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Daily activities require the constant searching and
tracking of visual targets in dynamic and complex
scenes. Classic work assessing visual search performance
has been dominated by the use of simple geometric
shapes, patterns, and static backgrounds. Recently,
there has been a shift toward investigating visual search
in more naturalistic dynamic scenes using virtual reality
(VR)-based paradigms. In this direction, we have
developed a first-person perspective VR environment
combined with eye tracking for the capture of a variety
of objective measures. Participants were instructed to
search for a preselected human target walking in a
crowded hallway setting. Performance was quantified
based on saccade and smooth pursuit ocular motor
behavior. To assess the effect of task difficulty, we
manipulated factors of the visual scene, including crowd
density (i.e., number of surrounding distractors) and the
presence of environmental clutter. In general, results
showed a pattern of worsening performance with
increasing crowd density. In contrast, the presence of
visual clutter had no effect. These results demonstrate
how visual search performance can be investigated
using VR-based naturalistic dynamic scenes and with
high behavioral relevance. This engaging platform may
also have utility in assessing visual search in a variety of
clinical populations of interest.

Introduction

Visual search can be very demanding in our dynamic
and ever-changing surroundings. For example, the task
of finding and following a person in a crowd requires
that a specific target be identified and continuously
tracked within a complex moving scene. Much work
has explored various aspects of visual search based on a

variety of behavioral testing paradigms (Rao, Zelinsky,
Hayhoe, & Ballard, 2002; Treisman, 1988; Wolfe, 2007;
Zelinsky, Zhang, Yu, Chen, & Samaras, 2006; for
review, see Eckstein, 2011; Wolfe & Horowitz, 2017),
and the underlying neural correlates associated with
various search tasks have also been explored (Bundesen,
Habekost, & Kyllingsbæk, 2005; Desimone & Duncan,
1995; Eimer, 2014; Luck & Hillyard, 1994).

Visual search performance has been investigated
in the context of manipulating task demands and
parameters and serves as an important paradigm for
exploring serial and parallel deployment of attention
(Treisman & Gelade, 1980). For example, increasing
the number of surrounding elements has little or no
effect on search times when the target differs from
distractors by a single feature such as shape, size, or
color (Nakayama & Silverman, 1986; Teichner &
Krebs, 1974). In contrast, search time for conjunctions
of two or more features increases with the number of
distractors (Palmer, 1994; Treisman, 1988; Wolfe, 1994),
but not in all cases (Nakayama & Silverman, 1986).
Other non-target-related stimulus features can also
affect the visual search process by impacting strategy
usage and overall efficiency (Horowitz, Wolfe, DiMase,
& Klieger, 2007; Moran, Zehetleitner, Liesefeld,
Müller, & Usher, 2016). For example, the presence of
environmental clutter and altering the trajectory of
the target being followed can also make search more
difficult (Bravo & Farid, 2004; Matsuno & Tomonaga,
2006; Rosenholtz, Li, & Nakano, 2010).

Understanding how these manipulations affect search
performance is useful in characterizing the perceptual
limits of the human visual system. Classic work has
largely focused on simple static two-dimensional
geometric targets, patterns, and backgrounds; however,
the nature of these visual stimuli differs considerably

Citation: Bennett, C. R., Bex, P. J., &Merabet, L. B. (2021). Assessing visual search performance using a novel dynamic naturalistic
scene. Journal of Vision, 21(1):5, 1–14, https://doi.org/10.1167/jov.21.1.5.

https://doi.org/10.1167/jov.21.1.5 Received March 11, 2020; published January 11, 2021 ISSN 1534-7362 Copyright 2021 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.

mailto:christopher_bennett@meei.harvard.edu
mailto:p.bex@neu.edu
mailto:lotfi_merabet@meei.harvard.edu
https://doi.org/10.1167/jov.21.1.5
http://creativecommons.org/licenses/by/4.0/


Journal of Vision (2021) 21(1):5, 1–14 Bennett, Bex, & Merabet 2

from everyday experience. A number of groups have
examined visual search using more naturalistic images
(e.g., Ehinger, Hidalgo-Sotelo, Torralba, & Oliva,
2009; Hwang, Wang, & Pomplun, 2011; Torralba,
Oliva, Castelhano, & Henderson, 2006; Võ & Wolfe,
2012), but these studies are limited to the presentation
of static images. Other studies have explored search
performance using real-world environments and
three-dimensional (3D) naturalistic environments
(Foulsham, Chapman, Nasiopoulos, & Kingstone,
2014; Kuliga, Thrash, Dalton, & Hölscher, 2015; Li,
Aivar, Kit, Tong, & Hayhoe, 2016). Still, maintaining
control over stimulus parameters in real-world studies
can be difficult, and testing has often been limited to
viewing static scenes. Despite these efforts, there still
remains a need to develop adaptable and controllable
stimuli for the purposes of investigating visual search
performance using behavioral paradigms that can be
considered as more ecologically valid (Bennett, Bex,
Bauer, & Merabet, 2019; Helbing, Draschkow, & Võ,
2020; Parsons, 2011; Parsons, 2015; Parsons & Duffield,
2019; for further discussion, see Holleman, Hooge,
Kemner, & Hessels, 2020). In this direction, virtual
reality (VR) has gained considerable interest as a way
to approach issues related to task realism, immersion,
adaptability, and experimental control, and it has even
found a growing application in clinical and behavioral
neuroscience research (for reviews, see Bouchard,
2019; Parsons & Phillips, 2016; Tarr & Warren, 2002).
There are numerous benefits to using VR as a tool for
performance assessment and training, including task
flexibility, experimental control and safety, objective
data capture, and high participant engagement and
motivation, as well as the ability to mimic real-world
scenarios with a high level of behavioral relevance
(Dickey, 2003; Loomis, Blascovich, & Beall, 1999;
Merchant, Goetz, Cifuentes, Keeney-Kennicutt, &
Davis, 2014; Parsons & Phillips, 2016). Further, the
combination of VR with informative measures of
performance affords a high degree of experimental
control, allowing the effects of manipulating task
difficulty and other environmental factors to be
examined (Bennett, Corey, Giudice, & Giudice, 2016;
Loomis et al., 1999; Zyda, 2005).

From a clinical perspective, VR-based assessments
may also be very helpful in characterizing higher
order perceptual abilities and deficits that cannot be
characterized using standard ophthalmic assessments
such as visual acuity and visual field perimetry (Bennett
et al., 2019; Colenbrander, 2005). This is particularly
relevant with respect to searching and tracking targets
in a dynamic and complex scene. In contrast to static
images, searching for moving targets in dynamic
scenes requires that the spatial locations of various
elements be continuously integrated and updated (Awh,
Barton, & Vogel, 2007; Gallwey & Drury, 1986; Müller
& Rabbitt, 1989; Tsotsos, 1989; Wolfe & Horowitz,

2017). Previous studies have attempted to investigate
these issues employing a variety of visual stimuli,
such as biological form from motion, optic flow fields
(including random dot kinematograms), and multiple
object tracking (Johansson, 1973; Newsome & Paré,
1988; Pylyshyn & Storm, 1988). Although these stimuli
offer a high degree of stimulus control, they nonetheless
remain limited in terms of their ecological validity and
behavioral relevance. In other words, it is often difficult
to determine how behavioral results obtained from
these stimuli translate to visual processing abilities in
real-world tasks and situations.

To address this limitation, we developed a dynamic
visual search task using a desktop VR-based simulation
combined with eye tracking. In this task, referred to
as the “virtual hallway,” participants were required to
search, locate, and pursue a specific target individual
(i.e., the principal of a fictitious school) walking in
a crowded hallway. As part of the stimulus design,
we incorporated a means to modify task demands
by varying crowd density and the presence of visual
clutter in the environment. Using this testing paradigm,
we proposed the following hypotheses and potential
observations: (a) visual search performance (as indexed
by a variety of eye-tracking metrics) would show
greater impairment with increasing crowd density (i.e.,
surrounding distractors), and (b) the presence of visual
clutter would also impair search performance. Early
results using this testing paradigm have been published
(Bennett, Bailin, Gottlieb, Bauer, Bex, & Merabet,
2018a).

Methods

Participants

Thirty-five individuals (25 female, 10 male) with
neurotypical development and who were between the
ages of 14 and 28 years (mean ± SD, 21.2 ± 4.4 years)
participated in the study. All participants had normal
or corrected-to-normal visual acuity and no previous
history of ophthalmic (e.g., strabismus, amblyopia) or
neurodevelopmental (e.g., epilepsy, attention deficit
disorder) conditions. The study was approved by the
institutional review board of Massachusetts Eye and
Ear, and written informed consent was obtained from
all the participants prior to commencing the study.

Initial focus group work and motivation for
study

Our group develops novel assessments designed to
evaluate higher order processing abilities and deficits
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that cannot be characterized using standard ophthalmic
measures of visual function. Prior to commencing the
study, we carried out a focus group study comprised of
potential clinical participants, parents, teachers of the
visually impaired, and clinicians to identify real-world
scenarios that were deemed particularly challenging.
Through a series of questionnaires (quantified using
Likert scales and open-ended questions) and iterative
testing, we concluded that identifying and following
a person walking in a crowd was particularly difficult
for individuals. Furthermore, the size of the crowd
and the presence of visual clutter were also identified
as factors of interest that could potentially influence
performance.

Overall scores from respondents regarding visual
stimulus factors such as realism and feature importance
were interpreted as supporting the high behavioral
relevance of our visual task design (see details
regarding visual stimulus design below). Here, we
present results from a sample of individuals with
neurotypical development in order to characterize
baseline performance on the dynamic visual search task
we designed based on this focus group work.

Visual stimulus design and manipulations

To assess performance searching for an individual
walking in a crowd, we developed a VR-based
simulation referred to as the “virtual hallway.” The
simulation was a rendering of a hallway of a typical
school with a crowd of people walking around
the observer. The scene was presented in a dynamic,
continuous fashion and viewed from a fixed, first-person
perspective. Participants were instructed to search,
locate, and pursue a specific target individual (the
principal of the fictitious school) walking in a crowded
hallway as soon as that individual appeared from one of
eight possible entrances. Each participant then tracked
the target’s path until the individual was no longer
visible on the screen (for a demonstration video of task,
see https://vimeo.com/395817200).

The visual scene was developed using the Unity
3D game engine version 5.6 (Unity Technologies,
San Francisco, CA) and on an Alienware Aurora R6
desktop computer (Alienware Corporation, Miami,
FL) with an Intel i5 processor (Intel Corporation,
Mountain View, CA), NVidia GTX 1060 graphics card
(NVidia Corporation, Santa Clara, CA), and 32 GB of
RAM. The 3D human models were created in Adobe
Fuse CC and rigged for animation in Adobe Mixamo
(Adobe, San Jose, CA), and the 3D object models
were created using Blender modeling software (Blender
Foundation, Amsterdam, The Netherlands).

Participants were seated comfortably (60 cm away)
in front of a 27-in. ViewSonic light-emitting diode,
widescreen monitor (1080p, 1920 × 1080 resolution;

Figure 1. (A) Photograph of the apparatus, showing an
individual viewing the virtual hallway simulation. (B) Visual
target selection (the principal of the school) from four possible
choices (balanced for gender and race).

ViewSonic Corporation, Brea, CA) (Figure 1A). Search
patterns (x,y coordinate positions of gaze on the
screen) were captured using the Tobii Eye Tracker 4C
(90-Hz sampling rate; Tobii, Danderyd, Sweden). Prior
to the first experimental run, eye-tracking calibration
was performed for each participant (Tobii Eye Tracking
software, version 2.9, calibration protocol) which took
less than 1 minute to complete. The process included a
seven-point calibration task (screen positions: top–left,
top–center, top–right, bottom–left, bottom–center,
bottom–right, and center–center) followed by a
nine-point post-calibration verification (same seven
calibration points plus center–left and center–right).
Accuracy was determined by gaze fixation falling within
a 2.25° (arc degree) radius around each of the nine
points and was further confirmed by inspection prior to
commencing data collection.

Participants then viewed and selected their target of
choice (i.e., the principal) from four options balanced
for gender and race (see Figure 1B). Participants viewed
each principal sequentially and independently as they
rotated about the y-axis plane. Target selection was
incorporated in order to enhance the immersive feel of
the task and to confirm that the participant was able
to correctly identify the principal in isolation before
commencing the study. The interval between a target
disappearing and reappearing in the hallway from trial

https://vimeo.com/395817200
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Figure 2. (Top row) Screen shots showing examples of the three levels of crowd density (low, medium, and high). (Bottom left)
No-clutter condition in which task-irrelevant features and objects are absent. (Bottom right) Top–down view of the hallway showing
the possible target walking paths. Black lines represent the initial start of a target’s path into the hallway, dashed red lines are paths
taken on the same side as the target entered, and solid yellow lines represent a path crossing in from of the viewer. Distance 1
represents the closest location and distance 4 the farthest, with an equivalent spacing between each of the four distances.

to trial varied by 5 to 15 seconds. The duration of the
visibility of the target was primarily determined by
its starting point and path length; this varied between
5 and 17 seconds for the closest and farthest points,
respectively.

The primary manipulation of interest was crowd
density, which was achieved by varying the number of
individuals walking in the hallway and ranged from 1 to
20 people. This factor was determined by the number
of distractor individuals at a given time and was
categorized as low, average of 5 ± 5 people; medium,
average of 10 ± 5 people; or high, average of 15 ± 5
people (for examples of each level of crowd density,
see Figure 2). Note that there was partial overlap in
these ranges, in part because distractors continuously
entered and exited the hallway during an experimental
run. However, categorization was determined by
the sustained average number of distractors present
over the course of a specific trial. The second factor
of interest was the presence of visual clutter, which
was manipulated to investigate the effect of scene
complexity on search performance. The visual clutter
condition included various objects typically found
in a school hallway, such as lockers, water fountains,
posters, and pictures. These objects were all absent in
the no-clutter condition (for examples of clutter and
no-clutter conditions, see Figure 2). Visual clutter was
present in 50% and absent in 50% of the trials and
interleaved as part of a pseudorandom presentation
order.

As part of the stimulus design, the target path
trajectory was also varied. Specifically, the principal’s

walking path could originate from one of eight possible
locations in the hallway, based on four possible
starting distances and entering from either the right
or left of the observer. The target would continue
walking, either crossing in front of or remaining on
the same side as the viewer (for path type options,
see Figure 2).

Participants completed three runs of the experiment
with a brief rest period in between. Each run lasted
approximately 3.5 minutes. Within a run, participants
experienced an equal amount of trials for the two
primary factors of interest (i.e., crowd density and visual
clutter) and their respective conditions. Over the course
of three runs, these factors were pseudorandomized
and balanced in terms of presentation. The paths
the target walked were not fully randomized but
instead were constrained in order to ensure an equal
sampling of starting positions (close vs. far points),
path type (crossing vs. same side), and side of hallway
(starting from the left vs. right side). As an example,
a participant would have the same number of trials
where the target crossed the screen for the low, medium,
and high crowd densities, but not from every starting
point or side. Thus, for each level of crowd density,
participants experienced an equal number of trials
for left/right starting points and door distance (but
not every possible combination was covered for each
level of crowd density). This was done to allow for a
simpler factorial design while ensuring that the target
path variables did not confound with the two primary
manipulations of interest (crowd density and visual
clutter).
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Data capture, analysis, and outcome measures

Eye-tracking data characterizing visual search
performance and responses were captured as
participants initially located (via a saccade) and
followed (via smooth pursuit) the target on the screen.
The captured data represented on-task gaze activity,
defined as periods when the target principal was visible
on the screen. After data collection, all gaze data were
centered point by point relative to the location of the
target. Centering of the data was done to provide a
common point of comparison so that all collected
search data could be referenced across trials and
conditions. Given that the target was moving, gaze data
were updated on a frame-by-frame basis to preserve
their respective location throughout the pursuit of the
target. This allowed for the generation of heat maps to
visualize the density of gaze point distribution around
the target across trials and conditions of interest. From
these centered data, several measures were used to
objectively quantify performance.

Heat maps
At a first level, heat maps were generated to visualize

the extent and distribution patterns of gaze data
(Bennett et al., 2018a, 2018b; Gibaldi, Vanegas, Bex, &
Maiello, 2017); for further discussion of this approach,
see Blascheck, Kurzhals, Raschke, Burch, Weiskopf, &
Ertl, 2014; Blignaut, 2010; Špakov & Miniotas, 2007).
The process for generating heat maps used here was
to smooth and aggregate centered gaze data over time
using histogram regional binning and Gaussian filtering
(Gibaldi et al., 2017). The varying colors represent
differing levels of gaze data density across spatial
regions of the screen, with each color corresponding to
a probability of fixation at that location. Specifically,
yellow indicates that a participant spent a large portion
of time looking at a particular area, whereas blue
indicates areas where a participant spent less time (with
approximately a 9:1 ratio of point density between
yellow and blue) (Bennett et al., 2018a; Bennett,
Bailin, Gottlieb, Bauer, Bex, & Merabet, 2018b). It is
also important to note that the resultant image is a
representation of overall task performance based on
the centering of data and not the actual position of the
target for a given trial. Areas without any color heat
map correspond to regions where there were insufficient
points to meet a minimum data capture threshold and
thus are not indicative of a complete lack of gaze
exploration.

Ellipse of best fit
The primary outcome of interest was an ellipse

area representing a 95% confidence interval for the

captured eye-tracking data. This was expressed as a
percentage of the screen area and represents a measure
of visual search precision. Specifically, the ellipse area
extends around the perceived centroid location of the
target and indicates how well a person searched and
continued pursuit within the area where they perceived
the target to be (precision around spatial centroid).
Thus, the confidence ellipse area measure includes both
components of the search and pursuit processes.

Gaze error
Gaze error (expressed in arc degrees) corresponds

to the distance between the center of the target and
the participant’s gaze position (Kooiker, Pel, van der
Steen-Kant, & van der Steen, 2016; Pel, Manders, &
van der Steen, 2010). This was computed based on the
sampling rate of the eye tracker (90 Hz) and serves as
a continuous measure of overall locating and pursuit
accuracy of the target stimulus.

Reaction time
We analyzed reaction time as a measure of cognitive

processing and visual search ability. Reaction time
was defined as the first moment the participant’s
gaze arrived within the outer contour of the target
and pursued the target on the screen for a given
trial (Bennett et al., 2018a; Bennett et al., 2018b).
Pursuit was defined as gaze that remained within the
outer contour of the target for a minimum of 400
ms. Visibility of the target was determined based on
the viewer’s perspective. In the case where the target
entered the hallway and was partially occluded from
view, the first moment they became visible to the
viewer would mark the start of the reaction time
calculation.

Classification of eye movements, pursuit/saccade ratio
Each individual data point was compared to the

previous data point (sequentially in time) to determine
the speed of eye movement (expressed in arc degrees
per second). All collected gaze data were then classified
as either saccade or pursuit eye movements. Saccades
were defined as eye movements that exceeded 25 arc
degrees per second, and pursuits were defined as
eye movements less than 25 arc degrees per second,
following criteria outlined from previous related studies
(Leigh & Zee, 2015; Shibata, Tabata, Schaal, & Kawato,
2005). Note that microsaccades during fixation on
static objects were classified as pursuit following these
same criteria. From these dichotomized data, a ratio
was calculated by dividing the number of pursuit points
by the number of saccade points within any given trial.
A pursuit/saccade ratio greater than 1 is indicative of
more time spent gazing at individual objects rather than
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switching gaze between objects and is consistent with
more target identification and tracking and less time
spent searching.

Success rate, off-screen count, and reliability
The success rate was defined by whether the

participant was able to locate and maintain pursuit
of the target. A trial was considered unsuccessful if a
participant failed to locate and establish pursuit for 400
ms (as specified for reaction time above) prior to the
target leaving the screen (end of trial). A percentage
was then calculated based on the condition level of a
given trial, and an average for the total number of trials
was extracted.

Because the position of the participant’s gaze on the
screen was constantly recorded, we also determined
how often and how long they looked at and away
from the screen on a given trial. The off-screen
counts represent the number of gaze points that
fell outside of the bounds of the screen. Given the
known frequency at which the gaze data were being
logged (90 Hz), each off-screen data point can be
expressed as specific amount of time. This off-screen
count served as an index of testing compliance and
adherence to task instructions, as well as overall level of
engagement.

Finally, overall test–retest reliability was analyzed
using a Bland–Altman test of repeatability (Bland &
Altman, 1986; Bland & Altman, 2010) based on all of
the outcome measures of interest. This was determined
by directly comparing an individual’s performance on
the first run to their second run of the task followed by
comparing an individual’s performance on the first run
to their third run of the task. Test–retest was done to
evaluate the spread of variance and result consistency,
as well as to explore any potential cumulative effects
over time.

Statistical analysis of captured data
A univariate analysis of variance (ANOVA) was

conducted for each of the four primary measures
(confidence ellipse, gaze error, reaction time, and
pursuit/saccade ratio). Each ANOVA included the
two primary factors of crowd density and presence
of visual clutter. Mauchly’s test was used to confirm
that the assumption of sphericity was not violated for
any of the ANOVAs. Post hoc Bonferroni corrected
t-test comparisons were conducted for significant
main effects. A subanalysis was also conducted that
specifically focused on the target path variables. A
univariate ANOVAwas also run for each of the primary
measures and included starting distance (close vs. far
points) and path type (crossing vs. same side). Statistical
analyses were performed using SPSS Statistics (IBM,

Armonk, NY). Statistical significance was set at
p < 0.05.

Results and data interpretation

Visualization of visual search data

Heat maps showing the overall distribution of the
group average on the three levels of crowd density
are presented in Figure 3. Note the general flame
pattern (associated with sustained pursuit of the target
along its trajectory and tight clustering of search
area around the upper region of the target (i.e., the
head and chest area of the principal). Qualitatively,
there was also a trend for increased visual search area
from low to medium to high crowd densities (with
the largest distribution of search area seen at the
high crowd density level). This qualitative observation
suggests that overall gaze area increased with increasing
crowd density, and participants focused on the upper
features of the human target (e.g., head and chest)
for the purposes of identification and tracking. This
observation is consistent with previous research
demonstrating selective attention to specific areas (such
as faces) in scenes containing people (Cerf, Harel,
Einhäuser, & Koch, 2008; Crouzet, Kirchner, & Thorpe,
2010).

Effect of crowd density

Confidence ellipse area
Figure 4A shows the overall mean ellipse area (black

data) and individual results for each participant (gray
data) as a function of crowd density, with group means
of 5.85% (low), 6.63% (medium), and 7.47% (high).
In general, there was a trend for increasing ellipse
area with greater crowd density (an increase in area
from low to high density of 27.7%). An ANOVA
showed a significant main effect of crowd density,
F(2, 34) = 15.167, p < 0.001, ηp

2 = 0.031. There was
no significant interaction effect between the primary
manipulations (crowd density and clutter presence) for
ellipse area, F(2, 34) = 0.268, p = 0.765, ηp

2 = 0.001.
Further details on the main effect of clutter presence
are presented in below. Bonferroni-corrected post hoc
pairwise comparisons revealed significant differences
between each pairing of low versus medium (p = 0.025),
low versus high (p < 0.001), and medium versus high
(p = 0.014) crowd densities. The trend for increasing
ellipse area with increasing crowd density is consistent
with qualitative observations obtained from the heat
map distribution patterns and suggests that greater
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Figure 3. Heat maps illustrating the extent of eye movement search patterns overlaid on top of representative examples of low,
medium, and high crowd density levels of visual distractors. The color scheme of the heat maps represents differing levels of gaze
data density across spatial regions of the screen space (yellow indicates more time looking in an area, and blue indicates less time).
There is consistent clustering of eye movements across the levels of distractor density, reflecting a tight flame shape around the
target as they locate and pursue. Note further dispersion of gaze data from the target as crowd density increases.

Figure 4. Group mean (black solid lines) and individual mean (gray dashed lines) data are shown for the four performance outcomes
of interest and across the three levels of crowd density. (A) Ellipse area, (B) gaze error, (C) reaction time, and (D) pursuit/saccade ratio.
Standard errors are shown for the group means (some not visible).
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crowd density (i.e., increased number of distractors) is
associated with decreased search precision.

Gaze error
Figure 4B shows the overall mean for gaze error

(black data) and individual results (gray data) as a
function of crowd density, with group means of 4.48°
(low), 4.83° (medium), and 5.03° (high). In general,
there was a trend for increasing gaze error with greater
crowd density (an increase from low to high of 12.3%),
although this trend was not as pronounced for ellipse
area (27.7%) in terms of magnitude. ANOVA results for
gaze error revealed a significant effect of crowd density,
F(2, 34) = 6.069, p = 0.002, ηp

2 = 0.013. No significant
interaction effect was found between the primary
manipulations (crowd density and clutter presence) for
gaze error, F(2, 34) = 1.360, p = 0.257, ηp

2 = 0.003.
Further details on the main effect of clutter presence
are presented below. Bonferroni-corrected post hoc
pairwise comparisons revealed significant differences
only between the low versus high conditions (p =
0.001) but not for the low versus medium (p = 0.07) or
medium versus high (p = 0.64) conditions. This trend
suggests that accuracy of eye movements decreased (as
indexed by increasing gaze error) with increasing crowd
density. Although this trend was also evident for the
ellipse area outcome, the magnitude of effect was not as
pronounced.

Reaction time
Figure 4C shows the overall mean (black data

points) and individual participant (gray data points)
reaction time as a function of crowd density, with
group means of 2212 ms (low), 2239 ms (medium),
and 2545 ms (high). Similar to confidence ellipse
area and gaze error, there was a trend for increased
reaction time with increasing crowd density (an
increase from low to high of 15.1%); however, an
ANOVA revealed that this trend was not statistically
significant, F(2, 34) = 1.519, p = 0.220, ηp

2 = 0.003.
No significant interaction effect was seen in the primary
manipulations (crowd density and clutter presence)
for reaction time, F(2, 34) = 0.184, p = 0.832, ηp

2 <
0.001. Further details on the main effect of clutter
presence are presented below. This may be due to
the comparatively large intraindividual variability
observed, a byproduct of having multiple starting
distances for the target. Further examination of
the effect of target starting distance and a potential
explanation for the lack of an observed statistically
significant effect can be found below as a separate
subanalysis.

Measure No clutter Clutter

Ellipse area (screen %) 6.66 6.65
Gaze error (arc degrees) 4.79 4.77
Reaction time (ms) 2171 2486
Pursuit/saccade ratio 15.92 15.43

Table 1. Mean group values for the four primary outcome
measures broken down by trials with and without clutter.

Pursuit/saccade ratio
Figure 4D shows the overall average (black

data points) and individual (gray data points)
pursuit/saccade ratios as a function of crowd density,
with group means of 17.55 (low), 15.66 (medium),
and 13.82 (high). There was a trend for decreasing
pursuit/saccade ratio as a function of increasing crowd
density (a decrease from low to high of 21.3%).These
results show that, as crowd density increased, more time
was spent searching for the target rather than actively
pursuing it. An ANOVA confirmed a significant effect
of crowd density, F(2, 34) = 6.231, p = 0.002, ηp

2

= 0.013. No significant interaction effect was found
between the primary manipulations (crowd density and
clutter presence) for the pursuit/saccade ratio, F(2, 34)
= 0.137, p = 0.872, ηp

2 < 0.001. Further details on the
main effect of clutter presence are presented below. Post
hoc comparisons revealed that there were significant
differences between the low and high conditions
(p = 0.001) but not between the low and medium
(p = 0.215) or medium and high (p = 0.232) conditions.
This outcome once again supports the notion that
increased crowd density is associated with greater
search difficulty, and participants spent more time
searching (i.e., saccades) rather than pursuing the target
at higher crowd densities.

Effect of presence of clutter

The mean values for each outcome measure are
summarized in Table 1. In general, the results suggest
that the presence of clutter across all outcomes of
interest did not have a significant effect. The respective
ANOVA outcomes for ellipse area, F(1, 34) = 0.004,
p = 0.947, ηp

2 < 0.001; gaze error, F(1,34) = 0.047, p =
0.829, ηp

2 < 0.001; reaction time, F(1, 34) = 3.177, p =
0.075, ηp

2 = 0.003; and pursuit/saccade ratio, F(1, 34)
= 0.309, p = 0.578, ηp

2 < 0.001, confirmed this result.
Although there was a trend for increasing reaction time
with the presence of clutter, this did not reach statistical
significance.

As mentioned previously, no significant interaction
effects were observed between crowd density and
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Figure 5. Group mean data are shown for the four performance outcomes of interest and are displayed across the three levels of
crowd density and two levels of clutter presence. (A) Ellipse area, (B) gaze error, (C) reaction time, and (D) pursuit/saccade ratio.
Standard errors are shown for group means.

clutter presence. Figure 4 focuses on crowd density and
displays the individual participant data, and Figure 5
breaks down the group data of each measure by the
respective levels of each factor.

Success rates, off-screen counts, and test–retest
reliability

Overall, there were minimal differences in the
success rates of finding the target for the primary
manipulations. In general, success rates were high and
ranged from 94% to 98% (i.e., 94.6% for low, 97.5% for
medium, and 97.8% for high crowd densities). There
were no statistically significant differences in success
rates across the manipulations of interest—crowd
density, F(2, 34) = 2.630, p = 0.076, ηp

2 = 0.006;

Measure Low Medium High No clutter Clutter

Off-screen count (%) 0.38 0.29 0.28 0.38 0.26
Success rate (%) 94.60 97.46 97.78 95.89 97.31

Table 2. Mean group values for the off-screen count (percent of
points per trial) and success rate measures broken down by
crowd density (low, medium, and high conditions) and trials
with or without clutter.

visual clutter presence, F(1, 34) = 1.061, p = 0.300,
ηp

2 = 0.001—or an interaction of these factors, F(2,
34) = 0.283, p = 0.754, ηp

2 = 0.001. Of note, we
observed a trend for lower success rates with the lowest
complexity condition levels of crowd density and
presence of visual clutter (Table 2). For clutter, this
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result is consistent with classic visual search paradigms
in which set size has little effect for targets that can
easily be segmented (Nakayama & Silverman, 1986;
Teichner & Krebs, 1974). The absence of an effect
of crowd size is not consistent with this explanation,
as the trajectories of the distractors are similar to
that of the target, which has been shown to impair
search performance (Horowitz et al., 2007). However,
others have shown that conjunction searches for
form and motion may not manifest a set size effect
(McLeod, Driver, & Crisp, 1988), and our results
are consistent with this observation. Finally, this
observation could be potentially related to a lack
of engagement when little activity is occurring on
screen.

In an attempt to quantify potential lapses in
attention, we examined the proportion of gaze data
points falling outside of the screen. Table 2 summarizes
the off-screen counts across all of the manipulations
of interest. Considering that trials typically average
around 1000 data points, off-screen points represent
only a tiny fraction of total points per trial, ranging
from 0% to 1%; however, they are still meaningful
in picking up changes in eye movements away from
the task and adherence to task instructions. As an
example, a reduction in off-screen points during the
high distractor trials was observed, and this may
indicate that participants were more engaged and less
likely to look away from the screen when more activity
was occurring. This is consistent with an observed
trend of lower success rates at lower levels of task
difficulty (although this trend did not reach statistical
significance).

Test–retest agreement for the visual search task was
examined using a Bland–Altman analysis between
individual runs within each participant and for
all outcomes of interest. This was performed in
order to investigate consistency across runs and to
demonstrate congruency between outcome measures.
The Bland–Altman test revealed a low coefficient of
variation for confidence ellipse (run 1 vs. run 2 =
0.24; run 1 vs. run 3 = 0.25), gaze error (run 1 vs.
run 2 = 0.13; run 1 vs. run 3 = 0.18), reaction time
(run 1 vs. run 2 = 0.53; run 1 vs. run 3 = 0.52), and
pursuit/saccade ratio (run 1 vs. run 2 = 0.22; run 1
vs. run 3 = 0.25). Coefficients of repeatability were
also determined for confidence ellipse (run 1 vs. run
2 = 0.03; run 1 vs. run 3 = 0.04), gaze error (run 1
vs. run 2 = 1.20; run 1 vs. run 3 = 1.68), reaction
time (run 1 vs. run 2 = 2.41; run 1 vs. run 3 = 2.37),
and pursuit/saccade ratio (run 1 vs. run 2 = 6.98;
run 1 vs. run 3 = 7.67). Finally, no significant bias
was found for any of the measures (all p > 0.29).
These results indicate that the performance of each
participant remained consistent and balanced across
runs.

Effect of target path

We classified paths as either crossing (the target
crossed in front of the viewer) or same side (the target
remained on one side). Starting positions for the target
also occurred at four different distances. The mean
values for each outcome measure are summarized
in Table 3. The ANOVA revealed statistical significance
of path type for gaze error, F(1, 34) = 4.112, p = 0.043,
ηp

2 = 0.004, and reaction time, F(1, 34) = 4.657, p =
0.031, ηp

2 = 0.005, but not for ellipse area, F(1, 34) =
0.087, p = 0.768, ηp

2 < 0.001, or pursuit/saccade ratio,
F(1, 34) = 0.747, p = 0.388, ηp

2 = 0.001. Of note, the
largest increase observed was for reaction time, which
was 16.34% higher for same-side paths than for crossing
paths. This result could be explained by the fact that
targets crossing in front of the observer are easier to
detect, and targets on the same side require greater
attention to the periphery. The ANOVA also showed
statistical significance for target starting distance and
for all measures: ellipse area, F(3, 34) = 4.805, p =
0.003, ηp

2 = 0.015; gaze error, F(3, 34) = 238.725, p <

0.001, ηp
2 = 0.435; reaction time, F(3, 34) = 106.972,

p < 0.001, ηp
2 = 0.263; and pursuit/saccade ratio, F(3,

34) = 13.922, p < 0.001, ηp
2 = 0.043. However, the

effect was mixed between positive and negative for the
various measures.

In particular, reaction time showed the largest effect
of starting distance with a sixfold difference between
the closest and farthest distances. As mentioned
previously, this may explain the lack of a significant
effect observed with respect to crowd density for the
reaction time measure as it was superseded by the
effect of starting distance. Further illustrations of the
relationship between reaction time and the four starting
distances across each level of crowd density are shown
in Figure 6.

Conclusions

The present work investigates dynamic visual
search performance using a VR-based task combined
with eye tracking in a sample of participants with
neurotypical development. Our approach incorporates
control of task features that are easy to understand
and implement. Furthermore, their effects on search
performance can be characterized through an analysis
of ocular motor behavior in a naturalistic dynamic
visual scene. The high behavioral relevance of the task
may also find utility in assessing functional visual
performance in other clinical populations of interest
(Parsons, 2015; Parsons et al., 2017).
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Measure Cross path Same path Distance 1 Distance 2 Distance 3 Distance 4

Ellipse area (screen %) 6.60 6.17 7.29 6.82 6.13 6.27
Gaze error (arc degrees) 4.69 4.88 6.72 4.79 3.87 3.47
Reaction time (ms) 2161 2514 758 1544 2578 4588
Pursuit/saccade ratio 16.03 15.30 11.56 15.38 18.22 18.10

Table 3. Mean group values for the four primary outcome measures broken down by path type (trials where the target’s path stayed
on the same side or crossed in front of the viewer) and for the four starting distances (distance 1 being closest to the viewer and
distance 4 the farthest).

Figure 6. Group mean reaction time data are shown across the
three levels of crowd density and broken down among the four
distances at which the target can begin the walking path in the
hallway. Standard errors are shown (some not visible).

Summary of effects and manipulations

Overall, our results showed a pattern of worsening
performance with increasing task difficulty. The effect
of crowd density was statistically significant for all
outcome measures except reaction time. In general, the
greatest differences were observed between the low and
high condition levels. In contrast, the presence of visual
clutter was not found to significantly affect performance
for any of the measures. Finally, by assessing success
rates and off-screen counts, we observed an overall high
level of performance on this task.

As previously mentioned, the present work serves
as a characterization of baseline performance for this
VR-based visual search task in a sample of controls
with neurotypical development. In this context, the
overall high level of performance on each measure
is not that surprising. However, the characterization
of these trends and metrics may be important for
future applications in other clinical populations of
interest, such as pediatric and individuals with visual
and/or cognitive impairments. This is particularly
true with respect to characterizing performance with
respect to varying task demand beyond what is revealed
using standard ophthalmic assessments such as visual
acuity and visual perimetry. Finally, the reliability

and repeatability of the task (as confirmed by the
Bland–Altman analyses) are also important factors for
establishing the validity of this testing approach.

Strengths of visual stimulus and study design

The present work offers strengths related to the
overall design and development of the visual stimulus
and task, as well as a range of behavioral outcomes
and statistical measures. The stimuli and protocol were
designed in a manner to provide a realistic simulation
to investigate the effect of manipulating factors of
interest (specifically, crowd density and presence of
visual clutter). In contrast to previous studies (e.g.,
using point light walkers to simulate biological motion),
we present realistic 3D human models while allowing
for the control of multiple feature conjunctions. The
objective measures were chosen and designed to be
straightforward and reproducible, and they individually
add to a full characterization of task performance,
including comprehensive measures focused on visual
search indexing accuracy (gaze error), precision
(confidence ellipses), cognitive efficiency (reaction
time), ocular movement type (pursuit/saccade ratio),
repeatability (test–retest), task compliance (off-screen
counts), and task completion (success rate).

Potential use of virtual reality with other
populations

An important feature of the current work is the
application of a naturalistic and behaviorally relevant
task combining VR and eye tracking to assess search
performance in a dynamic and complex naturalistic
scene. Traditional task design tends to focus on stimulus
and experimental control, thereby forgoing realism;
however, the work presented here demonstrates an
integration of both aspects. Furthermore, the current
task does not rely on physical (e.g., button press) or
verbal responses. As long as the participant is able to
understand the task, tracking eye movements are the
only requirement for task performance monitoring.
This fact increases the accessibility of the VR task for
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populations where physical or cognitive disabilities may
be a significant factor. Given also the straightforward,
realistic, and engaging nature of the task, this also
opens up possibilities for assessing visual search
performance in a variety of clinical populations of
interest (Parsons, 2015; Parsons et al., 2017).

Keywords: virtual reality, visual search, eye tracking,
motion processing, dynamic scenes, saccades, pursuit
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