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Abstract

Background: Families of related proteins and their different functions may be described systematically using
common classifications and ontologies such as Pfam and GO (Gene Ontology), for example. However, many proteins
consist of multiple domains, and each domain, or some combination of domains, can be responsible for a particular
molecular function. Therefore, identifying which domains should be associated with a specific function is a non-trivial
task.

Results: We describe a general approach for the computational discovery of associations between different sets of
annotations by formalising the problem as a bipartite graph enrichment problem in the setting of a tripartite graph.
We call this approach “CODAC" (for COmputational Discovery of Direct Associations using Common Neighbours).

As one application of this approach, we describe “GODomainMiner” for associating GO terms with protein domains.
We used GODomainMiner to predict GO-domain associations between each of the 3 GO ontology namespaces (MF,
BP, and CC) and the Pfam, CATH, and SCOP domain classifications. Overall, GODomainMiner yields average enrichments
of 15-,41-and 25-fold GO-domain associations compared to the existing GO annotations in these 3 domain classifications,

respectively.

annotation.

Conclusions: These associations could potentially be used to annotate many of the protein chains in the Protein
Databank and protein sequences in UniProt whose domain composition is known but which currently lack GO
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Background

Proteins are macromolecules which carry out many bio-
logical functions in living organisms. At the molecular
level, protein functions are often performed by highly
conserved structural regions identified from sequence or
structure alignments, which may be classified into fami-
lies of domains. Because many protein domains fold into
characteristic three-dimensional (3D) structures, there
is often a close relationship between protein structure
and protein function [1]. Currently, the Pfam database is
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one of the most widely used sequence-based classifica-
tions of protein domains and domain families [2]. The
CATH [3] and SCOP [4] databases are examples of struc-
tural domain classifications. As well as sequence-based
and structure-based classifications, proteins may also be
classified according to their function. For example, the
Gene Ontology (GO) [5] consists of a controlled vocab-
ulary of GO terms which describe the gene products in
a cell. Each GO term has a name, a distinct alphanu-
meric identifier, and a “namespace” (ontology) which has
one of the following 3 values: biological process (BP),
molecular function (MF), or cellular component (CC).
The GO ontology is structured as a rooted Directed
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Acyclic Graph (rDAG) in which terms are nodes con-
nected by different hierarchical relations. However, most
protein domain classification systems annotate domains
only according to the entire protein to which it belongs.
One interesting exception is the dcGO database [6] which
provides multiple ontological annotations (such as GO)
for protein domains. Nonetheless, we found that there
are several manually curated GO-Pfam associations from
InterPro [7] which are not present in dcGO. Indeed, from
the results of a previous version of our approach [8, 9], we
estimated that dcGO associations can only annotate 43%
of the unannotated structures in the Protein Databank

(PDB) [10].

More generally, there are many millions of protein
sequences that currently lack GO annotations. On the
other hand, only a relatively small number of distinct
protein domain families exist, which are re-used and
combined in different ways in different proteins. Indeed,
compared to the vast number of different sequences that
exist, current domain classifications contain of the order
of only 15,000 distinct protein domain families. There-
fore, it is natural to suppose that if known protein struc-
ture and sequence annotations could be assigned GO
terms at the domain level, many of these annotations
could be transferred to a potentially very large number
of unannotated proteins. However, we emphasize here
that our aim is to discover functional annotations for
protein domains themselves rather than entire protein
sequences, in order to improve domain description and
classification by combining structural and functional fea-
tures. Nonetheless, even the task of associating GO terms
with protein domains is a non-trivial problem because,
except for single-domain proteins where the mapping is
obvious, many different kinds of relationships can occur
(see Fig. 1).

We described an early version of the approach presented
here for assigning Enzyme Commission (EC) numbers to
Pfam domains [9]. Because our new GODomainMiner
approach [11] aims to answer a similar problem, with
GO terms replacing EC numbers, we decided to gener-
alise the overall approach under the name of CODAC (for
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COmputational Discovery of Direct Associations using
Common Neighbours). Firstly, the problem is formalised
as a bipartite graph enrichment problem in the setting of
a tripartite graph. The core CODAC algorithm solves this
problem using the vector cosine similarity model, from
which it creates new weighted edges between items of
the bipartite graph on the basis of their graph neighbour-
hood similarity. This approach is augmented using tech-
niques to handle the problems of multiple data sources,
bias due to identical items, the influence of the hierar-
chical organisation of the GO ontology, and statistical
significance. Here, the overall approach is applied to 9
different bipartite graphs involving the 3 GO ontologies
(BP, MF, and CC) and 3 popular protein domain classifi-
cations (Pfam, CATH, and SCOP). Our results show that
the GO-domain associations discovered by this approach
represent an average of 15-, 41- and 25-fold increase in
the number of edges on the concerned bipartite graphs.
These newly discovered associations are compared with
existing associations from InterPro and those predicted by
dcGO, and a selected subset of one-to-one associations is
analysed from a biological point of view.

Methods

Tripartite graph model

In graph theory, a k-partite graph is a graph whose ver-
tices can be partitioned into k disjoint subsets, such that
in each subset no two vertices are connected. If k = 2, the
graph is called a bipartite graph (or bigraph), and if k = 3
it is called a tripartite graph. The CODAC approach is
designed to solve problems of bipartite graph enrichment
within a tripartite graph framework. The main intuition is
to calculate new weighted edges between two sets of items
which already contain reliable but sparse associations, and
which are indirectly connected through common associa-
tions with a third set of items.

Let G(X,Y,Z,E) be a tripartite graph where X, ¥ and
Z are 3 sets of items and E is the set of all edges con-
necting X, Y and Z in the input configuration. Let us con-
sider 3 bipartite subgraphs of G, denoted as G (X, Z, E1),
G2(Y, Z, E), and G5 (X, Y, E5). We now assume that the set
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Fig. 1 Graphical representation of the different kinds of relationships that may exist between GO terms and protein domains. S1: A protein with one
domain providing one function; S2: Two domains of the same protein provide different functions; S3: A protein with two domains, where one
domain provides two different functions, and the second domain has no known function; S4: A protein having one domain that provides one
function, and a second domain which acts as a co-factor with the first domain to provide an additional function
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of edges E; is incomplete, and that the aim is to compute
new edges between items of X and items of Y in order
to generate G5 (X, Y, E}) which together with G and G,
will make the final tripartite graph, G*(X, Y, Z, E*), where
E* denotes an enriched set of edges. New edges may be
discovered by exploiting the existing edge distributions in
G1 and G,. For example, if items x; of X and y; of Y share
the same (or almost the same) set of neighbours {zx} in Z,
then it may be supposed that an edge might exist between
x; and y;. Figure 2 illustrates the discovery of a candidate
edge between x, and y, because these items are associated
with the same subset of items {z1, z3, z4} from Z. Candi-
date edges found in this way are then scored and filtered,
as described in more detail below.

It is now possible to instantiate our model with a set
of MF GO terms (X), a set of Pfam domains (Y), and a
set of UniProtKB/SwissProt sequences (Z). E; is the set
of edges derived from the MF GO annotation of UniPro-
tKB/SwissProt sequences, E; is the set of edges derived
from the domain contents of UniProtKB/SwissProt
sequences, and E; is the set of edges derived from the
InterPro manually curated MF GO annotations of Pfam
domains. In this case, our aim is to produce E3, which
will contain an enriched set of MF GO-Pfam associations
weighted by their neighbourhood similarity score.

Biadjacency representation of bigraphs

While graphs allow complex relationships to be visualised
easily, analysing graphs computationally can be very time-
consuming. In our approach it is convenient to represent
each bigraph as a bi-adjacency matrix, in which a matrix
element has a value of 1 or 0 according to whether the
corresponding pair of nodes is connected or not.

Zy
2 o, Zg

X1 VL
X2
E; y2
X Y

Fig. 2 Schematic llustration of edge discovery. In a typical instantiation,
X is a set of MF GO terms, Y a set of Pfam domains, and Z a set of
UniProtKB/SwissProt sequences. £y are edges derived from the MF
GO annotation of UniProtKB/SwissProt sequences, £, are edges derived
from the domain contents of UniProtKB/SwissProt sequences, £5 is
the enriched set of edges, derived from initial £5 that included a limited
number of edges (represented here by (x1,y1)), derived from the
InterPro manually curated MF GO annotations of Pfam domains. £3
contains all newly discovered MF GO-Pfam associations represented

here by (x2,y2)
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Given a tripartite graph G(X,Y,Z,E) as input, the
core CODAC algorithm divides it into two bigraphs
G1(X,Z,Ey) and Go(Y, Z, Ey). A procedure named Cosine
calculates a cosine similarity matrix C between items of X
and items of Y using the two biadjacency matrices M; (of
dimension | X| x |Z]) and M5 (dimension |Y| x | Z]), derived
from G; and G», respectively. These matrices are then row-
normalised to give matrices U; and Us. Each element of
the matrix C = U; x UzT thus represents a cosine similar-
ity between an item x of X and an item y of ¥, according to
the number of common associations with the items in Z.

The main procedure called PredictAssociations deter-
mines a similarity threshold T for filtering the raw scores
in C to produce C*. The matrix C* can be interpreted as
the weighted biadjacency matrix of the enriched bigraph
G} (X, Y,E}) and therefore used to predict new weighted
associations between items of X and Y. Pseudocode for the
core CODAC algorithm is presented in Algorithm 1.

Algorithm 1 The Core CODAC Algorithm

Input: G(X,Y,Z,E), a tripartite graph with G1(X,Z,E1), G2(Y,Z, E),
G (X, Y, E;), 3 associated bigraphs

Output: G} (X,Y,E}), the enriched bipartite graph with new weighted
edges.

1: procedure PredictAssociations(G)
2: C = Cosine(G1, G2)
3 g{’ = Shuffle(G1)
4: gg = Shuffle(G2)
5: C* = Cosine (G¥,G3)
6: P = CreatePositives(C, G3)
7 N = CreateNegatives(C*)
8: GS = CreateGoldStandard (P, N)
9: {Training, Test} = SplitGoldStandard(GS)
10: T = argmax, FMeasure(Thresholdt, Training)
11: ReportFMeasures(T, Test, Training)
12: Gy = Gijif Cij > T orif an (x;,5)) edge already exists in input E3,
otherwise CZ]. = 0 forall {i, j}
13: AddEdge (x;,y;, E3) if C; > 0 forall {i, j}
14: return(gg, C*)
15: end procedure

16: procedure Cosine(G1, Gs)

17: M, = CreateBiadjacency(G)
18: My = CreateBiadjacency(Ga)
19: Uy = RowNormalise(M;)

20: Uy = RowNormalise(Ms)

21:  C=U xuf

22: return(C)

23: end procedure

Gold standard of positive and negative examples

In order to determine an edge similarity threshold, we
need to define a “gold standard” set of positive and neg-
ative examples of associations. Here, we take all of the
P = |E,| existing associations present in G; as posi-
tive examples. To create negative examples, we shuffle
the edges of G; and Gy in order to rearrange in a ran-
dom way all edges between X and Z, and between Y
and Z. During shuffling, the node degrees of each x;, y;
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and zx is kept constant, and the shuffled edges are con-
strained not to overlap the original edges. The shuffled
graphs are denoted by g*f and gg, from which a new
shuffled cosine similarity matrix, C*, may be calculated.
This matrix is then used to select [N| = |P| negative
examples at random. Taken together, the P positive and
N negative examples constitute our “Gold Standard”
dataset.

Determining the score threshold

We randomly split the Gold Standard dataset into two
groups with equal distributions of positive and negative
examples to give a “Training” and a “Test” subset. We
then rank the scores of all members of the Training sub-
set, and label them “positive” or “negative” according to a
score threshold that is varied from 0.0 to 1.0 in steps of
0.001. This allows us to determine the numbers of true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN) predictions for each threshold. We
then calculate the recall, R = TP/(TP + FN), precision,
P = TP/(TP+FP), and the F-measure, F; = 2RP/(P+R).
The similarity threshold 7T that gives the best F-measure
with the Training subset is verified using the Test sub-
set and retained to calculate a filtered cosine similarity
matrix, C*, according to C;fj = C;; if C;; > T or if the
(%1, ) edge already exists in E3, otherwise, C; i =0.

Combining multiple datasets

There may often be more than one configuration for a
graph G, that has the same G, but different Z, E1, and E; in
G1 and Gy. In our instantiation this corresponds to the fact
that GO terms and Pfam domains can be indirectly con-
nected either through UniProtKB/SwissProt sequences
[12] or through PDB chains in SIFTS [13]. To handle mul-
tiple datasets, each input tripartite graph is processed sep-
arately to calculate its respective cosine similarity matrix
C?. The cosine similarity scores are then combined as a
weighted average to give a consensus similarity matrix, CS
(Algorithm 2). Whenever there is no data for a given pair
(x,) in an input graph, the corresponding score Cji y 1s set
to zero.

Receiver-operator-characteristic (ROC) analysis pro-
vides an objective way to measure the ability of an infor-
mation retrieval system to retrieve positive documents as
first ranked, i.e. with the best scores [14]. One advantage
of ROC-based approaches is that they are rather insensi-
tive to the particular numbers of the positive and negative
instances used [15]. Here, in order to find the best values
for the dataset weights w,;, each weight is varied from 1 to
10 in steps of 0.1, and for each combination of weights a
ROC performance curve is calculated using the complete
ranked list of consensus scores and our Gold Standard
set of positive examples. The combination of weights that
gives the largest area under the curve (AUC) is selected
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and used to calculate the best consensus similarity matrix
CS. Then, the PredictAssociations procedure determines
the best threshold to filter the consensus similarity
matrix CS and to deduce the resulting enriched bipartite
graph G7.

Algorithm 2 Calculating a Consensus Similarity Matrix

Input: Z— Igf(x, Zd,E‘f) G4 (Y, Zd,Eg) d=1,.. .D},
a set of input bipartite graphs.

Input: G,(X, Y, E3), the bipartite graph to be enriched.

Output: CS, a consensus similarity matrix with an opti-
mal set of weights, W.

1: procedure Consensus(Z,Gs)
2 foreachd € {1,...,D} do
3: C? = Cosine (gf, ggl)
4 end for
5 for each set of weights w = {wy} with d €
{1,...,D} and wy €[ 1, 10] with steps of 0.1 do
Yo aWax Cf.
6 Sty = Tz
7: ROC" = CreateROC(CS", P)
8 end for
9 W = argmax,, AUC(ROC")
10: return(W, CSY)
11: end procedure

Bipartite graph extension with hierarchy of classes
Ontologies are often described as taxonomic hierarchies
of classes, as is the case for the GO gene ontology [5].
Thus, if one of the input graphs contains items from a hier-
archical ontology, important relationships between the
ancestors of a term and its neighbour(s) could be missed
because they are generally not mentioned explicitly in the
data. For example, if a vertex x from set X represents a
term in an ontology and has a neighbour z in set Z, it
is quite possible that all of the ancestors of x present in
X should also have z as neighbour. If requested by the
user, whenever an edge (, z) is found where z is annotated
with an ontology term x, then CODAC will add additional
edges between item z and all parents of x present in X.
This is illustrated in Fig. 3.

Clustering graph edges

A possible source of bias in any data mining approach
is the existence of redundant items in the input. This is
especially the case for protein entries in UniProt where
it is quite possible to have entries with different iden-
tifiers but identical amino-acid sequences. In order to
deal with this possibility, CODAC groups all items in Z
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Fig. 3 Edge enrichment using an ontology. Here, edge (x2,23) is
added (right, dashed link) because z3 has an existing association with
x3,and x, is a parent term of x3 in the ontology (left)

into clusters having 100% identity. Each cluster is repre-
sented by a unique cluster identifier (CID). As shown in
Algorithm 3, all source edges (x,z;) and (y,zj) from E;
and E; in which identical z; and z; belong to the same
CID, are merged into unique (x, CID) and (y, CID) edges,
producing QICI and QZCI, the reduced bipartite graphs that
serve as input to the CODAC core approach. It should
be noted that the 100% sequence identity threshold may
be reduced to 99% or lower if desired. As illustrated
in Fig. 4, grouping identical items into clusters of 100%
identity can be very beneficial for recovering missing
edges.

Algorithm 3 Clustering Graph Edges

Input: Gi(X,Z, E;) and G2(Y, Z, E5), two bipartite graphs
having redundant items in Z.

Output: QICI and QZCZ, the reduced bipartite graphs in
which all items of Z are grouped by the cluster of
identical items (CID).

1: procedure Cluster(G1,Gs)
2 Build Z¢ = {CIDy}
s E9=0
4 for each (x,z) € Eq, such that z € CID do
5: if (x, CID) ¢ EX! then Add (x, CID) to EX!
6 end if
7 end for
8 ' =0
9: for each (y,z) € Ey, such that z € CID do
10: if (y, CID) ¢ ES' then Add (y, CID) to ES!
11: end if
12: end for

13: retum(Ql =G G, = QZCZ)
14: end procedure
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Calculating statistically significant edges in E

While our approach provides a systematic way to predict
edges in GJ, it is important to calculate a probability, or
“p-value’, for finding an edge simply by chance. For exam-
ple, it is reasonable to suppose that an edge (x, y) might be
predicted at random if x and y are each highly connected
to many items in Z. In order to estimate the probability
of finding edges by chance, one could generate multiple
random graphs by shuffling the edges of a given input
graph, as described above for constructing the Gold Stan-
dard Negative examples. However, this is quite impractical
given the very large numbers of items in X, Y, and Z and
the complexity of the filtering procedure that would have
to be repeated for each shuffled version of the dataset.
Instead, we assume that the probability for finding an edge
(x,y) by random chance is given by a hypergeometric dis-
tribution of the number of common neighbours (x, z) and
(9, z). Letting N, denote the total number of items in Z, N,
the number of neighbours of x in Z, and N, the number
of neighbours of y in Z, the hypergeometric probability
distribution is given by

min (Ny,Ny)

X (VG E)

v=Kyy
1)

P([( = I<x,y) =

where p(K > K,) is the predicted probability of having a
number, K, equal to or greater than the observed number
K,y of common neighbours z of both x and y. Because this
p-value test is applied to a large number of (x, y) edges in
G5, we apply a Bonferoni correction to take into account
the so-called family-wise error rate [16]. Therefore, letting
|E5| denote the total number of edges tested, we consider
any p-value less than 0.05/|E3| as denoting a statistically
significant edge.

Classification into gold, silver, and bronze associations
While the above consensus scores and p-values give objec-
tive measures of the quality of predicted associations,
from a user’s point of view it is often convenient to provide
a simple and memorable quality scale. Therefore, we clas-
sify a predicted association as “Gold” if all of the individual
data source p-values for this association are statistically
significant.

A predicted association is classed as “Silver” if more
than half of the data source p-values are statistically sig-
nificant. Otherwise, it is classed as a “Bronze” association.

Results and discussion

GODomainMiner data preparation

In this paper, the CODAC approach is applied to dis-
cover new weighted GO-domain associations. In our
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Fig. 4 Clustering identical or highly similar items in Z. a Clustering of items z; and z, of initial degree 1 induces a new association between x; and ;.
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b Clustering reduces the complexity of initial multiple associations. In both cases, clustering will increase the cosine similarity scores of the

G(X,Y,Z,E) tripartite graph model, the set X corre-
sponds to one of the MF, BP or CC GO namespaces, and Y
corresponds to one of the Pfam, CATH, or SCOP protein
domain classifications. For each of the 9 combinations of
X and Y, 3 data sources were selected to provide common
neighbours (Z) of the items in X and Y, namely: (i) SIFTS
providing curated PDB chain associations, (ii) UniPro-
tKB/SwissProt (SP) providing curated UniProt entries,
and (iii) UniProtKB/TrEMBL (TR) providing non-curated
automatically annotated UniProt sequences.

Flat data files of SIFTS (June 2017), UniProt
(June 2017), and InterPro (version 63.0) were down-
loaded and parsed using in-house Python scripts.
Associations between PDB chains and GO terms, and
associations between PDB chains and protein domains
(Pfam, CATH, and SCOP) were extracted from the
SIFTS data. All CATH and SCOP domain families were
transformed into their corresponding superfamilies,
and all Pfam “repeat” and “motif” domain types were
discarded. Associations between UniProt sequence
accession numbers (ANs) and GO terms and AN-Pfam
associations (as well as AN-CATH and AN-SCOP
associations) were extracted from the UniPro-
tKB/SwissProt and UniProtKB/TrEMBL sections of
UniProt to give two datasets of UniProtKB/SwissProt
associations and UniProtKB/TrEMBL associations,
respectively. Then, using the evidence code of the
GO term, the associations in the SIFTS, UniPro-
tKB/SwissProt, and UniProtKB/TrEMBL datasets were
divided into two groups, namely one group for which the
GO term evidence code indicated manual curation, and
one group for GO terms with evidence code “inferred
from electronic annotation” (IEA). Here, the resulting 6
datasets are called SIFTS, SIFTS-IEA, SP, SP-IEA, TR,
and TR-IEA. Thus, there are 6 input tripartite graphs
for each of the 9 combinations of the X and Y source
datasets. All PDB chain IDs and UniProt ANs having

identical sequences were clustered using the Uniref
non-redundant cluster annotations [17].

We do not make any distinction between the various
possible manual evidence codes. However, we note that
the GO_REEF field for IEA currently covers 12 annotations
sources, namely InterPro2GO, UniProt Keywords2GO,
UniProt Subcellular Location2GO, EC2GO, UniRule2GO,
UniPathway2GO, Ensembl Compara, Ensembl Fungi,
Ensembl Metazoa, Ensembl Plants, Ensembl Protists, and
the Gene Ontology Consortium. Of these, the largest
number of annotations come from InterPro2GO and
UniProt Keywords2GO, which each provide around 169
million associations in UniProtKB. It should be noted that,
only 34%, 4%, and 5% of the InterPro2GO annotations
are GO-Pfam, GO-CATH, and GO-SCOP associations,
respectively.

Dataset weights and threshold scores

For each of the 9 settings of this study, the weights
assigned to each dataset have been optimised. The pro-
cedure is described in Methods (Algorithm 2) and is
based on a ROC-plot analysis of the ranking of our
Gold-Standard InterPro-based positive examples versus
all other associations computed from all the datasets and
considered as background. Then the best threshold is
determined from the consensus scores calculated with the
optimised set of weights, using the Gold Standard Train-
ing and Test subsets of positive and negative examples.
Table 1 shows that our procedure gives greater weight to
GO-Pfam associations from the IEA sections of the SIFTS,
UniProtKB/SwissProt, and UniProtKB/TrEMBL than to
associations from the experimental and manually curated
sections of SIFTS and UniProtKB/SwissProt datasets. In
order to investigate this further, we re-calculated the
AUC-based weight optimization with all IEA weights
forced to zero (Additional file 1). This caused our opti-
mal AUC to fall from around 0.96 to less than 0.60. This
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Table 1 Calculated AUCs, dataset weights, F-measures, and score thresholds for GO-domain associations for the 3 GO ontologies and

3 domain classifications studied here

Optimal Weights F-measure
Dataset AUC SIFTS SP TR SIFTS-IEA SP-IEA TR-IEA Training Test Threshold
GO-Pfam 0.9605 1 1 6 10 10 10 0.926 0.924 0.005
MF GO-CATH 0.9710 1 1 10 10 1 9 0.935 0.943 0.004
GO-SCOP 0.9693 1 1 10 10 1 2 0.954 0.931 0.004
GO-Pfam 0.9546 1 1 1 10 1 8 0.898 0.903 0.008
BP GO-CATH 0.9726 1 1 1 10 1 5 0.922 0.938 0.007
GO-SCOoP 0.9756 1 1 1 10 1 3 0.943 0.939 0.007
GO-Pfam 0.9228 1 1 6 10 1 10 0.871 0.866 0.003
CcC GO-CATH 09741 1 1 1 10 1 9 0.955 0.932 0.003
GO-SCOP 0.9684 1 1 1 10 1 6 0.927 0.906 0.005

Data source abbreviations are: SP for UniProtkKB/SwissProt and TR for UniProtKB/TrEMBL

reflects the fact that in this setting, we do not consider
the propagated InterPro2GO annotations in UniProtKB,
and consequently GODomainMiner retrieves fewer Gold-
Standard associations. However, as IEA annotations are
extracted from several other data sources as well as Inter-
Pro, setting the IEA weight to zero also excludes these
other data sources (refer to previous section). We there-
fore decided to include all IEA data in the rest of this
study.

Analysis of algorithm complexity

Because we exploit existing UniProt cluster IDs to form
clusters of similar protein sequences and to eliminate
duplicate sequences, the computational cost in the initial
data preparation stage scales as approximately O(s x ¢),
where s is the number of sequences and ¢ is the number of
UniProt clusters. The scoring stage then scales as O(g x d),
where g is the number of GO terms and 4 is the num-
ber of domains. Here, the largest calculation is to find GO
BP-Pfam associations. This takes around 12 hours on one
CPU core of an Intel Xeon E5-2630 2.40 GHz workstation
with 128 Gb memory.

Analysis of calculated GO-Pfam associations

Summaries of our calculated GO MF-domain, BP-
domain, and CC-domain associations are shown in
Tables 2, 3, and 4, respectively. These tables show the
numbers of distinct GO terms and domain entries
(in units of thousands) involved in associations for the 6
source datasets, the filtered GODomainMiner predictions
and the InterPro dataset of positive associations. In these
tables, the total numbers of GO-Pfam associations found
by GODomainMiner refer only to most-specific GO terms
in each branch of a GO hierarchy. In other words, if a
domain is associated to a GO term and to one or more of

its parent terms, only the most-specific (non-parent) term
is counted as a found association.

The overlap between the GODomainMiner predictions
and InterPro is shown in the last row of these tables
(here, a match at any GO level is counted as a com-
mon association). The high percentage of overlap between
GODomainMiner and InterPro (from 91% to more than
99%) reflects the fact that our method is calibrated to
recover as many as possible correct InterPro associations.
Nevertheless it also shows that a small percentage of the
InterPro associations have consensus scores below our
calculated score threshold, revealing the role of human
rather than data-driven knowledge in the definition of
such associations.

Overall, our approach yields a total of 32,881 MF
GO-Pfam associations (shown as 33 x 10% in Table 2)
that include 3968 associations already present in Inter-
Pro (2657 specific term matches plus 1311 parent term
matches). This corresponds to an enrichment of about
8-fold in MF GO-Pfam associations. Similar calculations
give fold-enrichments of about 22 and 13 for MF GO
associations with CATH and SCOP domain superfamilies,
respectively. For BP GO terms, we find fold-enrichments
of 20, 50, and 31 for associations with Pfam, CATH,
and SCOP domains, respectively, and for CC GO terms
the fold-enrichments are 17, 52, and 31, respectively. A
comparison with the Pfam2GO associations from the
Gene Ontology website was also performed. It reveals
that GODomainMiner retrieves 3966, 3541, and 2055 MF,
BP, and CC GO-Pfam associations that were provided by
Pfam2GO, respectively. On the other hand, it finds 99
out of 187 MF GO-Pfam associations, 108 out of 256 BP
GO-Pfam associations, and 29 out of 65 CC GO-Pfam
associations which are present in Pfam2GO but which are
not in the InterPro database.
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Table 2 The numbers of given and predicted MF GO-domain associations in thousands (x 103)
Dataset GO-Domain Associations MF GO Terms Domain Entries

Pfam CATH SCOpP Pfam CATH SCOP Pfam CATH SCOP
SIFTS 31 16 9.9 44 22 17 2.8 1.1 0.8
SIFTS-IEA 69 36 23 26 29 23 48 2.0 15
SwissProt 194 72 73 6.3 54 56 74 12 1.1
SwissProt-IEA 225 79 79 4.8 4.2 43 8.1 14 12
TrEMBL 215 104 96 4.0 34 35 74 12 1.0
TrEMBL-IEA 756 240 208 6.4 57 58 13 1.6 14
Merged 917 306 266 79 7.2 7.3 14 2.5 1.8
GODomainMiner 33 13 9.7 6.3 4.5 4.0 8.3 2.1 1.6
InterPro 4226 0.607 0.743 1.076 0.273 0.301 3.300 0.466 0.584
Overlap 3.968 0.594 0.713 1.059 0.273 0.300 3.101 0457 0.560

These results indicate that GODomainMiner discovers
many new associations compared to Pfam2Go and Inter-
Pro. This can be explained by the fact that our program
does not make any consideration about the possible usage
of these associations for protein annotation, whereas
InterPro policy is to retain only those GO-domain associ-
ations that can be transferred to all the proteins containing
a given domain [18].

Distribution of GO-domain associations per GO term and
per domain
Figure 5a shows the average numbers of MF, BP, and CC
GO-Pfam associations per GO term and Pfam entry for
associations in InterPro (green) and those calculated by
GODomainMiner when counting the most-specific GO
terms assigned to a domain (purple).

GODomainMiner generally predicts more associations
per GO term and per Pfam domain than exist in InterPro.
For example (top panel), GODomainMiner predicts that

each MF GO term and each Pfam entry are associated
with an average of 5.2 domains and 4.0 MF GO terms,
respectively, compared to averages of 3.9 domains and
1.3 MF GO terms in InterPro, respectively. For BP
and CC GO terms we see similar enrichments from
GODomainMiner compared with InterPro, with ratios
of 5.4 versus 3.5 and 16.9 versus 6.8 associations per
GO term, and 8.2 versus 1.17 and 4.5 versus 1.1 asso-
ciations per Pfam, respectively. These results demon-
strate that GODomainMiner produces a considerable
enrichment in the number of annotations compared
to InterPro. They also support the notion that many
Pfam domains participate in different functions, either
as singleton domains or as components of multi-domain
proteins.

The bar charts in Fig. 5b show the distributions of
GO terms (shown in orange) and Pfam entries (in blue)
according to the number of associations they are involved
in. For example, considering the first two bars in part B,

Table 3 The numbers of given and predicted BP GO-domain associations in thousands (x 10%)

Dataset GO-Domain Associations BP GO Terms Domain Entries

Pfam CATH SCOP Pfam CATH SCOP Pfam CATH SCoP
SIFTS 182 90 53 9.8 85 6.8 2.7 1.1 0.7
SIFTS-IEA 197 109 70 76 6.8 5.7 49 2.1 1.5
SwissProt 1336 461 465 20 18 19 8.6 12 12
SwissProt-IEA 844 267 302 14 125 13 94 14 13
TrEMBL 837 360 337 13 12 12 83 12 1.1
TrEMBL-IEA 1756 623 548 18 17 17 12 1.6 13
Merged 2436 872 764 21 20 20 13 24 1.8
GODomainMiner 75 23 18 14 8.6 7.8 9.1 2.1 1.6
InterPro 3.829 0461 0.586 1.094 0.206 0.244 3.265 0.388 0491
Overlap 3518 0.448 0.572 1.077 0.205 0.244 3.028 0376 0480
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Table 4 The numbers of given and predicted CC GO-domain associations in thousands (x 10%)

Dataset GO-Domain Associations CC GO Terms Domain Entries

Pfam CATH SCOP Pfam CATH SCOP Pfam CATH SCOP
SIFTS 37 17 10 14 1.1 0.9 26 1.0 0.7
SIFTS-IEA 38 19 13 1.0 0.8 0.7 39 16 12
SwissProt 251 74 74 2.5 23 24 84 12 12
SwissProt-IEA 185 55 54 1.8 1.6 17 10 14 13
TrEMBL 179 67 61 1.7 1.6 1.6 79 12 1.1
TrEMBL-IEA 360 1 94 23 2.1 2.1 14 1.6 14
Merged 479 151 129 27 25 26 15 23 1.8
GODomainMiner 39 10 7.3 23 17 1.6 8.7 1.8 1.4
InterPro 2.289 0.192 0.237 0336 0.058 0.064 2.042 0.163 0.208
Overlap 2.085 0.191 0.230 0335 0.058 0.064 1.878 0.163 0.202

it can be seen that some 2100 MF, 3500 BP, and 320 CC
GO terms and 2600, 2300, and 2800 Pfam domains are
involved in only one GO-Pfam association. The remain-
der of this figure shows that many GO terms and Pfam
domains are involved in two or more associations, which
supports the notion that complex many-to-many rela-
tionships exist between GO terms and domains (Fig. 1).
More precisely, Fig. 5b indicates that the number of Pfam
domains involved in only one GO BP-Pfam association
is less than the number of Pfam domains involved in
only one MF-Pfam association. This is consistent with
the notion that a domain most likely has one function
but it can be involved in several processes. Moreover, on
average, twice as many BP terms are associated to Pfam
domains as MF and CC terms (Fig. 5a), which demon-
strates the complexity of assigning GO BP terms to Pfam
domains. On the other hand, this ratio is consistent with
the idea that GO BP terms describe the cooperation of
one or more individial molecular functions to achieve
a particular biological purpose [19]. Similar results for
GO-CATH and GO-SCOP associations are shown in
Additional file 1.

Finally, Table 5 shows the distribution of GODomain-
Miner predicted associations according to our Gold,
Silver, and Bronze classification, along with the degree
of overlap with the InterPro reference dataset. Since the
Gold class represents associations with statistically signif-
icant p-values, it is interesting to see that the majority
(68%) of our predicted MF GO-Pfam associations com-
mon with InterPro fall in this class. Overall, we calculate
that 47% of the GODomainMiner MF GO-Pfam associa-
tions and 33% of the predicted BP and CC associations are
of Gold quality. The quality of GO predictions for CATH
and SCOP classifications also follow very similar paths
(see Additional file 2).

Comparison with GO-domain associations from dcGO

In order to compare the GODomainMiner results with
those obtained from dcGO [6], we extracted the Pfam2GO
associations from the dcGO website [20]. To avoid the
complexity of comparing GO annotations at different lev-
els in the rDAG, our comparison mainly focuses on GO-
domain associations in which GO terms are leaves of the
GO rDAG. GODomainMiner contains a total of 515,582
GO-Pfam associations regardless of their level in GO hier-
archy, of which 79,589 involve leaf GO terms (comprising
21,410 MF, 36,814 BP, and 21,365 CC GO-Pfam asso-
ciations). The Pfam2GO dataset from dcGO contains a
total of 720,534 associations, of which 62,779 involve leaf
GO terms (comprising 5939 MF, 24,334 BP, and 32,506
CC associations). Thus, the numbers of associations in
GODomainMiner and Pfam2GO are broadly compara-
ble. However, when considering the leaf levels of all 3
ontologies, Fig. 6 shows that only 11,138 GO-Pfam associ-
ations are common between GODomainMiner and dcGO
(overlap region B, about 14% of the GODomainMiner
set and 18% of the dcGO set). Looking at the overlap
with InterPro, which contains 2799 leaf level GO-Pfam
associations, GODomainMiner shares 2744 associations
(98%) with InterPro, while dcGO shares only 724 associa-
tions (26%; overlap C). This shows that GODomainMiner
gives a greater coverage of the InterPro reference set
than dcGO. Although this is perhaps not surprising since
InterPro was used to calibrate GODomainMiner, the high
agreement between GODomainMiner and InterPro gives
a good indication of the reliability of other associations
predicted by GODomainMiner.

We also compared GO-SCOP associations predicted
by GODomainMiner with the SCOP2GO database from
dcGO and with InterPro. Overall, GODomainMiner
calculates a total of 19,708 leaf GO-SCOP associations,
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compared to 2445 such associations in SCOP2GO and 421 (i.e. 99.75% of InterPro set) GODomainMiner asso-
422 in InterPro. Of these, 845 GO-SCOP associations ciations overlap with InterPro, whereas only 55 (13%
are common to GODomainMiner and SCOP2GO. Also, of InterPro set) SCOP2GO associations from dcGO are
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Table 5 The distribution of all most-specific associations from
GODomainMiner and their overlap with InterPro, in the Gold,
Silver, and Bronze categories

GODomainMiner

Overlap with InterPro

Class MF BP CcC MF BP cC
Gold 15,605 24,782 12,967 1815 1378 887
Silver 11,098 31,920 17,062 778 865 628
Bronze 6178 18,060 8939 64 116 124
Total 32,881 74,762 38,968 2657 2239 1679

found in InterPro. This confirms the trend observed for
GO-Pfam associations, in favor of a much better cover-
age by GODomainMiner than by dcGO, of the InterPro
reference set.

Biological assessment of new discovered GO-Pfam
associations

It would certainly be a very tedious task to validate
manually the huge number of new GO-domain associ-
ations proposed by the GODomainMiner approach. For
this reason, we decided to check manually a small sub-
set of these associations, namely the strict one-to-one
and many-to-one GO-domain associations in which one
or several GO terms are uniquely associated with one
domain and where this domain is not associated with any
other GO terms. Such associations can easily be used to
assess the novelty and biological consistency of knowledge
discovered through our approach. All lists of strict one-
to-one and many-to-one associations found in the 9 set-
tings of this study are available on the GODomainMiner
website.

For the sake of brevity, we review here only the one-
to-one and many-to-one MF GO-Pfam associations. We
obtained 125 one-to-one MF GO-Pfam associations with
consensus scores ranging from 0.9704 to 0.0052, 75 asso-
ciations in the gold category (all p-values significant), 30

GODomainMiner

C
InterPro Pfam2Go(dcGO)

Fig. 6 Venn diagram showing the intersections between leaf GO-Pfam
associations from Pfam2GO (62,779 associations), GODomainMiner
(79,589), and manually curated associations from InterPro (2,799). Region A
(2,744 associations) is the overlap between GODomainMiner and
InterPro. Region B (11,138 associations) is the overlap between
GODomainMiner and Pfam2GO. Region C (724 associations) is the
overlap between Pfam2GO and InterPro
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and 20 in the silver and bronze categories, respectively.
From the 125 associations, 30 are already known in Inter-
Pro (21 from the gold category) and 95 are new (54 from
the gold category). Manual checking of the MF GO terms
and Pfam domain names led us to distinguish 5 situations
(see the examples in Table 6). (i) The MF GO terms and
Pfam domains descriptions are almost identical (34 asso-
ciations). Such associations are trivial but only 16 of them
are reported in InterPro, probably because the remain-
ing 18 escaped automatic retrieval due to unpredictable
spelling differences. (ii) The MF GO term is more specific
than the Pfam domain description (21 associations includ-
ing 3 from InterPro). (iii) The Pfam description is more
specific than the MF GO term (11 associations includ-
ing 3 from InterPro). (iv) The MF GO term and the Pfam
descriptions are quite different (51 associations includ-
ing 8 from InterPro). Such associations are likely the most
interesting to provide to the expert for further analyses.
(v) The Pfam domain has no known function (8 associ-
ations not present in InterPro). These 8 associations are
listed in Table 6 as examples of new knowledge discovered
by the CODAC approach. We expect that many further
novel associations between MF GO terms and yet unchar-
acterized domains may be mined from the complete MF
GO-Pfam dataset which contains more than 3400 asso-
ciations concerning so-called DUF (Domain of Unknown
Function) or UPF (Uncharacterized Protein Family) Pfam
domains.

Concerning the strict many-to-one MF GO-Pfam asso-
ciations, we identified 30 such Pfam domains, most of
which have only two associated GO terms. This results
in 55 associations of which 7 are known in InterPro
(6 gold and 1 bronze) and 48 are new (33 gold, 8 sil-
ver and 7 bronze). For one Pfam domain only (CobsS,
PF02654) the two GO terms are known already in
InterPro. For 5 other Pfam domains, one of the GO
terms is known in InterPro and the other one is new.
New MF GO-Pfam associations generally give lower
scores than known InterPro associations. However, in
some cases this suggests an alternative substrate for
the domain activity which may be interesting to inves-
tigate. For example, for Pfam domain Mqo (PF06039
Malate:quinone oxidoreductase), GO:0052589 (malate
dehydrogenase (menaquinone) activity) is found in
addition to GO:0008924 (malate dehydrogenase (quinone)
activity). The remaining 24 Pfam domains all have
new GO MF annotations that do not exist in Inter-
Pro. Interestingly, in some cases a different more gen-
eral InterPro annotation exists, as in the case of
PF07722 domain Peptidase_C2 which GODomainMiner
associates with GO:0034722 (gamma-glutamyl-peptidase
activity) and with GO:0033969 (gamma-glutamyl-gamma-
aminobutyrate hydrolase) activity, whereas the InterPro
annotation is simply GO:0016787 (hydrolase activity).
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Table 6 Selected examples of new one-to-one MF GO-Pfam associations

MF GO ID MF GO term Pfam ID  Pfam description Consensus Score  Class
Case (i) : Trivial but not in InterPro
G0O:0008437 thyrotropin-releasing PF05438 Thyrotropin-releasing hormone (TRH) 0.0638 gold
hormone activity
Case (i) MF GO term more specific
than Pfam description
GO:0098640 integrin binding involved  PF09085  Adhesion molecule, immunoglobulin-like 0.0752 gold
in cell-matrix
adhesion
Case (iii) Pfam description more
specific than MF GO term
GO:1990919 nuclear membrane PF08559 Cut8, nuclear proteasome tether protein 0.0309 gold
proteasome anchor
Case (iv) MF GO term and Pfam
description differ
GO:0047991 hydroxylamine oxidase PF13447 Seven times multi-haem cytochrome CxxCH  0.2654 gold
activity
Case (v) Domains of yet unknown
function
G0:1990838 poly(U)-specific PF09749  Uncharacterised conserved protein 0.0235 gold
exoribonuclease, activity
producing 3" uridine cyclic
phosphate ends
GO:0030144 alpha-1,6- PF15027 Domain of unknown function (DUF4525) 0.5273 silver
mannosylglycoprotein
6-beta-N-
acetylglucosaminyl
transferase activity
GO:0030735 carnosine PF07942 N2227-like protein 0.2705 silver
N-methyltransferase
activity
GO:0010340 carboxyl-O- PF04301 Protein of unknown function (DUF452) 0.0201 silver
methyltransferase
activity
GO:0016772 transferase activity, PF01989  Protein of unknown function DUF126 0.0137 silver
transferring
phosphorus-containing
groups
GO:.0071617 lysophospholipid PF10998 Protein of unknown function (DUF2838) 0.0072 silver
acyltransferase activity
GO:0015666 restriction PF12102 Domain of unknown function (DUF3578) 0.0111 bronze
endodeoxyribonuclease
activity
GO:0016841 ammonia-lyase activity PF11807 Domain of unknown function (DUF3328) 0.0066 bronze

All of these examples are absent in InterPro; additional examples are available from the GODomainMiner website for cases (i) to (iv)

Implications for protein sequence annotation

It is natural to suppose that predicted GO-domain asso-
ciations could help to annotate entire protein sequences.
However, it does not automatically follow that GO-
domain associations are directly transferable to sequences
because the function of a particular protein can depend
on, for example, its domain architecture, organism, cell
type, and cellular location [18]. Therefore, an automatic

domain-based sequence annotation system should take
such factors into account by, e.g., constructing and apply-
ing filtering rules that take into account the taxa and
cellular environment of each protein sequence to be anno-
tated.

In any case, it is reasonable to expect that the difference
in specificity compared to InterPro annotations will likely
prevent many of the GODomainMiner annotations from
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being transferred directly to all proteins that match a given
domain. However, there is no doubt that the newly dis-
covered associations should contribute to the generation
of new rules to annotate protein sequences. Nonethe-
less, the domain-level functional annotations predicted
by GODomainMiner should first be subjected to further
benchmarking in order to validate their usefulness. We
recently participated in the 2017 round of the CAFA

(Critical Assessment of Functional Annotation) commu-
nity experiment [21], in which we applied taxa-based
filtering of GODomainMiner annotations. However, the
evaluation of this CAFA edition has not yet been pub-
lished. Participation in future CAFA editions will allow
GODomainMiner’s annotations to be assessed according
to community standards.

Conclusion

We have presented a systematic approach called CODAC
for mining associations from datasets that can be repre-
sented as tripartite graphs. We have presented one imple-
mentation of this approach called GODomainMiner, for
predicting associations between GO terms and protein
domains. This was achieved by first collecting existing
Pfam, CATH, and SCOP domain annotations of pro-
tein chains and sequences on one hand and MF, BP,
and CC GO term annotations on the other. We then
applied our method to find a list of direct associations
between GO terms and domains. Considering only the
most-specific GO terms, our approach yields an enrich-
ment of about 15-fold in the number of GO-Pfam asso-
ciations that currently exist in InterPro. A selected subset
of one-to-one and many-to-one associations has been
analyzed from a biological point of view, and these all
appear to be highly meaningful and consistent with avail-
able knowledge. Nonetheless, there remains a need for
the associations predicted by our approach to be vali-
dated more extensively, and we plan to test our approach
thoroughly in the next CAFA community experiment.
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