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Abstract

The memory B-cell (MBC) ELISpot assay is the main technique used to measure antigen-specific MBCs as a readout of
humoral immune memory. This assay relies on the ability of MBCs to differentiate into antibody-secreting cells (ASC) upon
polyclonal stimulation. The total number of IgG+ ASCs generated by mitogen-stimulation is often used as a reference point;
alternatively antigen-specific MBCs are expressed as a frequency of post-culture peripheral blood mononuclear cells (PBMC)
as a surrogate for absolute frequencies. Therefore, it is important to know whether IgG+ B-cells are uniformly expanded
during the preceding mitogen-culture as a true reflection of MBC frequencies ex vivo. We systematically compared B-cell
phenotype and proportions before and after mitogen stimulation in cultures of 269 peripheral blood mononuclear cell
samples from 62 volunteers by flow cytometry and analyzed the number of resulting ASCs. Our data show that the number
of total IgG+ ASCs detected by ELISpot after mitogen stimulation correlates with the proportion of IgG+ MBCs ex vivo,
highlighting its general robustness for comparisons of study cohorts at group level. The expansion of total and IgG+ B-cells
during mitogen-stimulation, however, was not identical in all cultures, but influenced by size and composition of the ex vivo
B-cell compartment. The uncorrected readout of antigen-specific MBCs per million post-culture PBMCs therefore only
preserves the quality, but not the magnitude of differences in the ex vivo MBC response between groups or time points,
particularly when comparing samples where the B-cell compartment substantially differs between cohorts or over time.
Therefore, expressing antigen-specific cells per total IgG+ ASCs is currently the best measure to correct for mitogen-culture
effects. Additionally, baseline information on the size and composition of the ex vivo B-cell compartment should be supplied
to additionally inform about differences or changes in the size and composition of the ex vivo MBC compartment.
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Introduction

Humoral immunity is crucial to combat many infections and to

provide protection against re-infection and after vaccination.

Primarily, antibodies are used as readouts for humoral immunity

since they can be easily measured by enzyme-linked immunoab-

sorbance assay (ELISA). Long-term humoral immune memory is,

however, not only conveyed by antibody-producing long-lived

plasma cells, but also relies on the efficient acquisition and

maintenance of memory B-cells (MBCs), who upon antigen re-

encounter can rapidly develop into antibody secreting cells (ASCs)

to mount a strong secondary antibody response [1].

Circulating MBCs have low frequencies and are quiescent, i.e.

do not secrete antibody. Two main methods addressing these

challenges have been developed to quantify the magnitude of the

circulating MBC response: Direct ex vivo quantification can be

performed using flow cytometry upon labelling of MBCs with

fluorescently labelled monomeric or tetrameric antigens [2–4].

Alternatively, MBC-secreted antibodies can be quantified (by

Enzyme-linked ImmunoSpot assay (ELISpot) or ELISA) following

a pre-activation step using mitogens to differentiate MBCs into

ASCs [5]. This method is readily applicable to large numbers of

samples and antigens (provided sufficient cells are available from

each sample), without the need for fluorescent labelling, which can

be challenging for individual antigens [6]. It has thus become the

main readout used to measure antigen-specific MBCs in the

context of infections, vaccinations or allergy [6–12]. A necessary

underlying, but yet untested, assumption made when using the

MBC ELISpot to quantify antigen-specific responses is that MBCs
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are differentiated into ASCs at a fixed ratio [13]. Antigen-specific

MBC responses measured using this technique are either reported

as the number of ASC per million post-culture peripheral blood

mononuclear cells (PBMC), or as percentage of total ASCs.

Expressing antigen-specific cells as a proportion of ASC-differen-

tiated MBC corrects for variation in both total MBC precursor

frequencies and potential differences in expansion during mitogen

culture between donors. Reporting antigen-specific ASCs as per

million post-culture PBMCs is mostly used to get insights into the

absolute frequency of antigen-specific MBCs. This is done to also

take into account inter-individual variations in total MBC

frequencies particularly when comparing across age groups

[11,13] that differ not just in their antigen-experience but also

the size and composition of the (memory) B-cell compartment

[11,14]. This readout, however, does not correct for expansion

and potential skewing of the MBC compartment during mitogen

culture. It is therefore important to know (i) whether B-cells are

indeed consistently expanded during mitogen culture, (ii) which

factors influence this expansion, and (iii) whether the total number

of Ig-secreting cells generated truly reflects MBC frequencies ex
vivo. One study has addressed this last point for antigen-specific

MBCs [4], but the readout by ELISA did not allow comparisons of

ASCs following mitogen stimulation and ex vivo MBCs on the

single-cell level. A follow-up study demonstrated that the two

possible readouts after culture with mitogens, limiting dilution

ELISpot/ELISA and bulk culture ELISpot, correlated for two out

of the three antigens analyzed [6], supporting the use of the

cheaper and less time consuming bulk ELISpot. However, none of

these studies investigated the effect of mitogen culture on B-cell

expansion, which would have affected both post-culture read-outs

equally.

In this study, we therefore investigated both the consistency of

B-cell expansion during mitogen culture as well as the robustness

of this assay to detect total IgG+ ASCs that correspond to ex vivo
IgG+ MBC frequencies, by systematically comparing B-cell

phenotype and proportions before and after mitogen stimulation

in a large number of human PBMC cultures.

Materials and Methods

Peripheral blood mononuclear cells
To enable systemic analysis of B-cell expansion and ASC

generation in a large number of mitogen-stimulation cultures, we

took advantage of 269 individual PBMC samples that were

collected longitudinally from 62 healthy adult volunteers (age

range 18–32 years) enrolled in two clinical trials conducted at the

Radboud university medical center (Nijmegen, The Netherlands)

and the Leiden University Medical Centre (Leiden, The Nether-

lands) between March 2011 and April 2012. Both studies received

approval by the Central Committee for Research Involving

Human Subjects of The Netherlands (CCMO; NL34273.091.10

and NL33904.091.10) and volunteers enrolled in the studies

provided written informed consent. The study team complied with

the Declaration of Helsinki and Good Clinical Practice including

monitoring of data. The trials are registered at ClinicalTrials.gov,

number NCT01236612 and NCT01218893.

In Study A [15], volunteers received a prophylactic dose of

chloroquine for three months and bites from 3615 Plasmodium
falciparum (Pf )-infected mosquitoes (Chloroquine prophylaxis

and sporozoites, CPS), and were subjected to challenge with Pf-
infected red blood cells (n = 9) or infective mosquito bites (n = 5).

Ten volunteers received only chloroquine prophylaxis and then a

single Pf challenge either with Pf-infected red blood cells (n = 5) or

mosquito-bites (n = 5). In Study B [16] volunteers undergoing

chloroquine chemoprophylaxis were immunized with bites from

either three times 15 (n = 5), ten (n = 9) or five (n = 10) Pf-infected

mosquitoes, or not-immunized (n = 5). All immunized and control

subjects in this study were subjected to mosquito-bite challenge.

Sampling of citrate anti-coagulated peripheral blood for

immunological analysis was performed at different time points

using CPT vacutainers (Becton Dickinson). In Study A and B,

samples were available for each volunteer from D0 (pre-

immunization, before onset of chloroquine prophylaxis), day

before challenge (C21) and 35 days after challenge (C+35). In

Study B, additional samples were available from one month (28

days) after each of the three immunizations (for CPS-immunized

volunteers only) as well as 140 days after challenge (C+140).

Additionally, we included single samples from 9 healthy, Dutch

adult malaria-naı̈ve volunteers. At none of the blood collection

time points for this study was any of the volunteers infected with

Pf. PBMCs were isolated by density centrifugation. Following four

washes in phosphate buffered saline (PBS), PBMCs were

cryopreserved at 206106 cells/ml in ice-cold fetal calf serum

(FCS; Gibco)/10% DMSO (Merck) using Mr. Frosty freezing

containers (Nalgene). PBMC samples were stored in vapour phase

nitrogen.

Mitogen stimulation
Differentiation of MBCs into ASCs in was initiated in bulk

PBMC cultures based on a previously established protocol [5],

using a stimulation cocktail composed of pokeweed mitogen

(PWM), S. aureus Cowan I protein A (SAC) and CpG. IL-10 was

added to the stimulation mix since a previous study showed that

this enhanced the efficiency of MBC into ASC differentiation by

more than 9 fold [6]. Briefly, PBMCs were thawed for 30 sec in a

37uC water bath and cold RPMI medium was immediately added

drop wise. After washing, the cells were re-suspended in RPMI

containing 10% FCS, 100 U/ml penicillin/streptomycin,

100 mM HEPES, 50 mM 2-b-Mercaptoethanol and 2 mM L-

Glutamine (all Invitrogen) and counted. 16106 cells/ml were

added to 25 cm2 cell culture flasks (Greiner). Culture medium was

supplemented with 50 ng/ml PWM lectin derived from Phyto-
lacca americana (Sigma-Aldrich), 1:5000 Protein A from Staph-
ylococcus aureus, Cowan Strain (Sigma-Aldrich), 2.5 mg/ml ODN

2006 (Type B CpG nucleotide-human TLR9 ligand; InvivoGen

tlrl-2006) and 25 ng/ml recombinant human IL-10 (PeproTech)

and incubated at 37uC, 5% CO2 for 5 days.

Memory B-cell ELISpot
MultiScreen Filter PVDF Immobilon plates (MSIPS4510,

Millipore) were pre-wetted with 35% Ethanol, rinsed twice with

PBS and coated with 10 mg/ml monoclonal antibodies to human

IgG (clones MT91/145; Mabtech) diluted in phosphate buffered

saline (PBS). After overnight incubation at 4uC, plates were

washed (16 PBS/0.05% Tween 20 (Sigma-Aldrich, PBST), 36
PBS) and blocked with 1% bovine serum albumin (BSA; Sigma-

Aldrich) in RPMI for 2 h at 37uC. Cells were harvested from the

flasks, counted and seeded in quadruplicates at both 1200 and

4000 cells per well. Filter plates were incubated for 6 h at 37uC,

5% CO2 with minimized ambient vibration. After washing (46
PBS, 46 PBST), immobilized IgG was labeled using polyclonal

goat anti-human IgG (Fcc) alkaline phosphatase (1:1000 in PBST

containing 0.5% FCS; Mabtech) overnight at 4uC. Following

thorough washing (46PBST, 46PBS, 36distilled water), alkaline

phosphatase substrate BCIP/NBT (Mabtech) was added and the

filter plates were kept in the dark until fully developed. Developed

plates were rinsed with water, left to dry and stored protected from

light until reading using the CTL ImmunoSpot Reader (Cellular
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Technology Ltd.). The mean number of IgG+ ASCs in

quadruplicate wells was calculated per million PBMC and

averaged between the two cell concentrations. To check for assay

background some wells on every plate received only medium

instead of cells (no background detected) or 46105 cells were

added to wells coated with 5 mg/ml the irrelevant antigen Bovine

Serum Albumin (background: 0.33 spots/well).

Flow cytometry analysis
IgG+ B-cells and B-cell proportions were analyzed prior to (ex

vivo; stain 1; Figure S1) and after mitogen culture (stain 2;

Figure S2). B-cell subsets ex vivo were distinguished as described

previously [17]. For post-mitogen culture phenotyping we chose a

different staining panel for the following reasons: (i) mitogen

stimulation results in a down-regulation of CD19 expression,

necessitating the inclusion of CD20 to identify B-cells. (ii) we

aimed to assess proliferation after stimulation, thus including Ki67.

(iii) in previous experiments we found that CD21 as well as IgD

expression are down-regulated during culture of B-cells, while

CD38 expression is strongly up-regulated in the majority of B-cells

by mitogen-stimulation (Figure S3), thus preventing us to use the

same gating strategy to distinguish different B-cells subsets after 5

days of culture.

56105 to 16106 cells per stain were transferred to 96 wells V-

bottom plate (Sarstedt), washed with PBS and incubated for

30 min on ice with 50 ml viability dye diluted in PBS (fixable

viability dye eFluor 450, eBioscience (stain 1); aqua LIVE/DEAD

fixable dead cell stain, Invitrogen (stain 2)). Cells were washed

twice with staining buffer (PBS/0.5% BSA), and stained with 50 ml

antibody cocktail diluted in staining buffer for 30 min at room

temperature (RT). Antibodies used for surface staining are listed in

Table 1 and Table 2. After another wash, cells were re-

suspended in 50 ml fixation/permeabilization buffer (eBioscience),

incubated for 30 min at 4uC, and washed with 150 ml permea-

bilization buffer (eBioscience). For intracellular staining, cells were

incubated for 30 min at RT with 50 ml antibody cocktail (stain 2;

Ki67 AlexaFluor 647 (B56); BD Biosciences) diluted in permea-

bilization buffer (eBioscience). Cells were washed with permeabi-

lization buffer and re-suspended in 200 ml PBS/1% paraformal-

dehyde. 100,000 to 200,000 events per sample were acquired on a

Cyan ADP 9-colour flow cytometer (Dako/Beckman Coulter) and

analysis performed using FlowJo v9.2 software.

Statistical analysis
Data were analyzed using GraphPad Prism v5. B-cell propor-

tions ex vivo versus post-culture were compared by Wilcoxon

matched pairs signed rank test. Skewing of distributions was tested

by D’Agostino and Pearson omnibus normality test. Relationships

between B-cell proportions, expansion (fold change; calculated by

dividing for each sample the absolute number of total (or IgG+) B-

cells post mitogen-culture by the absolute number of total (or IgG+)

B-cells ex vivo) and ASCs were analyzed by non-parametric

Spearman correlation. Correlation coefficients listed are for PBMC

samples of the 62 volunteers at baseline, i.e. a time point when all of

them where malaria-naı̈ve and none of them was undergoing

chloroquine prophylaxis. Correlation coefficients obtained for

baseline samples only were comparable to those obtained when

analyzing all 269 cultures from all collected time points.

Results

Applying both flow cytometry and ELISpot, we conducted a

systematic large-scale analysis of 269 PBMC samples (derived from

62 donors sampled over 1–7 time points) before and after mitogen-

stimulation (Figure 1A). We firstly determined the ex vivo
composition of the B-cell compartment (for subset definitions see

Table 3 and Figure S1), and particularly of IgG+ MBCs, from

which IgG+ ASCs originate. Upon thawing of cryopreserved

PBMCs, B-cells made up 5.97% (median, interquartile range

(IQR) 4.26–8.25%) of PBMCs, and 7.86% (median; IQR 5.69–

11.5%) of these B-cells were IgG+. The IgG+ B-cell compartment

was largely composed of CD38lowIgD-CD102 MBCs

(Figure 1B), dominated by CD21+CD27+ classical MBCs

(cMBC; median 63.4%, IQR 55.9–67.8%), followed by CD21+
CD272 MBCs (median 20.3%, IQR 15.4–24.6%). Three other

MBC populations constituted 3.3–5% each of the IgG+ B-cell

compartment, i.e. CD212CD272 atypical MBCs (atypMBC),

CD212CD27+ activated MBC (actMBC) and IgD+CD21+
CD27+ non-switched MBCs (nsMBC). With the exception of a

slight dip in total B-cells four weeks after the last immunization,

both the size of the total and IgG+ circulating B-cell compartment,

and the proportions of the different MBC subsets remained

constant over time in the 53 donors from which multiple samples

were available (Table S1 and Table S2), highlighting that the

interventions the volunteers underwent in the clinical trials had no

biasing effect on the samples analyzed.

Recovery of total seeded PBMC after 5 days of culture in the

presence of mitogens was 95.45% (median, IQR 82.9–112.1%).

Consistent with 90.4% (median; IQR 87.5–92.1%) of B-cells

proliferating at day 5 (based on Ki67 staining, Figure S3),

mitogen-stimulation successfully increased the proportion of total

B-cells (Figure 1C, p,0.0001) and IgG+ B-cells within recovered

PBMCs in all cultures (Figure 1D, p,0.0001).

While the absolute number of both total and IgG+ B-cells prior

to culture correlated with their number after culture, this

relationship was stronger for total B-cells (Spearman r = 0.87,

p,0.0001; Figure 2A), than for IgG+ B-cells (r = 0.67, p,0.0001;

Figure 2B). For total B-cells, the median fold increase in absolute

numbers over 5 days of culture was 6.04 (IQR 5.0–7.74; p,

0.001), and this increase in total B-cell numbers during mitogen

culture was not normally distributed (D’Agostino and Pearson

omnibus normality test; skewness 1.06, kurtosis 2.04). Since all

mitogen cultures were performed under identical conditions, the

most likely confounding factor was the variation in the starting

proportion of total B-cells (median 5.97%, range 1.1–18.3%).

Indeed, we found that expansion of B-cells during mitogen culture

was variable and dependent of B-cell proportions before stimula-

tion with an inverse and non-linear (exponential decay) relation-

ship between the ex vivo proportion and the fold increase in both

their percentage (r = 20.69, p,0.0001, data not shown) and

absolute number (r = 20.38, p = 0.023; Figure 2C) during

culture. The largest expansion was found in cultures with the

lowest starting proportions of total B-cells.

We next addressed whether mitogen culture affected the

composition of the B-cell compartment. Overall, proportions of

IgG+ cells within the B-cell pool only increased slightly (pre- versus

post-culture: median with IQR 7.68% (5.7–11.5%) and 10.3%

(7.7–12.8%), respectively). However, as for B-cells within total

PBMCs, we also found that the ex vivo percentage of IgG+ cells

strongly influenced their expansion within the B-cell pool, with a

strong inverse and skewed correlation (Figure 2D, r = 20.65, p,

0.0001) between their starting proportions and fold increase

during culture (median fold change post-culture/ex vivo 1.22, IQR

0.88–1.6; skewness 7.1; kurtosis 58.1). These effects of pre-culture

size and composition of the B-cell pool on the efficiency of

mitogen-driven expansion also affected the increase in IgG+ B-

cells, with a strong inverse correlation between starting propor-

tions and the increase in their percentage (r = 20.76, p,0.0001,

Expansion of B-Cells during Mitogen-Stimulation for MBC ELISpot Assay
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data not shown) or absolute numbers (r = 20.70, p,0.0001;

Figure 2E): This was particularly evident in cultures with a low

proportion of starting IgG+ B-cells (,0.5% of PBMCs; 155/269),

where expansion was higher (median fold increase 9.3), more

variable (IQR 6.7–13.4) and skewed (skewness 5.6, kurtosis 34.7)

than in cultures with higher pre-culture proportions of IgG+ B-

cells ($0.5% of PBMC; 114/269; median fold increase 5.3; IQR

4.4–6.7; skewness 2.2, kurtosis 7.8). Finally, expansion of IgG+ B-

cells was higher than that of IgG2 B-cells (Figure 2E, F; median

fold increase 7.16 vs 5.86; p,0,0001), and expansion of IgG+ B-

cells more strongly influenced by their starting proportion

(skewness 6.9, kurtosis 55.9; Spearman r = 20.70) than IgG2 B-

cells (skewness 0.99, kurtosis 1.7; Spearman r = 20.29). Taken

together, differences in both size and composition of the ex vivo B-

cell compartment do directly influence the outcome of mitogen-

stimulation cultures.

When comparing the number of IgG+ B-cells determined by

flow cytometry to the number of IgG+ ACSs detected by ELISpot,

both per million PBMCs post-culture, we found that the number

of IgG+ B-cells, although in a similar range, was slightly but

significantly higher than that of IgG+ ASCs (Figure 3A;

p = 0.003). This suggests that the majority of IgG+ B-cells

expanded during mitogen culture also differentiate into ASCs.

There was, however, only a relatively weak correlation between

the proportion of IgG+ B-cells and IgG+ ASCs after mitogen

culture (Spearman r = 0.48, p,0.0001; Figure 3B), showing that

for a large number of cultures, staining of post-culture PBMCs for

surface IgG will overestimate the potential of these cells to secrete

IgG, as detected by ELISpot. When IgG+ ASC numbers (per

million PBMCs) were compared instead to the ex vivo proportion

of IgG+ cells within PBMCs prior to culture, this correlation

improved (r = 0.55, p,0.0001; Figure 3C), showing that IgG+
ASCs detected by MBC ELISpot are overall a good estimate of ex
vivo MBC frequencies. Moreover, when taking out variations in

the size of the B-cell pool by analyzing ex vivo IgG+ proportions

within the B-cell compartment, the correlation with IgG+ ASC

numbers post-mitogen culture improved further (r = 0.65, p,

0.0001; Figure 3D). This correlation was the same for IgG+

Table 1. Antibodies used for ex vivo flow cytometry analysis.

Purpose Target antigen Fluorochrome Clone Supplier

Viability fixable viability eFluor 450 n/a eBioscience

Dump channela CD3 FITC OKT3 Biolegend

CD56 FITC HCD56 Biolegend

CD14 FITC HCD14 Biolegend

B-cell lineage CD19 APC-eF780 HIB19 eBioscience

B-cell subset CD10 ECD ALB1 BeckmanCoulter

CD38 PerCp HIT2 Biolegend

CD27 PC7 IA4CD27 BeckmanCoulter

CD21 APC B-ly4 BD Biosciences

IgD biotin IA6-2 BD Biosciences

Streptavidin Pacific Orange n/a Invitrogen

BCR isotype IgG PE IS11-3B2.2.3 Miltenyi Biotech

aDump channel comprised of lineage markers to gate out non-relevant PBMC subsets.
n/a = not applicable.
BCR = B-cell receptor.
doi:10.1371/journal.pone.0102885.t001

Table 2. Antibodies used for post-culture flow cytometry analysis.

Purpose Target antigen Fluorochrome Clone Supplier

Viability lived/dead stain aqua n/a Invitrogen

Dump channela CD3 FITC OKT3 Biolegend

CD56 FITC HCD56 Biolegend

CD14 FITC HCD14 Biolegend

B-cell lineage CD19 APC-eF780 HIB19 eBioscience

CD20 Pacific Blue 2H7 Biolegend

B-cell activation CD38 PerCp HIT2 Biolegend

BCR isotype IgG PE IS11-3B2.2.3 Miltenyi Biotech

Proliferation Ki67 Alexa Fluor 647 B56 BD Biosciences

aDump channel comprised of lineage markers to gate out non-relevant PBMC subsets.
n/a = not applicable.
BCR = B-cell receptor.
doi:10.1371/journal.pone.0102885.t002
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Figure 1. Expansion of total and IgG+ B-cells following mitogen-stimulation. Panel (A) schematically illustrates the cellular composition of
PBMCs directly ex vivo and after mitogen culture. The grey circle represents total PBMCs, the blue circle all CD19+ B-cells and the orange triangle IgG+
B-cells. (B) The composition of the IgG+ B-cell compartment ex vivo was analyzed by flow cytometry and is depicted as median proportions of
individual B-cell subsets within total CD19+ B-cells for baseline samples of 62 donors. The individual B-cell subsets were subdivided based on IgD,
CD38, CD10, CD21 and CD27 expression and include five memory B-cell subsets: classical MBCs (cMBCs, red), CD272 MBCs (yellow), activated MBCs
(actMBC, black), atypical MBCs (atypMBC, green) and non-switched MBCs (nsMBC, white). Depicted in shades of grey are plasma blasts (PB), activated
naı̈ve B-cells (actN), classical naı̈ve B-cells (cN) and double-negative naı̈ve B-cells (dnN). Panels C–D show ex vivo and post-culture proportions of total
CD19+ B-cells (C, blue dots) and IgG+CD19+ B-cells (D, orange dots) within viable PBMCs. Black lines indicate the median. Dots show all 269 cultures.
doi:10.1371/journal.pone.0102885.g001

Table 3. Definition of B-cell subsets ex vivo.

B-cell subset Abbreviation IgD CD38 CD10 CD27 CD21

Classical MBCs cMBC 2 low 2 + +

CD272 MBCs CD272 MBC 2 low 2 2 +

Activated MBCs actMBC 2 low 2 + 2

Atypical MBCs atypMBC 2 low 2 2 2

Non-switched MBCs nsMBC + low 2 + +

Classical naı̈ve B-cells cN + low 2 2 +

Activate naı̈ve B-cells actN + low 2 + 2

Double-negative naı̈ve B-cells dnN + low 2 2 2

Transitional B-cells TBC + hi + 2 n/a

Plasma blasts PB 2 hi 2 + n/a

doi:10.1371/journal.pone.0102885.t003
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Figure 2. Size and composition of the B-cell compartment ex vivo influences B-cell expansion during culture. Flow cytometry analysis
was performed to determine proportions and subsequently calculate absolute numbers of (A) total CD19+ B-cells (blue dots) and (B) IgG+CD19+ B-
cells (orange dots) ex vivo and post-culture. Ex vivo proportions of (C) total CD19+ B-cells (blue dots) within viable PBMCs were plotted against the
fold change in their absolute numbers, and (D) IgG+ B-cells (orange dots) within total CD19+ B-cells were plotted against the fold change in their
proportion within the B-cell compartment. (E) Proportions of IgG+CD19+ B-cells (orange dots) and (F) IgG2CD19+ B-cells (green dots) within viable
PBMCs were plotted against the fold increase in their respective absolute numbers post-culture compared to ex vivo. Colored dots show cultures
from all 269 stimulated samples (3–7 time points per volunteer), while black dots show the cultures from only the 62 baseline samples (1 for each
individual volunteer). The black dashed line indicates the median fold change (with value), grey dotted lines represent the upper and lower limit of
the interquartile range. Spearman r and p values are shown for analysis of baseline samples (black dots) from the 62 donors assessed.
doi:10.1371/journal.pone.0102885.g002
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cMBCs, which constitute the largest proportion of the IgG+ B-cell

pool (r = 0.65, p,0.0001). IgG+ ASC numbers post-culture

further correlated with the ex vivo proportions of IgG+ CD272

MBCs (r = 0.51, p,0.0001), the second largest population within

IgG+ MBCs, but not for IgG+ atypMBCs (r = 0.24, p = 0.06). Of

note, across all baseline samples of 62 volunteers, the ratio of

atypMBCs/cMBCs correlated inversely with the proportion of

IgG+ cMBCs ex vivo (r = 20.54, p,0.0001), but correlated

positively with the expansion of IgG+ B-cell numbers during

mitogen culture (r = 0.49, p,0.0001, data not shown).

Discussion

The MBC ELISpot assay is the most widely used method to

quantify MBC responses in addition to plasma antibodies as an

independent readout of humoral immune memory [6–12,18]. A

basic assumption when using the MBC ELISpot assay to estimate

the frequency of antigen-specific MBCs is that in the preceding

mitogen-culture, all MBCs are expanded and differentiate into

ASCs in a constant manner or at a fixed ratio, although this has

not been examined to date [13]. We show here that the expansion

of total and IgG+ B-cells during culture is not constant, but instead

influenced by both the size and composition of the ex vivo B-cell

compartment, which vary widely between individuals.

At group level, the number of IgG+ ASCs detected by ELISpot

after mitogen stimulation indeed reflects the proportion of IgG+
MBCs ex vivo, in particular for the two major populations of IgG+
MBCs, i.e. cMBCs and CD272 MBCs. This good correlation

between total input (ex vivo IgG+ MBC) and output (IgG+ ASC) is

in line with a previous small-scale study on TTX-specific MBCs

[4] and highlights the general robustness of this assay to compare

antigen-specific MBC frequencies on group level (e.g. between

different cohorts). This relationship was found across cultures from

62 volunteers with a wide range of ex vivo IgG+ MBC frequencies.

We also observed, however, that the expansion of both B-cells and

IgG+ B-cells during culture showed an inverse correlation with the

size and composition of the pre-culture B-cell compartment. This

was particularly evident for IgG+ MBCs. As a result, when total or

antigen-specific MBCs are expressed as a proportion of total post-

mitogen culture PBMCs to estimate their frequency, this

introduced bias into the readout, rather than allowing to take

into account inter-individual variations in total ex vivo MBC

frequencies [13].

The reason underlying this inverse relation between the ex vivo
proportion of total or IgG+ B-cells with their respective increase in

absolute numbers during culture remains unknown. One possibil-

ity is that the T-cell compartment is relatively larger in cultures

with lower B-cell proportions, and thus more T-cells available for

cytokine production upon PWM-stimulation, providing more

favorable expansion conditions than in cultures with higher B-

cell and lower T-cell numbers. This factor would influence total B-

cell expansion whenever mitogen-stimulation is performed in bulk

PBMC cultures. It does not, however, explain the skewing for

IgG+ B-cells within the B-cell compartment, since cultures with

the lowest total B-cell proportion where not those with the lowest

proportion of IgG+ B-cells within the B-cell compartment and vise

versa. Alternatively, assuming the same expansion efficiency in all

samples, IgG+ B cells in samples with a high starting proportion

might die in culture due to crowding, limited nutrients or toxin

build up, whereas IgG+ B cells in samples with a low starting

proportion can continue to proliferate and differentiate until the

end of the 5 day culture. While this again may be true for the B-

cell compartment as a whole, we consider it unlikely to be the sole

reasons for the strong inverse relationship between starting-

proportion and expansion of IgG+ B-cells: Firstly, the strong

skewing effect was also observed within the B-cell compartment for

IgG+ B-cells. Secondly, albeit 10 times more numerous, starting

proportion of IgG2 B-cells (containing mostly naı̈ve B-cells and a

few IgA+ or IgM+ MBCs) had only a very weak influence on their

expansion in culture. This suggests that other reasons underlie

these differences in expansion efficiency of IgG+ B-cells.

The skewing effect of B-cell frequency and composition

particularly affected cultures with a low proportion of ex vivo
IgG+ MBCs, which were expanded with a greater magnitude and

variation than those in culture with high starting proportions. One

potential explanation for this observation is that expansion of

IgG+ MBCs might also be enhanced by direct cell-cell contact of

IgG+ B-cells with PWM-activated T-cells (for instance via CD40-

CD40L [19]): when the IgG+ B-cell population is smaller to begin

with, the likelihood for direct cell-cell contact may be lower, and

interactions thus more random, than when IgG+ B-cells are more

frequent. In line with a greater variation in expansion, when ex
vivo IgG+ MBC proportions were plotted against post-culture

IgG+ ASCs, the spread was wider and the correlation coefficient

weaker for cultures with lower starting proportions of IgG+ MBCs

(less than 0.5% of starting PBMCs). Thus, special care should be

taken when comparing absolute IgG+ MBC numbers between

subjects particularly with low starting frequencies of IgG+ MBCs,

such as young children [11,14]. In such a case, expressing antigen-

specific MBCs as a proportion of post-culture PBMCs gives even

less insight into their actual ex vivo frequencies than when

comparing across samples with a wide range of starting IgG+
MBC proportions. Expressing antigen-specific IgG+ MBCs as a

proportion of IgG+ ASCs is therefore necessary to correct for this

great variation in expansion. Prior knowledge of the starting

concentration of IgG+ MBCs (e.g. by whole blood staining in a

small volume prior to cryopreservation) might provide valuable

additional information to accurately estimate differences in

antigen-specific IgG+ MBC precursor frequencies: This informa-

tion may be used to determine whether an actual difference in

IgG+ MBC frequencies or MBC subsets exists between two

groups, or whether they are comparable and differences in

antigen-specific cells per total ASCs thus also reflect a different

magnitude of the antigen-specific MBC response.

Another basic assumption of the MBC ELISpot assay is that all

antigen-specific cell subsets have an equal ability to differentiate

into ASCs. In our hands the number of post-culture surface IgG+
B-cells, however, did not fully predict the number of IgG+ ASCs.

One potential reason could be the down-regulation of surface IgG

expression on differentiating ASCs mitogen culture. This would

lead to an underestimation of IgG+ ASCs, which could be rectified

by performing intracellular IgG staining post culture. However,

after mitogen culture the number of surface IgG+ B-cells slightly

but significantly exceeds, and thus over- rather under-estimates the

number of IgG+ ASCs. While we can further not formally show

that all expanded IgG+ B-cells are indeed plasma blasts (since

staining for CD27 was not performed in addition to CD38), we

find that the number of post-culture IgG+ cells and IgG+ ASCs

correlates (Spearman r = 0.48, p,0.0001), indicating that at least a

major proportion of those cell populations does overlap. More-

over, these data indicate that not all IgG+ B-cells (ex vivo and post

culture) actually acquire ASC function, as previously shown at the

single cell level for isotype-switched MBCs after stimulation with

CpG and cytokines [20,21]. A marker identifying MBC subsets

with the capacity to become ASCs is unfortunately still lacking

[20], and this may further differ depending on the combination of

stimuli chosen: Since the description of the MBC ELISpot by

Crotty et al. [5], many different polyclonal stimulation protocols

Expansion of B-Cells during Mitogen-Stimulation for MBC ELISpot Assay

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e102885



Expansion of B-Cells during Mitogen-Stimulation for MBC ELISpot Assay

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e102885



relying on the activation of Toll-like receptors as well as cytokine

receptor signaling have been tested to effectively differentiate

MBCs into ASCs. Here we choose a stimulation cocktail

containing PWM, SAC, CpG and IL-10, which was previously

shown to be the most efficient out of 12 different stimulation

protocols tested [6]. Based on the data we provide, future studies

using other effective stimulation protocols (e.g. IL-2 and R848

[9,10], or IL-15 and CpG [7]) or purified B-cells [18] should

determine whether the size and composition of the ex vivo B-cell

pool influences the expansion of total and IgG+ B cells during

culture.

Most IgG+ B-cells ex vivo are cMBCs, and their proportion

correlated as strongly with IgG+ ASCs detected by ELISpot as the

proportion of total ex vivo IgG+ B-cells. Curiously, low

proportions of IgG+ cMBCs within the B-cell compartment ex
vivo (and thus low numbers of IgG+ ASCs after mitogen culture)

were predominantly found in volunteers with high ex vivo ratios of

atypMBC to cMBC. This was particularly evident for one

volunteer, who at all three time points, at which PBMCs were

sampled, showed the highest number of IgG+ B-cells after mitogen

stimulation but only very low IgG+ ASC numbers, suggesting that

only a small fraction of the efficiently expanded IgG+ B-cells

actually secreted IgG: this volunteer had a very low proportion of

cMBCs and CD272 MBCs within IgG+ B-cells, but a particularly

large proportion of atypMBCs prior to mitogen culture. This

observation would be consistent with previous studies that

reported atypMBCs from HIV-infected individuals to be less

efficient in differentiating into IgG+ ASCs in vitro, and similar

data are available for a very limited number of atypMBCs from

malaria-exposed subjects [12,22]. On the other hand, there is

evidence that atypMBCs from malaria-exposed individuals may

contribute to antibody production, since as for cMBCs, their BCR

sequences can be matched to circulating plasma antibodies [23].

Additionally, bulk-sorted atypMBCs in this study contained both

the membrane-bound and secreted form of IgG, however, a

contamination of this population with non-atypMBC antibody-

secreting cells cannot be fully excluded, since CD38hi cells were

not depleted [23]. It therefore remains to be conclusively

established whether atypMBCs indeed actively secrete antibodies

in vivo, or simply differentiate into ASCs like cMBCs (just

potentially less efficiently) and then contribute to IgG-secretion

upon antigenic stimulation. The extent to which atypMBCs and

cMBCs in both malaria-exposed and healthy, malaria-naı̈ve

individuals vary in their ability to differentiate into ASCs to

different stimuli also remains to be established. Should this indeed

be the case, then data not only on the size, but also the detailed

composition of the ex vivo IgG+ MBC pool might be helpful for

data interpretation, especially when comparing populations with a

broad range of proportions of atypMBC, such as individuals of

different age groups in malaria-endemic areas or in different

transmission settings [11,22].

Antigen-specific ASCs are often reported per million post-

culture PBMCs to get insights into the frequency of circulating

antigen-specific MBCs. This readout, however, does not correct

for differential expansion and thus skewing of the MBC

compartment during mitogen culture. Therefore only qualitative

(higher or lower ex vivo frequencies of antigen-specific cells) but

not quantitative differences between groups (which one aims to

examine when using this readout) are preserved. This is specifically

relevant for comparing antigen-specific MBCs between groups

that markedly differ in size and composition of the B-cell

compartment, such as between different age groups [11,14]. A

correction factor to accurately quantify antigen-specific MBC

responses (taking into account both the size of the B-cell

compartment and the proportion of IgG+ MBCs ex vivo), would

simplify analysis, but its determination is complicated by two main

aspects: (i) different IgG+ MBC subsets may have varying abilities

to differentiate into ASCs and (ii) other stimulation protocols may

introduce different degrees of skewing during culture, for instance

since receptor expression varies between MBC subsets [24]. In the

absence of such a correction factor, we conclude that it is not

possible to accurately estimate MBC frequencies by MBC

ELISpot on an individual level. For this question, limiting dilution

assay or ex vivo staining with fluorescently-labeled antigens [3,4]

or B-cell tetramers [2] remain the methods of choice.

An immediate practical implication of our finding is thus the

way that results from bulk-culture MBC ELISpot should be

reported: Specifically, we recommend not to express antigen-

specific MBCs as a proportion of post-culture PBMCs in an

attempt to compare their frequencies - particularly between clearly

different cohorts, since this actually introduces bias. Instead, to

allow interpretation of MBC ELISpot data in a meaningful

manner, we propose to always include total IgG+ ASCs as a

reference point to correct for variations in MBC precursor

frequencies and hence expansion during mitogen culture between

donors. Between relatively homogenous groups (in regards to their

B-cell compartment), expressing antigen-specific cells per total

ASCs is currently the best measure to correct for mitogen-culture

effects. The same is true for longitudinal studies where the size and

composition of the (memory) B-cell compartment does not alter

over time (as in the samples analyzed herein). In settings, however,

where groups differ in the size and makeup of their (IgG+
memory) B-cell compartment (or these parameters alter over time

in longitudinal studies) due to age or pathogen exposure, we

propose that this information about the B-cell compartment

should be additionally provided as a separate measure. This will

also inform the reader appropriately whether it is simply the size of

the MBC compartment that differs between (age) groups or alters

over time, or the proportion of antigen-specific cells within the

MBC compartment, or both – information that is lost when only

providing the mitogen-culture biased readout of antigen-specific

MBCs per post-culture PBMCs.

Conclusions

The number of total IgG+ ASCs detected by ELISpot after

mitogen stimulation correlates with the proportion of IgG+ MBCs

ex vivo, highlighting the general robustness of this assay to

compare MBC responses between different cohorts, i.e. at group

level. The expansion of total and IgG+ B-cells during mitogen-

stimulation, however, was not identical in all cultures, but

influenced by both the size and composition of the ex vivo B-cell

compartment, which vary widely between individuals. The

Figure 3. Relationship between post-culture IgG+ ASC numbers and ex vivo or post-culture IgG+ B-cell proportions. After 5 days of
mitogen culture, proportions of IgG+ B-cells were analyzed by flow cytometry (orange dots) and IgG+ ASCs were quantified by ELISpot (red dots) and
expressed as per million post-culture PBMCs (A). Black lines indicate the median. Post-culture (B) and ex vivo proportions (C) of IgG+ cells within
PBMCs, and ex vivo proportions of IgG+ cells within CD19+ B-cells (D) were plotted against the number of IgG+ ASCs per million PBMCs. Light red
dots show cultures from all 269 stimulated samples (3–7 time points per volunteer), while black dots show the cultures from only the 62 baseline
samples (1 for each individual volunteer).
doi:10.1371/journal.pone.0102885.g003
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uncorrected readout of antigen-specific MBCs per million post-

culture PBMCs therefore only preserves the quality, but not the

quantity of differences in the ex vivo MBC response between

samples and thus groups or time points. Expressing antigen-

specific cells per IgG+ ASCs is currently the best measure to

correct for differences in the ex vivo B-cell compartment and

resulting mitogen-culture effects. To be able to evaluate not only

changes within the MBC compartment, but their actual magni-

tude within the circulation, additional information on the size and

composition of the ex vivo B-cell compartment should be supplied

as a separate measure, particularly under circumstances when the

proportions IgG+ MBC are highly variable or proportions of B-

cell subsets are altered by environmental factors either between

groups or over time.

Supporting Information

Figure S1 Gating strategy of total and IgG+ B-cells ex
vivo. (A) CD19+ B-cell were identified following exclusion of

debris, doublets, dead cells and CD3/CD56/CD14-positive cells.

(B) shows gating for IgG+ B-cells. This IgG+ gate was later applied

to individual B-cell subsets, which were gates as follows: (C)

CD19+ B-cells were first subdivided based on IgD and CD38

expression. (D) CD10+ cells were excluded from all B-cell

populations except IgD+CD38hi B-cells, which were specifically

subgated based on CD10 expression. (E) CD38hi B-cells were

divided into CD102IgD2CD38hiCD27+ plasma blasts (PB, i)

and CD10+ IgD+CD38hiCD272 transitional B-cells (TBC, ii).

CD38lowCD102 B-cells were subdivided into four pairs of

switched/memory (IgD2) and non-switched/naı̈ve (IgD+) B-cell

populations: CD212CD27+ activated MBCs (actMBC, iii) and

activated naı̈ve B-cells (actN, iv); CD21+CD27+ classical MBCs

(cMBC, v) and non-switched MBCs (nsMBC, vi); CD21+CD272

MBC (CD272 MBC, vii) and classical naı̈ve B-cells (cN, viii); and

CD212CD272 atypical MBCs (atypMBC, ix) and double-

negative naı̈ve B-cells (dnN, x). (F) shows the proportions of the

ten B-cell subsets of the total ex vivo B-cell pool and (G) the

proportion of IgG+ cells within each individual B-cell subset for

the baseline samples of all 62 volunteers.

(TIF)

Figure S2 Gating strategy of total and IgG+ B-cells after
5 day mitogen culture. Following (A) exclusion of debris,

doublets and dead cells, B-cells were identified by (B) firstly gating

on CD19+CD20+ cells and subsequently gating out CD3/CD56/

CD14-positive cells (Boolean gating). (C) shows gating for IgG+ B-

cells for two donors.

(TIF)

Figure S3 CD38 and Ki67 expression on B-cells after 5
day mitogen culture. (A) Ki67 and CD38 gates were based on

negative populations in total post-culture PBMCs (after exclusion

of debris, doublets and dead cells). (B) shows Ki67 and CD38

staining on post-culture B-cells. (C) Grey dots show the percentage

of Ki67 and CD38 positive cells within post-culture B-cells cultures

in all 269 stimulated samples, black lines indicate the median and

error bars the interquartile range.

(TIF)

Table S1 B-cells, IgG+ B-cells and MBC subsets in Study A ex

vivo samples over time. B-cell proportions and MBC subsets in

PBMC samples from Study A volunteers (n = 14 CPS-immunized

volunteers and n = 10 controls) were analyzed by flow cytometry.

CD19+ B-cell were identified following exclusion of debris,

doublets, dead cells and CD3/CD56/CD14-positive. Five MBC

populations were identified in the CD38lowCD102 B-cells

compartment as followed: IgD2CD21+CD27+ classical MBCs

(cMBC), IgD2CD21+CD272 MBC (CD272 MBC), IgD2

CD212CD27+ activated MBCs (actMBC), IgD2CD212

CD272 atypical MBCs (atypMBC) and IgD+CD21+CD27+
non-switched MBCs (nsMBC).

(DOC)

Table S2 B-cells, IgG+ B-cells and MBC subsets in Study B ex

vivo samples over time. B-cell proportions and MBC subsets in

PBMC samples from Study B volunteers (n = 24 CPS-immunized

volunteers and n = 5 controls) were analyzed by flow cytometry.

CD19+ B-cell were identified following exclusion of debris,

doublets, dead cells and CD3/CD56/CD14-positive. Five MBC

populations were identified in the CD38lowCD102 B-cells

compartment as followed: IgD2CD21+CD27+ classical MBCs

(cMBC), IgD2CD21+CD272 MBC (CD272 MBC), IgD2

CD212CD27+ activated MBCs (actMBC), IgD2CD212

CD272 atypical MBCs (atypMBC) and IgD+CD21+CD27+
non-switched MBCs (nsMBC).

(DOC)
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