacity. τν=NM ( )0  is shown as a function of the delay parameter τ. In (b,c), the performance of the stadium- 
and circular-shaped lasers are compared under the same input condition, same number of probes =N 11, and 
same pumping condition in a single-mode lasing (consistency) regime. For nonlinear tasks, the NMν of the 
stadium-shaped laser is higher than that of the circular-shaped laser, as shown in (b). However, the circular-
shaped laser outperforms the stadium-shaped laser for tasks requiring long memory τ  1, as shown in (c).
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placed, Nmax, (effectively corresponding to the maximum number of nodes used to calculate ŷ) is limited by the 
cavity size and the wavelength. We roughly estimate Nmax as the ratio of the perimeter of the stadium cavity, 

π= +P L( /2 1) , to the characteristic wavelength λ n/ in inside the cavity with nin, π λ∼ +N n L( /2 1) /max in , 
assuming that the spatial autocorrelation of the wave patterns is sufficiently small for a spatial scale larger than λ. 
For example, ≈N 1, 600max  nodes can potentially be used in a 0.013 mm2 footprint when L = 160 μm, 
λ = 0.85 μm, and = .n 3 3in . We emphasize that the potential to implement such high-density and large-scale 
(virtual) nodes is unique to the wave dynamical RC and is not found in conventional photonic integrated RC12, 
comprised of multiple elements.

Using spatiotemporal dynamics for RC.  As mentioned above, the RC performance depends on the num-
ber of the probes N used for calculating the output ŷ. In an actual implementation, however, it may be practically 
difficult to place a large number of probes (or detectors) around a cavity. To overcome the problem, it should be 
noted that the dynamical information is included in delayed sequences, obtained from a few observables34. This 
suggests the possibility that, even when only a few observables are utilized, the dynamical information can be 
extracted from the dynamics of a few observables. In addition, the use of mask signals can create a rich variety of 
the responses from reservoir nodes17. We here use virtual nodes in a time domain for RC with the 
time-multiplexing method used in delay-based RC17,30. First, an input signal is multiplied by a mask signal with a 
period of Tm. Then, each response xi to the signal at probes i is sampled M times with a sampling interval 
τ τ= ≈T M( / )s m c . We describe xi at time τ= +t nT jm s  ∈ …j M( [1, 2, , ]) as the node labeled by i and j, i.e., 

τ= +x n x nT j( ) ( )ij i m s . Moreover, we use the past node response −x n k( )ij , ( ∈ …k K{1, 2, , }). Finally, the output 
signal ŷ n( ) at time step n is calculated as

∑∑ ∑= −
= = =

ŷ n w x n k( ) ( ),
(3)i

N

j

M

k

K

ijk ij
1 1 0

where wijk is an optimal weight obtained by using the least-squares method.
An example of the time-multiplexing method for =M 10 is shown in Fig. 6a, where the input information u 

holds for the period Tm, and the colored random signals with the period Tm are used as the mask signal because 
the use of colored noise, or chaotic oscillation, as the mask signals will lead to a good RC performance35. 
Figure 6b,c show the τνNM ( ) and NMCν, respectively, for various values of M and K. When comparing the green 
curve ( =M 10 and =K 0) to the red curve ( =M 1 and =K 0) in Fig. 6b, one can see that τνNM ( ) increases for 
nonlinear tasks as M increases, when τ < 5. However, the large value of M results in decrease in memory, and 

τνNM ( ) for =M 10 rapidly decreases for the tasks requiring the past information of τ > 5 (the green curve in 
Fig. 6b). Memory loss is compensated by increasing the number of past nodes K; thus, τνNM ( ) can be enhanced 
when M and K both increase, as shown by the blue curve ( =M 10 and =K 5) and pink curve ( =M 10 and 

=K 10) in Fig. 6b. We find that with the time-multiplexing method of =M 10 and =K 5, νNMC  for only a single 
probe =N 1 can be larger than NMCν without implementing the time-multiplexing method (Fig. 6c). The 
time-multiplexing method is effective in achieving high RC performance even when the number of the probes is 
limited. See Supplementary Information for further investigations on the RC performance obtained by the 
time-multiplexing method.

Sensing applications.  Physical RC frameworks generally suggest that physical systems responding to input 
signals themselves can be utilized as information processing systems. This implies that when physical systems are 
perturbed by an external stimulus (for example environmental changes), the system itself can be utilized to detect 
the external stimulus with an appropriate training process, in addition to monitoring internal states or observing 
unmeasured variables36. Here, we consider microcavities for the detection of an environmental physical quantity 

Figure 6.  Information processing based on the time-multiplexing method. (a) An example of time-
multiplexing encoding for =M 10, where a random colored signal with period Tm is used as the mask signal. A 
variety of reservoir responses (for example x1) are obtained by the mask signal and input u. (b) τνNM ( ) as a 
function of the delay parameter τ. τνNM ( ) improves by increasing both M and K. (c) NMCν vs. the number of 
probes N, corresponding to the number of the reservoir nodes. NMCν can increase as N, M, and K increase. 
Consequently, the large NMCν is achieved by the time-multiplexing method even when the number of probes is 
limited. In (a–c), = .∞W W/ 1 43th . In (a,b), =N 11.
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in the RC scheme and demonstrate the identification of a refractive index nout outside the cavity, i.e., refractomet-
ric sensing.

As a simple demonstration, we consider the case when a stadium microcavity is surrounded by a medium with 
a refractive index nout, as shown in Fig. 7a. A randomly phase-modulated light is injected into the stadium cavity 
and emissions from the cavity are detected with the five probes ( =N 5). When the external refractive index nout 
changes, the phases of the reflection/transmission and the coupling to the probes changes. Consequently, the 
detected intensity xi at the probe i also changes (Fig. 7b). We use τ= +x n x nT j( ) ( )ij i m s  ( = …j M1, , ) responding 
to the phase-modulated light to form = ∑ŷ w xi j ij ij, . Our purpose is to identify the surrounding refractive index 
nout from the output ŷ after the training of wij to minimize − ˆn yout . In the training process, we used 100 datasets 
of …x x n{ , , , }N out1 , where nout was randomly chosen from a region of . ≤ ≤ .n1 3 1 5out .

Figure 7c shows the trained output ŷ, where it is assumed that nout randomly changes in time. Clearly, ŷ follows 
the changes in the index nout with the error of 0.1%, even when nout rapidly changes in a timescale of τ τ≈s c. 
Consequently, nout can be identified with low errors, as shown in Fig. 7d. We remark that the memory of the res-
ervoir (cavity) does not play an essential role in this sensing task. In this sense, the proposed learning-based 
sensing scheme is related to the extreme learning machine (ELM)30,37 as well as RC.

We emphasize that the proposed method does not need any precise sensing model, high-quality microcavity, 
or complex post processing, unlike previous work concerning microcavity sensors38,39, where the shift in the res-
onant frequency in a microcavity due to the change of the refractive index has been measured in accordance with 
the transmission or reflection spectra.

The results presented in this subsection suggest that in the merging of the optical sensing and learning-based 
processing, a model-free detection of the external refractive index nout is achieved at a rate of τ1/ c.

Summary
In this study, we have proposed and demonstrated RC based on nonlinear wave dynamics in a microcavity laser. 
An advantage of using a microcavity laser as a reservoir is that it can generate high-dimensional, nonlinear 
dynamics at microscale, enabling high-dimensional mapping of the input information to wave patterns after 
nonlinear amplification in the gain medium. We emphasize that the high-dimensional mapping to wave patterns 
is a spontaneous process with low energy loss, achieved by natural multiple reflections, at a short timescale, which 
can be of the order of the cavity lifetime τc . This suggests the potential for photonic parallel information 
processing.

Figure 7.  Sensing of environmental refractive index. (a) Stadium cavity used for the sensing of refractive index 
nout. The phase-modulated light is injected into the stadium cavity, and five signals detected by probes denoted 
by the blue triangles are used for the output ŷ. For passive cavity sensing, =∞W W/ 0th  was set. (b) An example 
of the probe signal xi. xi changes when nout changes at time τ =t/ 215s . (c) The output signal ŷ after training. ŷ 
can identify nout, with 0.1% error, even when it rapidly changes. (d) The trained output ŷ vs. refractive index nout.
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Furthermore, we proposed the application of a time-multiplexing encoding technique to wave dynamics and 
demonstrated enhancement in computational performance. This method could be used in situations when only 
a few detectors are available, owing to a physical constraint and, beyond the example of the microcavity lasers, 
the method will be applicable to any physical RC systems with spatial degree of freedom but only a few detectors.

Lastly, we discussed the sensing application options of the microcavity-based RC, in which case the micro-
cavity is used as a sensing element as well as a reservoir. The combination of the optical sensing and RC could 
be used for the model-free identification of physical quantities. These results pave a way to utilize complex wave 
dynamical systems at microscale for fast photonic information processing and shed light on a potential trend 
toward model free sensing, using the concept of RC.

Methods
The Maxwell-Bloch model in microcavity lasers.  We assume that the thicknesses of microcavities are 
much smaller than their in-plane dimensions, and that microcavities are treated as two-dimensional objects by 
applying effective refractive indices nin. To describe the light-matter interaction, we used the Maxwell-Bloch (MB) 
model where the gain medium inside the cavity is modelled as a two-level system. The Maxwell-Bloch model is a 
simple model to describe the laser dynamics, but it can qualitatively reproduce lasing phenomena in two-dimen-
sional microcavity lasers26,27. The normalized Maxwell-Bloch model is given by

σ π ρ∂
∂

= ∇ −
∂
∂

− Θ
∂
∂

+ .
E

t
E E

t t
c c1 4 ( ),

(4)xy

2

2
2

2

2 

ρ γ ρ γ∂
∂

= − + Δ +⊥ ⊥t
i WE( ) , (5)a

γ γ ρ ρ∂
∂

= − − − −∞
⁎W

t
W W iE( ) 2 ( ), (6)

where space and time are made dimensionless by the scale transformations ω →x c x/s  and ω →t ts , respectively. 
ωs is a reference frequency close to the transition frequency ωa of the two-level gain medium. In Eqs. (4–6), E, ρ, 
W are the (dimensionless) electric field, polarization field, and population inversion component in a two-level 
gain system, respectively. All of the parameters are also made dimensionless. = nr

2  is the relative permittivity, 
where the refractive index nr is nin inside the cavity and waveguide, whereas =n nr out outside the cavity and wave-
guide. σ represents the background absorption inside the cavity. Θ x y( , ) is a step function; Θ is 1 inside the cavity 
and zero outside the cavity, respectively. ω ωΔ = /a a s represents the normalized gain center. The two relaxation 
parameters, γ⊥ and γ , are the transverse and longitudinal relaxation rates, respectively. ∞W  is the pumping power, 
representing an excitation power to the gain medium26,27. When =∞W 0, the gain medium does not essentially 
affect the wave dynamics.

The Maxwell Eq. (4) was simulated using the finite-difference time-domain (FDTD) method, where a perfect 
matched layer (PML) was introduced near the boundary of the calculation space to absorb the emission light.

In the stadium cavity, shown in Fig. 1, the radius R of the half circle and major axis length =L R4  of the sta-
dium were set . n12 25/( 2 )in  and n49/( 2 )in  in a unit of ωc/ 0, where ω0 is the input angular frequency, and c is the 
light velocity in vacuum. The actual L would be ~1.42 μm if = .n 3 3in  and wavelength λ = 0.85 μm. Although L is 
shorter than that of a standard microcavity, we restrict ourselves to the cases of short length owing to the lack of 
computational power. We emphasize that similar results can be essentially obtained in cases of longer length.

The values of the remaining parameters are = .n 3 3in , σ = −10 3, Δ = 1a , γ = .⊥ 0 1, γ = −10 4. nout was set at 1 
for the results shown in Figs. 1–6, whereas in Fig. 7, nout is changed in a range of . ≤ ≤ .n1 3 1 5out . We confirmed 
that these parameter values do not essentially affect the RC performance.

Incident wave.  The incident light Ein is phase-modulated with the input signal u n( ) (and mask signal when 
using the time-multiplexing method), and is injected into the cavity via the input waveguide shown in Fig. 1,

ψ ω φ= +E A t tcos( ( )), (7)in 0

where A is the amplitude, ψ is the lowest-order waveguide mode, φ t( ) is the modulated phase, and ω0 is the center 
frequency of the input light. ω0 is tuned to the resonant frequency of the stadium cavity. The amplitude A is given 
such that the injection locking to the lasing mode with frequency ω0 is achieved when >∞W W/ 1th . All results 
presented in this paper are given under the injection locking condition.

The phase of the incident light is modulated as φ ψ=t Mask t u t( ) ( ) ( )0 , where φ0 is the modulation amplitude, 
Mask(t) and u(t) represents the mask signal and the input signal at time t, respectively. u(t) holds for a time inter-
val τ τ ω≈ = 143/s c 0 or τ=T Mm s when using the time-multiplexing method, where τc is the cavity lifetime. For a 
small cavity with = .R n12 25/( 2 )in  and input wavelength λ = 0.85 μm, the cavity lifetime τc is less than 0.1 ps. 
Thus, sampling at an interval of τ τ≈s c is unrealistic. However, we remark that the problem can be moderated in 
a large cavity because τc can increase with increasing R22.

The mask signal Mask(t) is used only when the time-multiplexing method is applied, and it is given as a 
colored noise signal with a decay rate of τ1/ c, which is repeated with a time interval of Tm. The use of such colored 
noise can efficiently excite the reservoir nodes used for the RC35.
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Estimation of parameter values toward actual experiments.  In this study, we have restricted our-
selves to a case concerning a small cavity of λ≈ .L 1 67  because of the limitation of our computational power. We 
remark that the results in this paper have been presented in the normalized form, in which parameter values 
available for actual experiments can be estimated. For example, when L = 100 μm, the average mode interval 

ω πΔ /(2 )i  will be in the order of gigahertz28. The photon lifetime τc in the stadium cavity (without a waveguide) is 
estimated as 28 ps and can be changed using amplification due to the gain medium. The sampling rate τs can be set 
as τc in an actual experiment. In addition, we also remark that, for a large cavity with L = 100 μm, it is relatively 
easy to place the probes or single-mode waveguides coupled to detectors around the cavity.

Consistency.  Consistency is the similarity of the response outputs for a repeated drive signal and is consid-
ered one of the important properties of RC. The consistency can be measured in the correlation between the two 
response outputs, obtained from different initial conditions31. We measured the consistency of the wave dynamics 
in microcavity lasers driven by the input light Ein as follows:

∑=
=

C
N

C1 ,
(8)i

N

i
1

where

σ σ
=

〈 − − 〉
.C x x x x( ) ( )

(9)
i

i i i i

i i

(1) (1) (2) (2)

,1 ,2

x t( )i
j( )  denotes the intensity signal detected by the probe i, which is obtained from an initial state j. 〈·〉 denotes 

the time average. xi
j( ) and σi j,  denote the time average and standard deviation of xi

j( ), respectively. By the definition, 
C is in the range − ≤ ≤C1 1 and takes the maximum =C 1 when the two signals are identical, in other words 

=x t x t( ) ( )i i
(1) (2) .
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