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Abstract: This research focuses on novel ecological materials for biomedical and cosmetic applications.
The cellulose of bacterial origin is well suited for such purposes, but its functional properties must
be modified. In this work, the blends of bionanocellulose and poly(vinyl alcohol), BNC/PVA, were
prepared based on in situ and ex situ methodology combined with impregnation and sterilization,
using different concentrations of PVA. The main purpose of this work was to check the influence
of UV radiation and high temperature, which can be sterilizing factors, on the properties of these
mixtures. It was found that the crystallinity degree increases in UV-irradiated samples due to the
photodegradation of the amorphous phase. This changes the mechanical properties: the breaking
stress and Young’s modulus decreased, while the strain at break increased in most UV-irradiated
samples. The surface morphology, which we observed by using AFM, did not change significantly
after exposure, but the roughness and surface free energy changed irregularly in samples obtained
by different methods. However, the effects induced by UV-irradiation were not so crucial as to
deteriorate the materials’ properties designed for medical applications. Thermogravimetric analysis
exhibited good thermal stability for all samples up to at least 200 ◦C, which allows for the prediction
of these systems also in industrial sectors.

Keywords: bionanocellulose; polymer blends; poly(vinyl alcohol); thermogravimetry; UV-irradiation

1. Introduction

A significant challenge today is the development of the polymer industry toward
replacing the ubiquitous products obtained from crude oil with alternative raw materials
of natural origin. The aim is to increase the use of degradable materials in various sectors
of the economy, as doing so may contribute to the recovery of the environmental balance
currently disturbed by the increasing pollution and accumulation of plastic waste [1].

Biodegradable polymers such as cellulose, starch, and chitosan are excellent alter-
natives to polyolefins, polystyrene, poly(vinyl chloride), and other commonly used syn-
thetic macromolecular compounds [2]. In addition to bio-sourced polymers, and synthetic
biodegradable polymers such as polylactide, polyhydroxyalkanoates, polycaprolactone,
polyglycolide, poly(butylene succinate), poly(ethylene adipate, poly(p-dioxanone), or
poly(vinyl alcohol) are also increasingly utilized today [3].

These environmentally friendly materials are mainly valuable for biomedical (as scaf-
folds, implants, and biosensors), pharmaceutical (drug- or gene-delivery systems), surgery
(resorbable sutures), and cosmetic applications, as well as for the packaging industry, mainly
as disposable products [4,5]. Many research efforts in this area cover various scientific
aspects, including the chemical modification of natural polysaccharides, e.g., via substi-
tution (nitration, sulfonation, acylation, alkylation, hydroxylation, phosphorylation, etc.)
or grafting copolymerization [3]. The second approach is the synthesis of biodegradable
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polymers with appropriately designed chemical structures [6]. For example, ring-opening
polymerization of cyclic monomers with protective groups allows for us to obtain functional
materials capable of furthering post-polymerization modification [7].

To the various biodegradable polymeric materials mentioned above, polymer blends
of the appropriate components should be added [8,9].

An example of a biodegradable blend designed for the production of wound dress-
ings, hygiene and cosmetics products, or medical implants is a material based on bacterial
cellulose (bionanocellulose) and poly(vinyl alcohol)—BNC/PVA [10–13]. Research relating
to these systems demonstrates that the physicochemical properties required for specific
applications can be adjusted by selecting the appropriate production method and composi-
tion. The mixture of BNC/PVA combines the good mechanical properties of cellulose with
the elasticity of PVA. However, the main advantage of these specimens was their excellent
ability to absorb water [12].

In their work on cellulose mixed with poly(vinyl alcohol), other authors pay attention
to mechanical properties [14–18]. Moreover, the miscibility of PVA with cellulose and the
molecular level’s thermodynamic interactions have also been the subject of research [19–21].
The homogeneity of such blends with some microheterogeneity on a nanometer scale has
been observed [19].

However, information on the photochemical and thermal stability of such systems is
very scarce. Varganici et al. found that poly(vinyl alcohol) underwent slow photooxidative
degradation but exhibited a photostabilizing effect on cellulose in PVA–cellulose cryogels
containing up to 70% PVA [22]. The main detected processes during UV irradiation of
such cryogels were chain scission, photo-oxidation, and decarbonylation, which is in line
with generally accepted mechanisms for polymer photodegradation [23,24]. Varganici et al.
also studied the thermal stability of PVA–cellulose cryogels [25]. This work determined
kinetic parameters and volatile degradation products (mainly H2O, CO2, olefins, and
carbonyl compounds).

Our work aims to study the photochemical and thermal stability of bionanocellu-
lose/poly(vinyl alcohol) blends (BNC/PVA) obtained in three different ways: synthesis
in situ, ex situ/impregnation, and ex situ combined with sterilization. For this purpose,
the changes in morphology, crystallinity degree, and mechanical and surface proper-
ties of UV-irradiated samples were determined; moreover, a thermogravimetric analysis
was conducted.

The presented work is a continuation of previous research in which a synthesis method-
ology and characterization of BNC/PVA composite properties were described in terms
of biomedical and cosmetic applications [11,12]. It should be emphasized that these are
innovative materials. Due to their application potential, they require testing whether high-
energy UV radiation and high temperature can be used as sterilizing agents. According to
our knowledge, such mixtures based on biosynthetic cellulose have not yet been presented
in the literature.

2. Materials and Methods
2.1. Materials

Poly(vinyl alcohol), PVA, (30,000–70,000 g/mol and an 87–89% hydrolysis degree) was
bought from Aldrich, 3050 Spruce St, St. Louis, MO 63103, USA.

Standard bionanocellulose, BNC, was cultured with bacteria—the Gluconacetobac-
ter xylinus E25 strain in Bowil Biotech Ltd., Władysławowo, Poland. Culture medium
(Schramm Hestrin) components were obtained from BTL Ltd., Łódź, Poland.

The first 2-day incubation stage, carried out at a temperature of 30 ◦C and pH of 5.75,
was followed by a 7-day stationary synthesis during which a BNC pellicle about 2 mm
thick was formed. The obtained BNC material was thoroughly purified with hot water,
NaOH solution, 1% CH3COOH, and again with water. Thus, obtained BNC served as a
reference for the BNC/PVA mixtures, which were prepared by three procedures:
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(1) In situ—The culture was carried out according to the method described above for
standard BNC, but 1%, 2%, or 4% (m/v) PVA solution was added to the medium;

(2) Ex situ by impregnation—The originally obtained standard BNC was then soaked in
a PVA solution at a concentration of 1%, 2%, and 4% for 2 h, at 80 ◦C;

(3) Ex situ with sterilization—The samples obtained in the same way as in the second
method were additionally sterilized in an autoclave at 121 ◦C for 20 min.

More details of the preparation and characteristics of the obtained BNC/PVA materials
are described in earlier works [11–13].

Abbreviations of prepared samples:

Polymers 2022, 14, x FOR PEER REVIEW 3 of 17 
 

 

NaOH solution, 1% CH3COOH, and again with water. Thus, obtained BNC served as a 
reference for the BNC/PVA mixtures, which were prepared by three procedures: 
(1) In situ—The culture was carried out according to the method described above for 

standard BNC, but 1%, 2%, or 4% (m/v) PVA solution was added to the medium; 
(2) Ex situ by impregnation—The originally obtained standard BNC was then soaked in 

a PVA solution at a concentration of 1%, 2%, and 4% for 2 h, at 80 °C; 
(3) Ex situ with sterilization—The samples obtained in the same way as in the second 

method were additionally sterilized in an autoclave at 121 °C for 20 min. 
More details of the preparation and characteristics of the obtained BNC/PVA mate-

rials are described in earlier works [11–13]. 
Abbreviations of prepared samples: 

 

2.2. Methods 
2.2.1. X-ray Diffraction (XRD) 

X-ray diffraction patterns were obtained by the X’Pert PRO (PANalytical, Nether-
land), using CuKα radiation. The degree of crystallinity (Xc) of the specimens was esti-
mated by the ratio of the area of the crystalline signals of the bionanocellulose (centered 
at 2θ 14.0° and 22.1°) to the total area of the XRD curve in the range of 2θ 10–30°. 

2.2.2. Atomic Force Microscopy (AFM) 
The AFM images of the samples were recorded by using a MultiMode microscope, 

Veeco Instruments, Inc., Santa Barbara, CA, USA. The scan area was 5 μm × 5 μm and 1 
μm × 1 μm. Roughness parameters (the arithmetic mean of the roughness, Ra; the root 
mean square average, Rq; and the maximum distance between the highest and the lowest 
point on the profile, Rmax [26]) were calculated from the obtained three-dimensional im-
ages. 

2.2.3. Contact-Angle Measurement 
The contact angle (θ) was measured by a DSA G10 goniometer (Krüss GmbH, Ham-

burg, Germany), using glycerol and diiodomethane. The result is the average of at least 
ten measurements for each test liquid. The accuracy of the contact-angle measurement 
was 2°. The mean θ values were used to calculate the total surface free energy (γs) and its 
polar (γsp) and dispersion (γsd) components, using the Owens–Wendt method [27]. 

2.2.4. Mechanical Properties 
Mechanical parameters: The breaking stress (σ, MPa), Young’s modulus (E, MPa), 

and strain at break, i.e., ultimate elongation (ε, %) were determined from a tensile test 
performed on the modified Instron 1026 machine (Norwood, Massachusetts, USA). The 
wet samples (directly after immersion for 2 h in water) were stretched. The results were 
obtained for ten replicates. The standard deviation of the breaking stress was 0.4–2.9 MPa, 
and for the elongation, it was 0.7–3.2%. 
  

2.2. Methods
2.2.1. X-ray Diffraction (XRD)

X-ray diffraction patterns were obtained by the X’Pert PRO (PANalytical, Netherland),
using CuKα radiation. The degree of crystallinity (Xc) of the specimens was estimated by
the ratio of the area of the crystalline signals of the bionanocellulose (centered at 2θ 14.0◦

and 22.1◦) to the total area of the XRD curve in the range of 2θ 10–30◦.

2.2.2. Atomic Force Microscopy (AFM)

The AFM images of the samples were recorded by using a MultiMode microscope,
Veeco Instruments, Inc., Santa Barbara, CA, USA. The scan area was 5 µm × 5 µm and
1 µm × 1 µm. Roughness parameters (the arithmetic mean of the roughness, Ra; the root
mean square average, Rq; and the maximum distance between the highest and the lowest
point on the profile, Rmax [26]) were calculated from the obtained three-dimensional images.

2.2.3. Contact-Angle Measurement

The contact angle (θ) was measured by a DSA G10 goniometer (Krüss GmbH, Ham-
burg, Germany), using glycerol and diiodomethane. The result is the average of at least ten
measurements for each test liquid. The accuracy of the contact-angle measurement was 2◦.
The mean θ values were used to calculate the total surface free energy (γs) and its polar
(γsp) and dispersion (γsd) components, using the Owens–Wendt method [27].

2.2.4. Mechanical Properties

Mechanical parameters: The breaking stress (σ, MPa), Young’s modulus (E, MPa),
and strain at break, i.e., ultimate elongation (ε, %) were determined from a tensile test
performed on the modified Instron 1026 machine (Norwood, MA, USA). The wet samples
(directly after immersion for 2 h in water) were stretched. The results were obtained for
ten replicates. The standard deviation of the breaking stress was 0.4–2.9 MPa, and for the
elongation, it was 0.7–3.2%.

2.2.5. Irradiation Conditions

All tested samples were subjected to UV exposure at room conditions, using a bac-
tericidal TUV-30 W lamp (produced by Philips, Holland) emitting 253.7 nm wavelength
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radiation. The intensity of irradiation at the sample level was 32.2 W/m2. The radiation
dose that the samples received during 4 h of exposure was 463.68 kJ/m2.

2.2.6. Thermogravimetric Analysis

The thermal-stability measurements of the polymer samples were carried out on the
Thermal Analysis SDT 2960 Simultaneous DSC-TGA apparatus (USA) in the following
conditions: range 20–600 ◦C, a nitrogen atmosphere, and heating rate of 10 ◦C/min. From
the thermogravimetric curves, the percentage weight loss (∆m); the decomposition onset
temperature (T0); the temperature at the maximum process speed (Tmax); and the tem-
peratures corresponding to 20%, 50%, and 80% of the weight loss of the tested systems
were determined.

3. Results
3.1. Photoinduced Changes in Sample Crystallinity by XRD

The XRD pattern of BNC shows a slight shift of signals toward higher values of 2θ and
a drop in intensity resulting from exposure to UV that indicates a decrease in the degree of
order in the unmodified biopolymer (Figure 1).
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Figure 1. XRD patterns of BNC before and after 4 h of UV irradiation.

The BNC/PVA blends exhibited different changes in X-ray diffraction patterns (Figure 2a–c).
BNC (which corresponds to two signals at 2Θ 14.5 and 23◦ in XRD) is mainly responsible
for ordering macromolecules in mixtures, while PVA is the amorphous part. Notably, the
broad signal at 2Θ approx. 20◦, characteristic for PVA and visible in non-irradiated samples
H-1–H-4 and S-4, disappears entirely in XRD after sample exposure to UV. It indicates a
preferential photodecomposition of PVA in mixtures.

In UV-treated blends, the intensity of the XRD signals of BNC increases in most cases
in the presence of PVA. However, this increase is not proportional to the amount of polymer
added to BNC. Only in the materials obtained by in situ cultivation do the signal intensities
increase with the concentration of PVA used, and they are the highest among the analyzed
systems. We also observe more intense reflections in the XRD of ex situ samples: S-4, S-1,
and I-1. The remaining materials show irregular changes.
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Figure 2. XRD patterns of UV-irradiated BNC/PVA blends obtained by in situ (a), ex
situ/impregnation (b), and ex situ/sterilization (c) methods.

The full width at half maximum (FWHM) values of two main signals on XRD patterns
of BNC and BNC/PVA blends and the differences with these values for non-irradiated
samples are listed in Table 1. These results show an increase in FWHM of both main
reflections in the XRD caused by UV exposure for most of the analyzed samples (including
virgin BNC). The exceptions are the samples I-2 and I-4, for which the FWHM decreases
due to the sample irradiation.
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Table 1. The full width at half maximum (FWHM, ◦) of XRD signals and degree of crystallinity (Xc,
%) of UV-irradiated BNC and BNC/PVA blends. The difference between the values in relation to the
non-irradiated samples is given in brackets 1.

Sample 2θ ~ 14.5◦ 2θ ~ 23◦ Xc, %

BNC 1.42 (+0.10) 1.43 (+0.11) 39 (−2)
H-1 1.42 (+0.12) 1.45 (+0.20) 44 (+7)
H-2 1.42 (+0.18) 1.41 (+0.10) 44 (+9)
H-4 1.40 (+0.22) 1.43 (+0.26) 45 (+17)
I-1 1,32(+0.09) 1.39 (+0.09) 44 (+7)
I-2 1.30 (−0.05) 1.41 (+0.14) 42 (+6)
I-4 1.32 (−0.18) 1.45 (+0.14) 37 (+1)
S-1 1.38 (+0.01) 1.38 (+0.4) 41 (+4)
S-2 1.40 (+0.14) 1.44 (+0.16) 40 (+4)
S-4 1.39 (+0.14) 1.42 (+0.12) 44 (+9)

1 The corresponding values for unirradiated samples are presented in Reference [12].

The increase in the signal width (FWHM) after sample irradiation indicates that the
crystallite sizes of the tested samples are reduced; however, the observed changes are
relatively small.

Table 1 also shows the estimated degree of crystallinity (Xc) of all the samples and
the changes from these values for non-irradiated systems (reported in Reference [12]). As
can be seen in pure BNC, the Xc slightly decreases, while in the blends obtained with
all three methods, it increases by several or even a dozen percentage points (1–17%) due
to UV radiation. It is due to the photodegradation of the amorphous phase, which is
more susceptible to UV radiation than the more compact crystalline part. Thus, it can be
concluded that UV radiation causes an etching effect on the surface of BNC/PVA blends.

3.2. Changes in Morphology Studied by AFM

AFM microscopy allowed us to assess the surface topography and estimate cellulose
fibers’ thickness. The starting BNC and its mixtures with PVA showed a fibrous structure
with varying degrees of folding and roughness, in contrast to the relatively smooth PVA
surface [12]. After 4 h of UV irradiation, the surface structure observed in the AFM images
did not change significantly, which suggests the relative stability of BNC blends. AFM
images of UV-irradiated samples are shown in Supplementary Materials Figures S1–S7.

However, the roughness parameters (Rq, Ra, and Rmax) changed significantly in
UV-irradiated samples (Table 2). The materials obtained in situ (H-1–H-4) due to UV
exposure have become rougher compared to non-irradiated systems. The same applies to
samples from the ex situ/sterilization method. Additionally, the roughness parameters
are the highest in blends, where a 2% PVA solution was used for BNC modification. It is
undoubtedly related to the presence of the PVA in the cellulose matrix. In both systems, the
poly(vinyl alcohol) is located in the spaces between the BNC fibers; in materials marked
H-1–H-4, it is integrally associated with the fibers at the stage of fermentation production.
In S-1–S-4 systems, probably a part of the polymer, due to the sterilization process, also
penetrates the pores of BNC matrix. Different changes were observed in the composite
systems impregnated with PVA—here, a significant part of the polymer was deposited on
the outer surface of the BNC. Therefore, in this system, the Rq, Ra, and Rmax parameters
decreased after the irradiation process (only I-2 is an exception). This is most likely caused
by the surface degradation of the materials, i.e., PVA coating the fibers.

The width of the fibers, as determined from the AFM images, did not change signif-
icantly compared to those observed in unexposed systems. Generally, a reduction by a
few nanometers in the fibers’ thickness compared to non-irradiated samples was observed;
however, the changes are often within the measurement error.
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Table 2. Parameters Rq, Ra, and Rmax of UV-treated BNC and BNC/PVA blends obtained by various
methods. The difference between the values in relation to the non-irradiated samples is given
in parentheses 1.

Sample Rq, nm Ra, nm Rmax, nm

BNC 46.6 (+15.9) 38.3 (+14.0) 297 (+188)
H-1 37.0 (+14.2) 29.3 (+11.1) 322 (+208)
H-2 67.6 (+41.3) 53.3 (+32.4) 426 (+146)
H-4 46.2 (+28.8) 36.8 (+23.2) 333 (+197)
I-1 46.8 (−25.3) 37.9 (−17.4) 336 (−306)
I-2 96.3 (+53.3) 77.1 (+43.6) 649 (+489)
I-4 39.9 (−19.7) 31.7 (−15.0) 276 (−69)
S-1 39.2 (+9.40) 31.3 (+7.70) 272 (+112)
S-2 82.9 (+46.3) 64.9 (+36.2) 646 (+504)
S-4 47.3 (+12.0) 37.0 (+8.80) 485 (+293)

1 The corresponding values for unirradiated samples are presented in Reference [12].

It is difficult to give reliable results of thickness due to the large dispersion of data
(from several dozen to over one hundred nm), which is caused by the presence of not-
always single fibers. In the AFM images, a large part also consists of bundles of tangled
filaments (Supplementary Materials Figures S1–S7).

3.3. Changes in Surface Properties Studied by Contact Angle Measurements

The measurement of the contact angle (Θ) is a method sensitive to changes in the sur-
face structure. To evaluate the effect of UV radiation on the obtained materials, the surface
free energy and its polar and dispersive components were calculated from determined
average Θ values of glycerol and diiodomethane drops deposited on the polymer surface
(Table 3).

Table 3. Total surface free energy (γs) and its dispersion (γsd) and polar (γsp) components of 4 h
UV-irradiated BNC and BNC/PVA blends obtained by various methods. The differences between
the values with the non-irradiated samples are given in parentheses 1.

Sample γs, mJ/m2 γsd, mJ/m2 γsp, mJ/m2

BNC 46.22 (+2.31) 28.58 (−0.32) 17.64 (+2.63)
PVA 23.07 (−10.06) 22.18 (−3.26) 0.89 (−6.80)
H-1 43.28 (+0.45) 29.99 (+0.17) 13.29 (+0.27)
H-2 48.29 (+4.14) 25.84 (−3.73) 22.45 (+7.87)
H-4 50.78 (+3. 21) 31.35 (0.00) 19.43 (+3.21)
I-1 47.89 (+0.34) 34.45 (+3.65) 13.44 (−3.31)
I-2 41.80 (−6.97) 31.84 (−1.19) 9.96 (−5.78)
I-4 40.02 (−9.03) 29.86 (−3.05) 10.16 (−5.98)
S-1 38.26 (+2.90) 33.03 (+11.93) 5.23 (−9.03)
S-2 40.40 (+2.70) 36.88 (+14.45) 3.52 (−11.75)
S-4 31.95 (−7.44) 27.81 (+4.00) 4.14 (−11.45)

1 The corresponding values for unirradiated samples are presented in Reference [12].

As previously shown, PVA is characterized by a lower surface polarity despite the
hydroxyl groups in the repeating units [12]. It is due to the involvement of the OH groups
in hydrogen bonds. As a result of UV radiation, a further decrease in surface free energy
and polarity is observed, which is undoubtedly related to the loss of the number of OH
groups due to PVA photodegradation. On the contrary, BNC alone exhibits an increase
of γs and its polar component (γsp), which suggests the formation of oxidized functional
groups resulting from UV irradiation.

Samples obtained in situ (series H-1–H-4) behave similarly to pure BNC—γs and γsp
increase after UV exposure. On the other hand, in the blends obtained by the ex situ method,
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negative changes in γsp are observed in all cases, as was in the case of PVA itself. It suggests
a different structure of these samples—cellulose fibers are surface-coated with PVA.

The lowest surface energy is shown in irradiated samples S-1–S-4; here, also the highest
decrease in polarity is observed. It can therefore be concluded that the sterilization of ex
situ samples reduces the resistance to UV, mainly PVA.

In all series of samples, the PVA content has no visible influence on the measured
parameters. UV radiation causes more remarkable changes in the surface properties of
BNC than the addition of PVA.

3.4. Changes in Mechanical Properties

The influence of UV radiation on the mechanical properties of the obtained BNC/PVA
blends and pure polymers is presented in Figures 3–5. The breaking stress (σ) and Young’s
modulus (elastic modulus, E) in BNC and PVA are nearly half as compared to those values
in non-UV-treated materials. Only the strain at break (i.e., relative elongation, ε) increases
by 40% in BNC and by 15% in PVA after UV irradiation.
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3.4.1. BNC/PVA Obtained In Situ (H-1–H-4)

BNC/PVA blends obtained in situ showed an increase in breaking stress relative to
pure BNC and PVA, but this parameter decreases in all samples after 4 h of UV irradiation
(Figure 3a). Interestingly, when comparing UV-exposed samples, we see that the σ for
H-1–H-4 is higher than that for BNC and PVA alone. The strain at break increases in the
mixtures, and this also applies to UV-irradiated samples (Figure 3b). On the other hand, the
Young’s modulus is lower in the blend compared to BNC alone, but the opposite trend has
been noted after UV treatment (Figure 3c). A relatively high E value was exhibited for H-1.

The deterioration of the mechanical parameters (σ and E) in the irradiated samples
proves the main chain scission reactions, while the contrary effect may be caused by
competitive crosslinking.

3.4.2. BNC/PVA Obtained Ex Situ/Impregnation (I-1–I-4)

In the case of samples I-1–I-4, the breaking stress values decreased compared to those
of pure polymers (Figure 4a). Moreover, due to the UV irradiation of the specimens, σ
decreases (the exception is I-4). On the other hand, ε regularly increases with increasing
PVA content, and after UV irradiation, it is higher than in unirradiated blends (Figure 4b).
The changes in Young’s modulus show a similar trend as σ (Figure 4c).

3.4.3. BNC/PVA Obtained Ex Situ/Sterilization (S-1–S-4)

The system obtained by ex situ/sterilization after UV irradiation shows lower breaking
stress values than pure BNC and PVA. Moreover, as the amount of PVA in the system
increases, we observe a further decrease in this parameter and Young’s modulus, while the
relative elongation increases significantly (Figure 5).

3.4.4. Summary of Changes in Mechanical Properties Due to the Action of UV-Irradiated
BNC/PVA Obtained through Ex Situ/Sterilization (S-1–S-4)

To summarize the research results on the mechanical properties of irradiated BNC/PVA
samples, the percentage changes of the determined parameters were calculated (Table 4).
As the above data show, UV radiation reduces the breaking stress and Young’s modulus of
most samples (negative ∆σ and ∆E values).

Table 4. Changes in strength parameters (%) caused in BNC and PVA samples and BNC/PVA blends
after 4 h UV irradiation.

Sample ∆σ, % ∆ε, % ∆E, %

BNC −32.41 +68.13 −59.45
PVA −48.61 +17.21 −57.29
H-1 −3.85 +52.66 −34.47
H-2 −59.89 −10.37 −55.58
H-4 −1.09 −15.35 +19.56
I-1 −26,88 +33,54 −37,25
I-2 −30,54 +6,44 −36,18
I-4 +59,42 +39,30 −3,71
S-1 −54.73 +570.35 −93.27
S-2 −0.62 +749.90 −90.69
S-4 +7.51 +252.65 −77.93

The decrease of Young’s modulus is most significant in samples prepared by ex
situ/sterilization (in the range of about 78% to 93%). It proves the higher photodegradation
efficiency in these samples. In I-4 and S-4, an increase in σwas observed, suggesting that
competing photo-crosslinking processes occur at a higher PVA content in the blend.

The action of UV radiation has a positive effect on the relative elongation of almost all
samples. The most significant increase in ε values was found in the systems obtained by
ex situ/sterilization (from approx. 253% to 750%). An increase in this parameter resulting
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from UV exposure can be explained by the plasticizing effect of low-molecular-weight
degradation products trapped in the sample matrix.

3.5. Thermogravimetric Analysis

A thermal analysis in nitrogen atmosphere was performed on pure polymers, BNC
and PVA (as reference samples), and their blends obtained by three methods. The material
to be analyzed was thoroughly dried to form a thin polymer film.

Figure 6a shows the TG and DTG curves of unmixed BNC and PVA, on which we can
observe a several-step transformation for both polymers. The first slight loss of cellulose
mass in the temperature range of 60–105 ◦C is related to the evaporation of absorbed mois-
ture (free water and water bound by hydrogen bonds with cellulose fibrils). It constitutes
about 4% of the mass of the tested sample.
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At a temperature of about 230 ◦C, we observed the decomposition onset of BNC. In
this phase, the supplied thermal energy is sufficient to activate the cleavage of glycosidic
bonds and BNC decay (the mechanism described in References [28,29]).

The initial weight loss of PVA in the temperature range of 62–110 ◦C is also related
to the moisture evaporation from this sample (approx. 3%). The second stage, starting at
a temperature of 214 ◦C, corresponds to decomposition into smaller fragments. The final
step, which begins at 362 ◦C, leads to the formation of the carbonized residue. At this stage,
as a result of the thermal decomposition of PVA, the following are formed: acetaldehyde,
acetone, ethanol, unsaturated aldehydes, ketones, and various aromatic products [30,31]

TG and DTG curves of BNC and its blends with PVA are shown in Figure 6b–d. The
characteristic parameters read from these curves are listed in Table 5.
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Table 5. Thermal parameters determined from the TG and DTG curves of all tested samples.

Sample To, ◦C
Tmax, ◦C/∆m, %

I Step II Step

BNC 230 367/78 -
PVA 214 298/78 427/12
H-1 235 367/75.8 430/9.0
H-2 234 370/71.0 431/12.0
H-4 233 372/78.4 427/18.6
I-1 219 367/86.0 -
I-2 209 368/82.0 -
I-4 204 366/88.0 -
S-1 229 368/72.0 427/7.0
S-2 211 363/74.4 426/11.0
S-4 214 361/70.4 425/14.8

In the case of in situ samples, the thermogravimetric curves show the course of
overlapping the processes characteristic for both polymers. Still, the thermal degradation
begins at slightly higher temperatures (Figure 6b). Analyzing the mass loss in Stage I, we
can see lower ∆m values than in BNC itself (except for H-4), and we can see an increase in
∆m for Stage II, proportional to the rise in PVA content.

Neglecting the initial water loss, we observed a one-stage thermal decomposition for
the system obtained by the ex situ/impregnation method (Figure 6c). Thus, no separate
step would be attributed to the degradation of PVA. This phenomenon is probably related
to the overlapping of PVA and BNC degradation processes in the same temperature ranges.
Confirming the presence of PVA in the BNC matrix is a significant increase in the weight
loss of ≥82% (while for cellulose alone, it was 78%). It also means the participation of PVA
in the photodegradation process of these blends.

In systems obtained by ex situ/sterilization, we observe the beginning of thermal
decomposition at lower temperatures than in BNC. The first stage’s weight loss is much
lower than in pure cellulose. It may indicate changes in the course of thermal degrada-
tion. The relatively large amount of carbonized residue, which is usually a crosslinked
structure, proves the high efficiency of thermal crosslinking in these samples with the
participation of poly(vinyl alcohol). Moreover, for these samples (S-1–S-4), the second step
of decomposition, characteristic of PVA, appeared on the TG/DTG plots (Figure 6d).

To facilitate the comparison of the thermal stability of the materials obtained with the
three methods, the temperatures corresponding to the weight losses of 20%, 50%, and 80%
were determined from TG curves (Table 6).

Table 6. The temperatures corresponding to the weight losses of 20%, 50%, and 80% determined from
TG curves.

Sample T20%, ◦C T50%, ◦C T80%, ◦C

BNC 347 366 388
PVA 287 304 343
H-1 332 361 397
H-2 337 368 432
H-4 317 359 382
I-1 340 366 555
I-2 326 357 395
I-4 320 355 415
S-1 348 366 381
S-2 343 365 384
S-4 343 364 379

These results indicate that PVA is less thermally stable than BNC. T20% generally
decreases with PVA content in all blends, while T50% exhibits very close values to pure
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BNC. The last parameter, T80%, significantly increases in mixtures obtained by in situ
and ex situ/impregnation. Thus, considering that T80% corresponds to the second main
degradation step, a conclusion can be drawn about a certain mutual stabilization of both
polymers in these cases. Ex situ/sterilization samples behave differently, where a slight
decrease of the T80% parameter is observed.

4. Discussion
4.1. General Considerations

There are considerable differences between the photochemical and thermal degrada-
tion of polymers (including studied BNC/PVA blends). In the former case, the necessary
condition for the reaction to take place is the absorption of the radiation quantum; hence,
the photochemical reactions are selective and conditioned by the presence of chromophore
groups in molecules [23].

PVA, besides hydroxyl groups, contains carbonyl moieties resulting from incomplete
hydrolysis during the synthesis of this polymer from poly(vinyl acetate). They play the
role of chromophores.

Bacterial cellulose does not have such radiation-absorbing groups—hence its relatively
high resistance to UV. However, even in high-purity cellulose, structural defects can occur.
Weak points in macromolecules, even in trace amounts, can contribute to the initiation
of photodegradation.

Photodestruction is only possible when the quantum energy is at least equal to the
chemical-bond energy. As a result of a homolytic breakage of covalent bonds, free radicals
are formed, and it entails successive reactions (so-called dark or secondary) that can take
place without radiation [23,32]. Another relevant feature of photochemical processes is
their occurrence only in the surface layer of the material. The energy of the radiation
quantum with a length of 253.7 nm is 7.835 × 10−19 J (4.89 eV), so it is sufficient to break
covalent bonds in organic compounds, polymers, and biopolymers.

We should mention that, although FTIR spectroscopy is often used to study the
course of photodegradation processes in polymers, in the case of mixtures consisting of
components having the same functional groups (OH), their differentiation in infrared
spectra is impossible. Furthermore, detecting the photo-oxidized groups accompanying
their detachment during photodegradation is difficult. An additional difficulty is the lack
of transparency of the BNC/PVA systems, which means that only reflection techniques
can be used, which are not suitable for quantitative research. Therefore, we present a
different approach here by examining the influence of UV radiation on the morphology
and functional blend properties.

Thermal degradation is not limited to the material surface, as heat is applied simulta-
neously to all molecules in the whole sample volume. In the initial stages of heating, the
molecules gain more and more kinetic energy, which can lead to phase changes. Finally,
at a sufficiently high temperature, they decompose. The degradation process begins with
breaking the weakest bonds, followed by an intensive release of degradation products of
different volatility and chemical composition [33,34].

Both processes (photochemical and thermal) depend on the environment in which
they occur. In our experiment, the UV irradiation took place in the air atmosphere; hence,
oxidation reactions accompanied the degradation processes. Thus, we are dealing with
photo-oxidative degradation. On the other hand, the thermogravimetric analysis was
carried out in dynamic conditions but in an inert atmosphere (N2); hence, oxidation is ex-
cluded here. The decomposition process observed in such conditions provides information
not only about thermal stability but also about the composition and chemical structure of
the tested systems.

4.2. Brief Mechanism of Thermal and Photochemical Degradation of BNC/PVA Blends

The mechanism of the processes taking place in heated or UV-irradiated BNC/PVA
blends can be explained on the base of processes occurring in degraded BNC and PVA
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separately [23,35]. The initiation of macromolecule decay is associated with forming free
radicals, which are highly active and cause complex secondary reactions.

The first step in the thermal degradation of cellulose is the removal of physically
bound water. Then glycoside linkages (C1–C4) break, OH and CH2OH groups are ab-
stracted, and saccharide rings open. The cellulose chains are transformed into relatively
low-molecular-weight oligosaccharides and even monosaccharides. An example of an
anhydrous monosaccharide obtained during the thermal decomposition of cellulose is
levoglucosan, which can undergo further dehydration and isomerization, forming various
derivatives [28,29] during decarbonylation and decarboxylation, as well as in more complex
processes, with the release of other volatile organic products.

Thermal degradation of PVA starts with the elimination of water due to the abstraction
of the side groups, resulting in the formation of polyene structures. Residual acetate
groups are also eliminated, hence the presence of relatively large amounts of acetic acid
during degradation [30]. The decomposition temperature in the first degradation step is
not high enough to generate other low molecular weight products. Initially, intermediates
are formed, which further decompose at higher temperatures.

The second stage of decomposition is the continuation of the detachment of side groups
and the intensive breakage of the main chains, accompanied by reactions of degraded
molecules, e.g., intramolecular cyclization or crosslinking. The degradation products
mainly include acetaldehyde, acetic acid, polyethers, aromatic derivatives, and a small
amount of furan [31,32].

In UV-irradiated BNC/PVA blends, carbonyl group excitation leads to Norrish re-
actions and secondary processes [23], mainly chain scission and abstraction of side sub-
stituents. The network of inter- and intra-molecular hydrogen bonds is also destroyed. Any
radical or macroradical (P·) resulting from the homolytic breaking of the covalent bond can
react with atmospheric oxygen to form an unstable peroxide radical (P-O-O·). Then, as a
result of attaching a hydrogen atom from the neighboring unit, these radicals transform
into hydroperoxide groups (P-OOH), which further decompose into alkoxyl (P-O·) and
hydroxyl radicals (HO·). These reactions are chain processes and lead to the formation of
various oxidized products (i.e., ketone, aldehyde, and carboxyl groups) and unsaturated
chain ends [32,35].

The recombination of the radicals deactivates them and terminates the chain of degra-
dation. Moreover, the recombination of macroradicals is the reason for crosslinking. One
should remember the possibility of interaction and chemical reactions of free radicals and
degradation products formed in one polymer with macromolecules of the other compo-
nent, and vice versa [36]. Indeed, many competing reactions coincide during the thermal
and photochemical degradation of polymeric blends, and their result impacts the final
properties of materials.

We found that UV-irradiated BNC/PVA materials did not degrade very efficiently, as
only a slight influence on the morphology, surface, and mechanical properties, as well as
the order of the macromolecules, was observed.

5. Conclusions

In this work, novel BNC/PVA composites with different PVA shares, obtained in the
biosynthetic process (i.e., in situ) or based on bacterial cellulose in the impregnation or addi-
tional sterilization (ex situ) procedures, were characterized in terms of their photochemical
and thermal resistance.

After UV irradiation, the degree of crystallinity in all BNC/PVA blends slightly
increases, and this is caused by the photodegradation of the amorphous phase (mainly
PVA). The surface roughness also increases (except I-1 and I-4) as a result of of photo-etching.
The polarity depends on the preparation method—it grows in the irradiated samples in
situ, while it decreases in both types ex situ. Moreover, the mechanical properties depend
on the method used. A decrease in the strength parameters (σ, E) was observed due to
photodegradation, while the relative elongation increased, except for samples H-2 and H-4.
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It can be due to random chain scission and the release of shorter chain fragments acting as
a plasticizer.

The thermal stability of BNC/PVA blends results from competitive reactions: degra-
dation and crosslinking. A minor increase in thermal stability was mainly observed in the
samples obtained in situ.

In summary, the obtained materials meet the requirements for practical applications in
medicine, pharmacy, and cosmetology. These studies showed that the functional properties
do not deteriorate significantly under UV radiation, and the thermal stability is also satisfac-
tory. Considering the major thermal-degradation step, both polymers were even found to
be mutually stabilized. Thus, these two factors—short-wavelength UV radiation and high
temperature (up to at least 200 ◦C)—can be alternative sterilizing agents. Such behavior of
BNC/PVA blends has not yet been described in the contemporary scientific literature.

Moreover, taking into account the previously described properties [12]—high water
absorption and good mechanical resistance—the composites obtained by the in situ method
are good candidates for implantation, while the systems from the ex situ/sterilization
method are suitable for production a wound dressing with little exudation. On the other
hand, the mixture produced by the ex situ/impregnation may be primary material for
cosmetic applications or a dressing for wounds with high exudate. In addition, the good
thermal resistance of all tested samples allows for other applications in high-temperature
conditions, including modern technologies in the automotive, aviation, marine, microelec-
tronic, and chemical industries.
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