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Noise correlations are a common feature of neural responses and have been observed

in many cortical areas across different species. These correlations can influence

information processing by enhancing or diminishing the quality of the neural code, but

the origin of these correlations is still a matter of controversy. In this computational

study we explore the hypothesis that noise correlations are the result of local recurrent

excitatory and inhibitory connections. We simulated two-dimensional networks of

adaptive spiking neurons with local connection patterns following Gaussian kernels.

Noise correlations decay with distance between neurons but are only observed if the

range of excitatory connections is smaller than the range of inhibitory connections

(“Mexican hat” connectivity) and if the connection strengths are sufficiently strong. These

correlations arise from a moving blob-like structure of evoked activity, which is absent if

inhibitory interactions have a smaller range (“inverse Mexican hat” connectivity). Spatially

structured external inputs fixate these blobs to certain locations and thus effectively

reduce noise correlations. We further investigated the influence of these network

configurations on stimulus encoding. On the one hand, the observed correlations

diminish information about a stimulus encoded by a network. On the other hand,

correlated activity allows for more precise encoding of stimulus information if the decoder

has only access to a limited amount of neurons.

Keywords: noise correlations, neural coding, Mexican hat connectivity, spiking neural networks, pattern

formation, primary visual cortex (V1), simulation models, stimulus encoding

1. INTRODUCTION

One of the fundamental problems in neuroscience is deciphering the neural code and
understanding how the brain encodes sensory stimuli. During the past decades the analysis
of neural coding has shifted from single cells to investigating population codes due to the
development of multi-electrode recordings as well as improved theoretical models. An important
aspect regarding population coding is whether neural responses are correlated, especially when
driven by the same stimulus. In this case one speaks of noise correlations or shared variability
(Cohen and Kohn, 2011; Hansen et al., 2012). Noise correlations have, for example, been widely
observed in the visual cortex (Kohn and Smith, 2005; Martin and Schröder, 2013), where the
magnitude of pairwise noise correlations decays with the distance between cell pairs (Smith and
Kohn, 2008; Solomon et al., 2014). The underlying mechanisms and the role of noise correlations
in information processing are, however, not well understood.
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Noise correlations have often been explained by the large
amount of shared inputs between neuron pairs (Gawne et al.,
1996; Shadlen and Newsome, 1998) or, more recently, by cellular
non-linearities (Doiron et al., 2016). Hansen et al. (2012) on the
other hand hypothesized recurrent connectivity as one of the
potential sources. This is a reasonable assumption considering
that the vast majority of connections does not come from the
sensory periphery or higher cortical areas, but originates within
the visual cortex and projects locally (Markov et al., 2011).

Although work by Renart et al. (2010) showed that a balance
between excitation and inhibition among recurrent connectivity
can lead to the opposite effect and cause decorrelation of activity,
more recent studies indicate that this phenomenon depends on
the spatial structure of recurrent connections (Rosenbaum and
Doiron, 2014). Rosenbaum and Doiron (2014) demonstrated
analytically using a continuous rate model that homogeneous,
balanced activity cannot be maintained in networks with
Gaussian Mexican hat connectivity profiles, where the spatial
reach of recurrent excitatory connections is on average shorter
than that of recurrent inhibitory connections. Moreover, Hansel
and Sompolinsky (1998) have shown that such connections can
lead to the emergence of spatial patterns of activity in form of
bumps (also see Roxin et al., 2006, for a more recent summary of
the findings). This type of activity is termedmarginal phase. They
further demonstrated that under certain conditions the bumps
move across the spatial extent of the network.

In this study we investigate the hypothesis that recurrent
connections in the form of a Mexican hat configuration can
lead to noise correlations by destabilizing homogeneous,
balanced activity, and enabling temporally dynamic,
spatially inhomogeneous patterns of activity. Motivated by
aforementioned theoretical results we first study the dynamics
of two-dimensional networks of spiking model neurons for
different lateral interaction kernels and spatially unstructured
homogeneous input. We find that a Mexican hat configuration
leads to the emergence of dynamic stripe or bump patterns
that in turn yield noise correlations. The dynamic spatial
heterogeneities produce joint modulations of firing rates
on the individual neuron level. Accordingly, we observed
oscillatory spatial modulations of positive and negative noise
correlations.

We then study the interaction of the neural dynamics with
structured input, which is derived from an orientation map
model of primary visual cortex. We find interactions among
the input dynamics and the marginal phase. In particular, the
oscillatory pattern of noise correlations with distance vanishes
and we observe a linear decay instead. In addition, we find a
suppression of noise correlations with input strengths. Finally
we ask, what effects the observed noise correlations have on the
quality of the neural code given structured inputs. We investigate
whether Mexican hat connectivity with noise correlations would
be a better or worse choice than inverse Mexican hat connectivity
with decorrelated firing patterns. We find that correlations are
detrimental to encoding quality in terms of Fisher information.
However, in case readout neurons are sub-sampled, Mexican hat
networks show a better encoding performance despite the noise
correlations.

2. MATERIALS AND METHODS

2.1. Model Description
Ourmodel is based on a primary visual cortex network developed
by Mariño et al. (2005) and Stimberg et al. (2009). Here
we provide a brief overview only. For details including the
equations describing the underlying dynamics please refer to the
Supplementary Material.

The model consisted of N = NE + NI excitatory and
inhibitory neurons of the adaptive exponential integrate and fire
(AEIF) type (Brette and Gerstner, 2005). We assumed a ratio
between inhibitory to excitatory neurons of 1–4 (Beaulieu et al.,
1992). The AEIF model is frequently applied in computational
neuroscience due to its efficiency and good fits to experimental
data (Brette and Gerstner, 2005; Jolivet et al., 2008). It can exhibit
a very rich set of dynamics including spike frequency adaptation
(SFA) (Naud et al., 2008; Touboul and Brette, 2008) which is
an essential ingredient for non-stationarity of bump attractors
(cf. Hansel and Sompolinsky, 1998; Roxin et al., 2006; and
Supplementary Material). We chose moderate sub-threshold and
spike-triggered adaptation for excitatory neurons (aE = 2.0 nS,
bE = 50 pA). To account for the fact that adaptation is much
weaker in inhibitory neurons (Nowak et al., 2003), for inhibitory
cells adaptation parameters were set to one tenth of the excitatory
values (aI = 0.2 nS, bI = 5 pA).

2.1.1. Topology and Coupling
We investigated two-dimensional network models where
neurons were placed on a grid. Additional results from one-
dimensional networks are presented in the Supplementary
Material. Excitatory neurons were regularly and evenly spaced
on the grid, while the positions of the inhibitory neurons were
chosen randomly from a uniform distribution defined over the
network space. Distances in our network are given in pixels
(px), with 1 px corresponding to 15 µm. The conversion factor
is calculated from the average pinwheel distance in cat primary
visual cortex (Stimberg et al., 2009). Thus, a 100 px× 100 px
network with 4 orientation pinwheels corresponds to a
1.5mm× 1.5mm piece of primary visual cortex. Such a
two-dimensional network topology is depicted in Figure 1.

Each neuron received KE = 400 excitatory and KI = 200
inhibitory recurrent connections. These synaptic connections
were drawn from Gaussian probability distributions defined over
the Euclidean distances dij between two model neurons i and j
(periodic boundary conditions):

p(i, j) =















0 for i = j (no

self-connections)

1/
(√

2πσY
)D

exp
(

−d2ij/2σ
2
Y

)

otherwise

, (1)

where Y ∈ {E, I} denotes the population type of pre-synaptic
neuron j,D is the dimensionality of the model space (hereD = 2,
for D = 1 see Supplementary Material), and σY is the spread of
the connections of the corresponding type.

We use the terms configuration or profile to refer to the
connection topology of a network. Important parameters that
we investigated are σE and σI , the connectivity spread of
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FIGURE 1 | 2D model network architecture. A layer of excitatory neurons (blue dots) and inhibitory neurons (green triangles) receives afferent as well as recurrent

lateral input. Excitatory neurons are placed on a regular grid and inhibitory neurons are assigned to randomly chosen grid positions. Examples of lateral connections

are depicted by the black lines. These connections are sampled from Gaussian probability kernels depending on cell distance, as depicted at the top. In the case of

heterogeneous input a preferred orientation is assigned to each model neuron according to its position in the artificial orientation map with 4 pinwheels (bottom

colored sheet). Afferent stimulation is realized as independent Poisson spike trains. A circular Gaussian tuning curve with a width of 27.5◦ determines the afferent rate

for each neuron as a function of the presented stimulus orientation. Input tuning curves for two different cells are shown at the bottom. In case of homogeneous input,

each neuron is driven by afferent Poisson stimulation with the same rate.

excitatory and inhibitory connections, respectively. We varied
both parameters between 5 and 25 pixels, corresponding to 75
and 375 µm in visual cortex scale. These values span a biologically

plausible range. For instance, Hellwig (2000) measured a
Gaussian decay of connection probability with spreads between
150 and 350 µm for pyramidal neurons in the rat primary
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visual cortex. Similarly, Mariño et al. (2005) reported a Gaussian
connection spread of about 125 µm for local connections in
cat V1.

Throughout this study network topologies with the property
of Gaussian kernel widths σE < σI are termed Mexican hat

networks. Likewise, topologies with σE > σI are termed inverse

Mexican hat. The setting σE = σI is called a balanced hat. This
naming scheme for topologies featuring twoGaussian kernels can
be found throughout the literature, for example in work by Kang
et al. (2003); Blumenfeld et al. (2006); Bressloff (2012).

We considered one type of inhibitory and two types
of excitatory synapses. Inhibitory synaptic interactions were
modeled using instantaneously rising, exponentially decaying
functions with a time constant that describes GABAA receptor
kinetics. Excitatory synaptic interactions were modeled using
the same functions with a time constant that describes AMPA
receptor kinetics, and, using a bi-exponential function with larger
time constants to describe NMDA receptors. We assumed a fixed
ratio between both receptor types with a fraction of 70% AMPA
receptors (Myme et al., 2003).

When we relate to the connection strengths, we use the
term operating regime. Two important parameters in this regard
are the maximum conductances ḡEE and ḡIE, which quantify
the connection strengths between excitatory to excitatory and
excitatory to inhibitory synapses. The ratio between maximum
AMPA and NMDA was fixed (ḡAMPA,EE = 0.7ḡEE and
ḡNMDA,EE = 0.3ḡEE, cf. Stimberg et al., 2009). The maximum
conductance values were varied in rather small amplitude ranges
between 0 and 1.2 nS such that the excitatory post-synaptic
potential (EPSP) at resting membrane voltage (−65mV) had
an overall small deflection with a maximum value of up to
1.5mV. The relation between connection weight and voltage
deflection amplitude is visualized in the Supplementary Material.
These values are within a biologically plausible range. For
instance, Mason et al. (1991) observed single spike-triggered
EPSPs ranging from 0.05 up to 2mV with a mean size of 0.55mV
in rat primary visual cortex. Inhibitory connection strengths were
kept fixed (ḡII = ḡEI = 5.0 nS).

Synaptic delays depended linearly on the distance between
cells in the model network. We assumed a conduction velocity
of 0.2m/s (about 13,000 px/s) in our networks. Usually values
between 0.1 and 0.5m/s are measured (Bringuier, 1999;
González-Burgos et al., 2000).

2.1.2. Network Input
Each neuron received afferent inputs modeled as KA = 100
independent Poisson spike trains targeting AMPA receptors.
Hence, inputs to each neuron were decorrelated and all observed
correlations could only arise due to recurrent interactions.

We distinguished between a homogeneous, also termed
blank stimulus, and a heterogeneous tuned input, also termed
orientation stimulus. In the homogeneous mode, input was
not tuned but every neuron received independent Poisson
spike trains with the same rate. In the heterogeneous mode
the afferent input was tuned according to the preferred
orientation of the post-synaptic neuron. The orientation
preference of each neuron is determined by its position in

the pinwheel map depicted in Figure 1. We assumed moderate
orientation tuning. The input firing rate to each cell i was
computed by:

νAff,i(s) = (νAff, max − νAff, base) exp

(

− (s− sPOi )
2

2σ 2
Aff

)

+ νAff, base,

(2)

where νAff, max is the maximum or peak firing rate, νAff, base is
the baseline firing, σAff is the tuning width, s is the orientation
of the stimulus (s ∈ [−90◦, 90◦)), and sPOi denotes the ith
neuron’s preferred orientation according to the orientation map.
Inputs only varied in spatial dimensions and were constant in
time.

Network activity was evaluated after the first second of afferent
stimulation to avoid artifacts caused by network initializations
and onset transients.

2.1.3. Implementation
The network was implemented in Python 2.7 and was
partly compiled into C-code for efficiency using the Numba
library (The Numba Development Team, 2015). The source
code is available online1. Some numerical experiments were
also conducted with smaller networks of Hodgkin-Huxley
type neurons (cf. Stimberg et al., 2009) using the BRIAN
simulator package (Goodman and Brette, 2008) (data not shown,
example run see Supplementary Video). All data and parameter
explorations were managed using the simulation toolkit pypet
(Meyer et al., 2016).

2.2. Data Post-processing
2.2.1. Noise Correlations
Noise correlations were quantified using the linear correlation
coefficient among spike counts. Spike counts r were either
assessed over repeated fixed length intervals of stimulus
presentation or by convolving an observed spike train of a single
stimulus presentation with a temporal sliding window kernel KT

(cf. Renart et al., 2010):

ri(t,T) =
∫

t′
KT(t

′ − t) Si(t
′) (3)

where KT is a sliding window of length T, and Si the spike train
of neuron i with Si(t) =

∑

k δ(tki − t). We used the standard
expression for the correlation coefficient rSC of the spike counts:

rSC =
Cov(ri, rj)

√

Var(ri) Var(rj)
(4)

where Cov(ri, rj) is the covariance of spike counts between cells i
and j and Var(ri) the individual spike count variance of one cell.

1Model available on http://www.ni.tu-berlin.de/menue/software_and_data/

visual_cortex_model, direct link to github: https://github.com/nigroup/

visualcortex.
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FIGURE 2 | Depiction of spatial autocorrelation computation. Spiking activity of 10ms windows across stimulus presentations were sampled, here depicted as

blue dots on the left. Subsequently the spatial autocorrelation of the sampled activity was computed using two dimensional convolution via the fast Fourier transform.

Finally, the spatial autocorrelation was average over all samples.

2.2.2. Spatial Activity Patterns
In order to determine the spatial scale of changing patterns
we sampled 100 windows of 10ms activity for each stimulus
presentation and counted the spikes in these intervals for each
excitatory cell. Accordingly, for each sample interval of activity
of the 2D networks, we computed a spatial grid matrix of spike
counts. The autocorrelation was calculated convolving the spike
count matrix with itself using the fast Fourier method of the scipy
package (Jones et al., 2001). Next, to compute the mean spatial
autocorrelation of a network we normalized the autocorrelations
and averaged across the sampled time windows and stimulus
presentations. This procedure is visualized in Figure 2.

2.2.3. Self-sustained Activity
If recurrent excitation becomes too strong, i.e., if the excitatory
coupling strengths surpass a threshold determined by the
strength of lateral inhibition, persistent spiking activity can be
observed even in the absence of afferent stimulation. In this case
usually spiking activity diverges and the spiking model neurons
fire close to their maximum firing rate. In order to test for self-
sustained activity, stimulation was applied for 1 s and 1 s after
stimulation was terminated2, spikes were counted within another
1 s interval. If spikes were observed the network was classified as
self-sustained, viz. the network was able to sustain spiking without
any external drive. For all analyses we only considered activity
that was not self-sustained.

2To verify this method, periods of 9 s were tested as well and the results were

similar.

2.2.4. Orientation Selectivity
In order to quantify the sharpening of network tuning we applied
a measure called Orientation Selectivity Index (OSI) (Swindale,
1998):

OSI =

√

√

√

√

(

∑

si

〈r(si)〉 cos(2si)
)2

+
(

∑

si

〈r(sK)〉 sin(2si)
)2

/
∑

si

〈r(si)〉, (5)

where 〈r(si)〉 is the average spike count of a model neuron
for a particular stimulus si. We chose twelve evenly spaced
orientations si ∈ {−90◦,−75◦,−60◦, . . . , 75◦}. 〈r(si)〉 was
averaged over 10 stimulus presentations per orientation. The
OSI is a measure of tuning sharpness that ranges from 0 to 1.
Values close to 0 correspond to weakly tuned neural responses
whereas values close to 1 correspond to well tuned activity.
We computed the average OSI then across the whole excitatory
neuron population in each network.

2.2.5. Fisher Information
The quality of a population code was quantified using an estimate
of Fisher information. The numerical information experiments
were based on repeated presentations of oriented stimuli of −1
and 1 degree. After an initial phase of 1 s, 3 s of stimulation were
used to estimate Fisher information. The number of stimulus
presentations varied between 125 and 7,000 per oriented stimulus
depending on the number of neurons we considered for readout.
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We chose at least as many stimulus presentations as the number
of readout neurons that we sampled. This avoids sets of too
few training data items of a number lower than the amount
of Fisher estimation parameters (see below). Fisher information
was estimated using an approach from Seriès et al. (2004). In
most experiments 60% of the simulation data were used to
train a locally optimal linear estimator (LOLE) to predict the
stimulus orientation from the spiking activity. In the experiments
based on 7,000 samples, however, we chose 80% of the stimulus
presentations for training. The estimator has the form:

ŝ = wT r + w0, (6)

where w is a vector of weights, r = (r1, . . . , rN)
T is a vector

containing the spike response of the read out neuron sample in
the fixed time window of 3 s, and w0 a bias weight.w and w0 were
optimized to reduce decoding error based on the given training
data. The parameters were fitted via stochastic gradient descent
using the scikit-learn Python library (Pedregosa et al., 2011).
Training was stopped in case generalization performance on the
validation set—containing 20% (10% for 7,000 presentations) of
the data—decreased for 500 consecutive epochs. After training
was completed, mean and variance of the estimates were
computed for both orientations (s1 = −1.0◦ and s2 = 1.0◦) based
on the remaining 20% (10%) of the data. Fisher information was
approximated via:

ILOLE =

(

〈ŝ2〉−〈ŝ1〉
s2−s1

)2

1
2 (Var(ŝ2)+ Var(ŝ1))

, (7)

where 〈ŝi〉 denotes expectation and Var(ŝi) is the variance
of the estimates for one particular stimulus across different
presentations. ILOLE provides a lower bound on the Fisher
information.

We further computed the information available in a data set
where all correlations have been artificially removed by shuffling
the spike counts of individual neurons observed across different
stimulus presentations (Ishuff). An example of how data is shuffled
across stimulus presentations is given in Table 1. A comparison
between ILOLE and Ishuff shows whether correlations improve
(ILOLE > Ishuff), degrade (ILOLE < Ishuff) or have no effect
(ILOLE = IShuff) on stimulus encoding quality. Additionally, we
computed the diagonal information Idiag to investigate whether
the correlations themselves carry information about the stimulus.
To estimate Idiag the decoder was trained on the shuffled data but
applied to the original one. In case Idiag is smaller than ILOLE,
correlations carry information that would be lost if the decoder
ignores the correlation structure. Note that the value of Idiag is
bounded by ILOLE from above.

Moreover, in order to test if the linear decoder is suitable
for information estimation, we used a non-linear support vector
regression (SVR) decoder with radial basis function (RBF)
kernels for comparison. We transformed the observed spike
count data to zero mean and variance one, and optimized
the two SVR hyperparameters by grid search. We explored
the penalty function parameter of the SVR error (CSVR ∈

TABLE 1 | These tables give an example of shuffled data that can be used

to compute the shuffled information Ishuff.

Neuron Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Total

Neuron I 1 2 3 4 5 15

Neuron II 1 1 0 3 3 8

Neuron III 1 2 0 5 4 12

Neuron Shuff 1 Shuff 2 Shuff 3 Shuff 4 Shuff 5 Total

Neuron I 3 4 1 5 2 15

Neuron II 3 0 1 1 3 8

Neuron III 4 1 5 2 0 12

The top table lists the original spike counts observed for 3 hypothetical neurons over
5 trials. The bottom table depicts the shuffling of trials. The observed spike counts are
shuffled for each neuron. Note that counts are shuffled across trials but not across
neurons. Hence, the totally observed number of spikes for each neuron (last column)
remains equal between the non-shuffled and shuffled condition.

{0.01, 0.1, 1, 10}) as well as the width of the RBF kernel (γSVR ∈
{0.0001, 0.001, 0.01, 0.1}) using 5-fold cross-validation on the
training set before validation on the test data.

For all information processing analyses we only considered
excitatory neurons because GABAergic inhibitory interneurons
are not known to project out of primary visual cortex (Seriès et al.,
2004; Schmolesky, 2007).

3. RESULTS

We tested network models of different sizes using either
100× 100 or 200× 200 excitatory neurons with 2,500 or 10,000
inhibitory neurons, respectively. These two sizes correspond to
1.5mm× 1.5mm and 3mm× 3mm of cortical area. For the
smaller (100× 100) networks we also simulated responses to
heterogeneous, orientation tuned input using an orientation map
consisting of 4 pinwheels as depicted in Figure 1. The smaller
networks were also used for the assessment of the quality of
stimulus encoding.

3.1. Correlated Variability for
Homogeneous External Input
First, we investigated the firing patterns that emerge for different
network configurations. Figure 3 shows consecutive snapshots
of spiking activity for different network parameterizations: Two
Mexican hat and one inverse Mexican examples. The spiking
activity of Mexican hat networks revealed bump or stripe like
patterns. Bumps may move and fuse together, but also eventually
appear, disappear, pulsate or turn into flickering stripes. These
stripes can be stable over a few seconds and may turn back into
circular bumps for the same network realization. In contrast,
for inverse Mexican hat (Figure 3C) and balanced networks
(data not shown) we did not observe spatially inhomogeneous
patterns.

We next quantified the noise correlations for different
network settings. We computed the spike count correlation
coefficient among pairs of cells for repeated stimulus
presentations. An example distribution of spike counts for
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FIGURE 3 | Consecutive snapshots of 100ms length of network activity for networks of 100px × 100px. A blue dot corresponds to an excitatory spike

within the time interval. The top (σE = 10px < σI = 15px, ḡEE = 0.4 nS and ḡIE = 0.6 nS) and the middle row (ḡEE = 0.32 nS and ḡIE = 0.4 nS) provide the activity

pattern of a Mexican hat network. The bottom row (σE = 15px > σI = 10px, ḡEE = 0.4 nS, and ḡIE = 0.6 nS) shows activity of an inverse Mexican hat network. (A)

Mexican hat; (B) Mexican hat; (C) Inverse Mexican hat.

a pair of neighboring cells (1 px apart) is shown in Figure 4A.
Figure 4B displays the distribution of spike count correlation
coefficients among different cell pairs for a large 200× 200
Mexican hat network as a function of distance. The average
correlation as a function of distance is denoted by the green line
and follows a damped wave pattern. We did not make such an
observation for balanced or inverse networks (data not shown).
The decay of the average correlation (green line) happened rather
quickly and there was a considerable decrease in the amplitude
within the first 100 pixels, which corresponds to 1.5mm in visual
cortex (see Section 2). The oscillation frequency of the average
rSC was 2.2 cycles per 100 pixels.

We hypothesized that noise correlations are caused by time-
varying, spatially inhomogeneous activity patterns, such as
moving bumps. We, therefore, investigated whether the spatial
scale of noise correlations corresponds to the spatial scale
of the moving bumps. Indeed, the spatial frequency of the
noise correlations matches the spatial autocorrelation of the
heterogeneous activity profile as depicted in Figure 4C. Both
are on the order of 2.2 cycles per 100 pixels. We made similar
observations for one-dimensional networks where the relation
between spatial frequency and bump size becomes even more

obvious because one can easily count the number of bumps
emerging in a network (see Supplementary Material).

Experimental studies reported a saturation of spike count
noise correlations for increasing time windows (Bair et al., 2001;
Reich, 2001; Smith and Kohn, 2008). We were interested if
this phenomenon can be observed in our model as well and
therefore investigated the temporal scale of the noise correlations.
Figure 4D shows the average correlation among cell pairs with a
maximum distance of 13.3 px, corresponding to 0.2mm in visual
cortex, for the large Mexican hat network. We found a saturation
of the magnitude of the distance dependent correlations when
increasing the integration time window. Themagnitude saturates
for time windows of about 1 s and longer. Similar observations
could be made for the calculation of noise correlations with a
sliding window and a long single stimulus presentation of 120
s (dotted black line). Usage of a shorter stimulus presentation of
30 s yielded similar results but only up to sliding windows with a
length of about 3 s (black line).

Rosenbaum and Doiron (2014) demonstrated that neural
network activity can be balanced for Mexican hat configurations
due to finite size effects. Accordingly, we were interested if we
could observe balanced and uncorrelated neural responses for
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FIGURE 4 | Spatial scales of noise correlations for a large 200px × 200px Mexican hat network. Parameters are σE = 10px < σI = 15px, ḡEE = 0.4 nS,

ḡIE = 0.6 nS. Top left (A): Distribution of spike counts given a 10 s integration time window for two pairs of two directly neighboring cells. The corresponding

correlation coefficient is rSC = 0.46 (p < 0.001). The regression line is given in orange. Top right (B): Noise correlations for pairs of cells according to distance

computed across 50 stimulus presentations using a 1 s integration window. The correlation coefficient of each individual cell pair is indicated by a small blue dot. The

average coefficient of correlation as a function of distance is shown in green. A decaying oscillation of average correlations can be observed. Bottom left (C): Spatial

Autocorrelation of the spike counts in the Mexican hat network. Inset shows autocorrelation along the horizontal axis. Bottom right (D): Temporal scales in terms of the

average spike count correlation coefficient as a function of integration window size averaged across all cells at most 13.3 px (which corresponds to 0.2mm in the

scaling to cat cortex) apart. The thin black lines show the average noise correlation if estimated from sliding windows over a single experimental run of 30 s and 120 s

(dotted). The envelope shows the standard deviation of noise correlation among all cell pairs.

Mexican hat networks and determine the parameter regimes
for which correlations emerge. We varied the parameters ḡEE
and ḡIE of the connection strengths for several networks with
100× 100 excitatory neurons. Figure 5 depicts the average noise
correlation among cell pairs at most 13.3 px apart as a function
of different recurrent connection strengths for different network
configurations. To reduce simulation time the noise correlations
were calculated based on a stimulus presentation of 30 s and using
a sliding window of 1 s. Noise correlations were observed for
Mexican hat configurations with recurrent connectivity strengths
close to the boundary of self-sustained activity (red dotted lines).
For weak recurrent connection strengths no correlations were
observed, indicating a dominant finite size effect. Increasing the
width of the Mexican hat, i.e., scaling σI while σE was fixed,
we measured strong correlations for a much larger range of

parameter values, i.e., these networks are less affected by finite
size effects.

Moreover, we investigated the relation between network
size and correlations directly in one-dimensional networks (see
Supplementary Material). We could show that increasing the
number of neurons while keeping all other parameters fixed
(including the extent of the network) increased noise correlations
in Mexican hat networks.

3.2. Correlated Variability for Orientation
Stimuli
Figures 6A,B show the distance dependence of noise correlations
in a Mexican hat network close to self-sustained activity for
orientationally afferent external drive of different maximum
strengths. Noise correlations decrease linearly with distance

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2017 | Volume 11 | Article 34

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Meyer et al. Mexican Hats, Noise Correlations, and Coding

FIGURE 5 | Average noise correlations of cell pairs at most 13.3px apart in networks with 100 × 100 excitatory neurons. The coefficient is estimated using

a sliding window of 1 s over one stimulus presentation of 30 s for various network topologies exploring excitatory synaptic coupling strengths ḡEE and ḡIE . The thick

dotted red line marks the bifurcation to self-sustained activity. Excitatory spread σE is fixed to 10px. Hence, the top row shows correlations for an inverse and

balanced spread, whereas below correlations for Mexican hat networks are shown. White crosses mark the parameter settings of balanced and Mexican hat networks

that have also been used for estimating information processing quality in Section 4.2.

within the first 25 pixels, corresponding to about 0.4mm
of visual cortex. The strong oscillatory fluctuations of noise
correlations that we observed for homogeneous stimuli almost
vanished and we observed only a minor dip below zero of
the average noise correlation as a function of distance. As
expected, no distance dependent correlations were observed

for an inverse Mexican hat network with the same recurrent
coupling strengths (Figure 6C). Overall the magnitude of noise
correlations decreased for Mexican hat networks in comparison
to the previous experiments with a blank stimulus. Increasing
the maximum input rate νAff, max from 15Hz (Figure 6A) to
30Hz (Figure 6B) slightly decreased the magnitude of the
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FIGURE 6 | Noise correlations for tuned input. Top row (A,B): Noise correlation as a function of distance in a Mexican hat network (σE = 10px < σI = 15px)

close to self-sustained activity (ḡEE = 0.4 nS, ḡIE = 0.6 nS) driven by tuned input. Bottom left (C) shows results for an inverse Mexican hat (σE = 15px > σI = 10px)

with the same recurrent coupling strengths. The maximum input frequencies were νAff, max = 15Hz (A,C) and 30Hz (B). The blue dots indicate the correlation

coefficients measured for individual neuron pairs according to the distance between the two model neurons. The green curve depicts the coefficient averaged across

pairs. Bottom right (D): Noise correlations of cells at most 13.3 px apart in Mexican hat networks operating close to self-sustained activity (σE = 10px < σI = 15px,

ḡEE = 0.4 nS, ḡIE = 0.6 nS) are shown as a function of maximum input frequency νAff, max. Errorbars mark standard deviations over 5 network realizations.

Correlation coefficients were averaged across 6 stimulus orientations (−89◦,−59◦,−29◦, 1◦, 31◦, 61◦) with 30 presentations per orientation and 1 s per trail.

noise correlations further. We systematically investigated the
influence of the maximum rate νAff, max of the tuned input
on correlated variability. Figure 6D shows that the magnitude
of noise correlations decreases with an increase in maximum
rates.

Next, we were interested if—similar to the results obtained
for homogeneous input before—the noise correlations observed
for orientationally tuned input can be linked to movement
of the bump patterns. For tuned input the network activity
was high within four particular regions of the network (see
Supplementary Video), where the preferred orientation of the
model neurons correspond to the orientation of the driving
stimulus in the orientation map with 4 pinwheels. We examined
the movement of the centers of these activity clusters over
time. In Figure 7 four trajectories of the activity center (black

lines) at one of the network’s pinwheels is depicted for an
afferent stimulus with an orientation of 1 degree. For low
maximum firing rate of the afferent input we identified a
considerable amount of movement in the plane, but increasing
the input rate significantly reduced movement. In comparison,
the red lines show the same trajectories for an inverse
Mexican hat driven by a stimulus of 0 degree. There, the
center of activity was stable even for low maximum input
rates.

3.3. Information Processing
In this section we demonstrate how the correlations in the
network model influence stimulus encoding. We measured and
quantified the effects of correlations on coding quality in terms
of the three information measures introduced in Section 2:
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FIGURE 7 | Trajectories of the center of activity at one pinwheel for four different maxium driving frequencies. Colors indicate the orientation preferences

of the model neurons. The inset shows which part of the full orientation map is depicted. Centers were computed from the activity within a sliding window of 250ms

length. Every neuron’s position was interpreted as a vector in the 2D plane and the trajectory is the average vector weighted by the neurons activity within the sliding

window. Black line: Trajectories for a Mexican hat network (parameters as in Figure 6) and a stimulus oreintation of 1◦. Red lines: Trajectories for an inverse Mexican

hat network (σE = 15px > σI = 10px) with the same connections strengths and a stimulus orientation of 0◦.

Using Fisher information, shuffled information, and diagonal
information.

3.3.1. Fisher Information and Tuning
We compared Fisher information between networks with a
Mexican hat configuration, a balanced configuration (see also
white crosses in Figure 5), and an inverse Mexican hat profile.

Figure 8 summarizes the information measures for all three
network configurations estimated from 500 excitatory readout
neurons. The noise correlations—emerging within the Mexican
hat network—significantly reduced the stimulus encoding quality
in terms of reducing the Fisher information in comparison to
the shuffled data (blue and cyan bars in Figure 8 on the left,
Wilcoxon signed-rank test, p < 0.001, 10 network samples).
Furthermore, the diagonal information Idiag (left magenta bar)
is significantly smaller than ILOLE (left cyan bar) (Wilcoxon
signed-rank test, p < 0.001, 10 network samples). Thus,
the correlations themselves carried information, and a decoder
cannot safely ignore correlated variability without facing a
penalty in performance. Interestingly, the total information

that could be recovered from the Mexican hat network was
significantly larger than in the other two networks (ILOLE, cyan
bars) despite the presence of noise correlations (Wilcoxon rank
sum test, all p < 0.001, 10 network samples each).

This increase in Fisher information can be explained by
the sharpening of orientation tuning by Mexican hat type
connectivity patterns, which enhance stimulus encoding of
low dimensional stimuli (Zhang and Sejnowski, 1999; Dayan
and Abbott, 2005). Thus, despite the presence of correlations,
a Mexican hat profile may better encode the stimulus by
sharpening of responses. The response of the individual neurons
is more selective to orientation stimuli and thereby facilitate
discrimination between stimuli.

In order to quantify the sharpening of tuning we applied the
Orientation Selectivity Index (OSI) measure (see Equation 5).
Figure 9D shows the average OSI of the different networks. The
Mexican hat networks exhibited the sharpest tuning (0.734 ±
0.003). The inverse configuration showed the second sharpest
tuning (0.520 ± 0.003) followed by the balanced network with
(0.471 ± 0.003). All these differences are significant (Wilcoxon
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FIGURE 8 | Fisher information measures Ishuff, ILOLE, and Idiag for

networks with Mexican hat, balanced and inverse Mexican hat

connection schemes. Values were computed from sampling 500 of the

10,000 excitatory neurons and averaged over 10 networks with different

recurrent connectivity realizations. Error bars show standard deviations over

10 network realizations. A maximum afferent firing rate of νAff, max = 15Hz

was used. Parameters were for Mexican hat σE = 10px < σI = 15px,

balanced σE = 10px = σI = 10px and inverse Mexican hat

σE = 15px > σI = 10px. Strengths were chosen equally for all networks with

ḡIE = 0.6 nS and ḡEE = 0.4 nS (see also white marks in Figure 5). Information

was estimated using an approach by Seriès et al. (2004). Significance values

are based on a non-parametric Wilcoxon rank-sum test for comparisons of

ILOLE between different topologies (p < 0.001, 10 networks samples) and a

Wilcoxon signed-rank test (p < 0.001, 10 network samples) for comparisons

within the Mexican hat configuration. ***p < 0.001

rank-sum test, all p < 0.001, 10 sample networks each). Notably,
the coding was not simply improved due to the availability
of more spikes. In Figure 9A it can be seen that the average
firing rate of the network was smaller for Mexican hat networks.
Sharper tuning implies that on average fewer neurons respond to
an input stimulus, which in turn decreases the average network
firing rate. In summary, despite stronger noise correlations for
Mexican hat networks (Figure 9C), the coding quality improves
alongside a sparser spiking code.

We further tested if the decoding performance could be
improved over LOLE by using non-linear SVR. However, there
was no increase in performance. On average its mean squared
error (MSE) was slightly worse than the error of the linear
decoder, as shown in Figure 9B. This suggests that the linear
decoder is close to optimality and it is unlikely that there is
information that could only be obtained by using non-linear
methods.

3.3.2. Fisher Information and Lateral Connectivity
We tested whether the performance gain is indeed caused
by the Mexican hat configuration or rather an effect of the
width of the inhibitory connection spread only. Therefore, we
explored different widths of both connection spreads (σI and
σE) and kept recurrent coupling strengths fixed (ḡEE and ḡIE).
To reduce simulation time we ran 125 repeated presentations
per input stimulus to estimate Fisher information. We sampled

activity from 125 excitatory readout neurons. Clearly, as depicted
in Figure 10, the phenomenon is related to the Mexican hat
configuration. Best stimulus encoding performance was achieved
by network topologies with shorter excitatory than inhibitory
connection spread (σE < σI). Still, benefits in information
processing are limited to a range of Mexican hats. As the area on
the right side of the image shows. A very wide spread of inhibitory
connections, however, led to a drop of Fisher information also for
Mexican hat topologies.

3.3.3. Fisher Information and Sample Size
We further wanted to know how the difference in Fisher
information between the network types depends on sampling of
the number of readout neurons for Mexican hat and the inverse
Mexican hat networks (cf. Averbeck et al., 2006). We repeated
the previous experiments with the same parameter settings
but used 7,000 presentations per stimulus and estimated ILOLE
again from the spike counts of different numbers of excitatory
readout neurons. Figure 11 summarizes the results. The better
performance was observed for Mexican hat networks as long
as roughly fewer than one third of the neurons were included.
However, if more readout neurons were used to reconstruct the
stimulus, ILOLE was higher for the inverse Mexican hat networks.
Hence, for larger samples of neurons, the detrimental nature of
the noise correlations was more pronounced and eradicated the
advantage of sharper tuning in Mexican hat networks.

4. DISCUSSION

4.1. Dynamics and Noise Correlations
4.1.1. Theoretical Considerations
We demonstrated that recurrent connectivity can cause
correlated variability. As we hypothesized, in networks of
adaptive exponential integrate and fire neurons, Mexican hat
coupling with wider inhibitory than excitatory connectivity
spread leads to noise correlations.

Our findings are in line with analytical results from
Rosenbaum and Doiron (2014). The authors used a rate based
model network to investigate how recurrent topologies in 1D
and 2D networks affect excitatory and inhibitory recurrent
inputs. Inverse Mexican hat configurations and those with an
equally wide spread of excitatory and inhibitory connections
yield a stable balance of currents, i.e., excitatory and inhibitory
recurrent currents were of similar magnitude and canceled each
other. This leads to constant stable firing rates of all neurons.
We could show in our simulations that this stable balance
further leads to a decorrelation of network activity. Rosenbaum
and Doiron (2014) derived that Mexican hat coupling cannot
maintain a stable balance between recurrent excitation and
inhibition, thereby amplifying spatial frequencies in the network
activity. The authors further demonstrated that the network
size also influences this amplification. If the network size is
very small or recurrent connectivity is very weak, Mexican hat
networks may still exhibit homogeneous firing activity. Likewise,
we observed homogeneous responses for operating regimes far
from the region of self-sustained activity (see Figure 5).We could
also demonstrate (see Supplementary Material) that increasing
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FIGURE 9 | Firing rate, MSE, rSC, and OSI. Top left (A): Average network firing rate averaged over all excitatory neurons. Top right (B): In dark gray the average

mean squared error (MSE) of the linear decoder is shown whereas in light gray one sees the average MSE of the best Support Vector Regression (SVR). Bottom left

(C): Average noise correlation among pairs of neurons at most 13.3 px apart for a 3 s time window. Bottom right (D): Average Orientation Selectivity Index (OSI)

among all neurons in the networks. Black bars show the standard deviation across 10 network realizations per profile in each sub-figure. In (D) standard deviations are

so low that the black bars are not visible. Network parameters as in Figure 8.

network size can lead to noise correlations in Mexican hat
networks operating in regions afar from self-sustained activity.

An analytical solution of the network state could not be
provided for the case that spatial frequencies are amplified by
Gaussian Mexican hat connectivity (Rosenbaum and Doiron,
2014). Nevertheless, for simplified connection topologies
that also feature wider inhibitory than excitatory connection
spread, it has been shown that networks give rise to spatially
inhomogeneous responses (Pinto and Ermentrout, 2001;
Coombes, 2005; Guo and Chow, 2005; Roxin et al., 2006). For
example, Hansel and Sompolinsky (1998) showed that using a
sinusoidal spatial connectivity pattern the network undergoes
a Turing bifurcation if the recurrent strength of the sinusoidal
component reaches a critical value. The resulting network
state is given by a single bump solution. Moreover, the authors
demonstrated that the spatially inhomogeneous activity starts
moving across the spatial extent of the network in case neuronal
adaptation is considered in the rate based network model. This
movement then leads to joint modulations of firing rates and,
consequently, to correlation among rates. This is also sketched
in the animation provided in the Supplementary Material. In
our simulations of spiking neurons joint modulations in firing
rates manifested themselves in joint modulations of spiking
activity which appear as dynamic patterns on a network level,
i.e., bumps and stripes. Due to the joint changes of spiking
activity we measured distance dependent noise correlations. The

pairwise correlations were modulated in a damped oscillatory
manner. These phenomena, i.e., the pattern formation and noise
correlations, could be observed for a wide range of parameter
settings and were most strongly pronounced close to the
boundary to self-sustained activity.

The locations of emerging activity bumps can be determined
and steered by inhomogeneous inputs Bressloff (2012). We
made a similar observation for our networks using an
inhomogeneous Poisson input that simulates an oriented bar
stimulus. Inhomogeneous input locked bump activity at the
locations corresponding to the peaks of the afferent input, but
a weak drift or jitter of the activity could be observed as well (see
Figure 7). Noise correlations persisted for these heterogeneous
inputs, but were reduced in comparison to homogeneous inputs.
The activity patterns and spatial dependency of correlations
were also modulated in comparison to homogeneous inputs. We
observed an almost linear decay with distance (Figures 6A,B).
In contrast to the homogeneous input scenario, the average rSC
did not reach values considerably below 0. In addition, noise
correlations as well as the movements or jitter around the peak
locations were stronger for weak external drive.

4.1.2. Comparison to Other Modeling Studies
Keane and Gong (2015) hypothesized that phenomena such
as neuronal spiking variability and noise correlations may be
explained by macroscopic network dynamics such as traveling
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FIGURE 10 | Fisher information ILOLE as a function of both connection

widths σI and σE . One network per spread combination with recurrent

strengths of ḡEE = 0.4 nS and ḡIE = 0.6 nS. Some Mexican hat networks with

very narrow σE led to self-sustained activity (white area, red dotted border) and

were excluded from the analysis. Values were computed from 125 excitatory

neurons and 125 repetitions per stimulus (s ∈ {−1◦, 1◦}). Maximum input firing

rate was 30Hz.

waves. The authors simulated a two-dimensional spiking neural
network model where the connection probability did not depend
on distance between cells but the coupling strengths of excitatory
neurons did. The coupling strengths among excitatory neurons
exhibited a Gaussian profile similar to our connectivity kernel.
Inhibitory neurons, however, were coupled uniformly. Afferent
inputs were either noisy or deterministic and homogeneous. The
authors observed moving bumps activity as well as traveling
wave fronts and noise correlations following a damped sine
wave as a function of cell pair distance. They compared their
results to topologies with uniform random connections where
no pattern formation and noise correlations were observed.
In our models connection strengths were constant across all
synapses but connection probabilities depended on distance. In
comparison to their study, we also applied Gaussian kernels to
inhibitory connections, did extensive parameter explorations to
uncover the influence of kernel sizes and connection strengths
on correlations, and investigated inhomogeneous inputs and the
relation between noise correlations and information.

Yger et al. (2011) researched the influence of Gaussian
topology in terms of inhibitory and excitatory connection width
on noise correlations. Surprisingly, they observed the emergence
of bump patterns and noise correlations only for very narrow
excitatory spreads (σE ≪ σI). Yet, they kept recurrent weights
fixed and used a rather low coupling strength. Therefore, it is
likely that the network size was too small for the given recurrent
weights and the finite size effect kept network activity stable.

Ponce-Alvarez et al. (2013) used a one-dimensional ring
network of non-linear rate model neurons with different
preferred stimulus orientations to study phenomena observed in
the areaMT of awakemonkeys. The rate units were connected via

FIGURE 11 | Amount of Fisher information as a function of number of

excitatory neurons sampled for two network realizations. Mexican hat

(σE = 10px < σI = 15px) in blue and inverse Mexican hat

(σE = 15px > σI = 10px) in green (both with ḡIE = 0.6 nS and ḡEE = 0.4 nS).

Solid (dashed) lines indicate results for a maximum afferent rate of 30Hz

(15Hz). The inset shows the corresponding mean squared error (MSE) of the

LOLE decoder.

aMexican hat like sinusoidal coupling. The authors hypothesized
that this network topology can explain the experimentally
observed directional tuning of noise correlations in MT neurons.
For particular parameter regimes with strong weight on the
sinusoidal component of the coupling configuration Ponce-
Alvarez et al. (2013) observed bump patterns similar to ours.

Moreover, Rosenbaum et al. (2017) provide an alternative
hypothesis for the emergence of noise correlations. While we
solely focused on recurrent coupling, they investigated the
interplay of recurrent and afferent feed-forward connections.
In contrast to our model where each neuron simply received
independent Poisson input, in Rosenbaum et al. (2017) afferent
inputs could be shared among post-synaptic cells, depended
on the distance among neurons, and afferent connection
probabilities followed a spatial Gaussian kernel (with width σA)
similar to our recurrent coupling. Using simulations of spiking
neurons as well as mean-field approximations, Rosenbaum et al.
(2017) showed that if afferent connection spread is narrower than
excitatory or inhibitory recurrent connections (σA < σE, σI),
distance dependent noise correlations similar to our results
emerge.

4.1.3. Biological Relevance of the Results
In our study we showed that noise correlations can emerge by
moving patterns of higher and lower spiking activity. On the
single cell level phases of lower spiking activity alternate with
phases of higher activity, depending on whether the neuron is
part of a more or a less active network region.

Mochol et al. (2015) showed in the auditory cortex of
anesthetized rats that noise correlations are dominated by phases
of coinactivation. During spontaneous activity, the authors
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observed periods where all neurons in a local network jointly
reduced firing. This resembles the occurrence of bump activity
states in our networks where firing rates of neighboring model
neurons were jointly reduced if they are part of an off region of a
bump.Moreover,Mochol et al. (2015) demonstrated that external
stimulation led to a reduction of these low activity periods
which went hand in hand with a decrease in the magnitude
of noise correlations. Similarly, our simulation showed that
increasing the strength of an orientation tuned stimulus led
to a decrease of correlated variability in a 2D network (see
Figure 6D).

Moreover, increasing input strength can be a suitable model
of an increase of stimulus contrasts in biological experiments
(Rubin et al., 2015). Kohn and Smith (2005) reported weaker
correlations for strong contrasts of drifting orientation gratings
in experiments with Macaque monkeys. These findings match
our simulations with increasing afferent input of inhomogeneous
stimuli.

In our simulations noise correlations depended on the size
of the integration time window (Figure 4D). We observed an
amplitude saturation for large windows. This is in line with
findings from biological experiments (Bair et al., 2001; Reich,
2001; Smith and Kohn, 2008).

Smith and Kohn (2008) and Rosenbaum et al. (2017)
measured correlations in visual cortex of monkeys alongside
the neural tissue using a micro-electrode array (MEA) and
drifting sinusoidal grating stimuli. Both reported a distance
dependence of noise correlations. However, the spatial scales are
different from what is observed in our model. Both reported
a linear decay over a distance of several millimeters in the
monkey visual cortex. In our model we observe linear decay
for tuned input as well, but correlations vanished after a few
ten pixels which corresponds to about 400 µm in cat visual
cortex (see Figure 6, with 1 px corresponding to 15 µm in our
scaling).

In addition, Rosenbaum et al. (2017) also found sinusoidal
decay of correlations after removing latent correlations using
Gaussian process factor analysis. A full oscillation cycle was
observed in about 5mm in the monkey data as well as in
their spiking neuron simulation (see also the last paragraph of
Section 4.1.2). In comparison, in our model we measured a full
oscillation for a blank stimulus within the first 50 pixels (c.f.
Figure 4B). This result corresponds to less than a millimeter in
cat visual cortex3.

Ch’ng and Reid (2010) observed a sinusoidal modulation
of noise correlations with distance for spontaneous activity
in the visual cortex of rats using two-photon imaging. In
cat visual cortex Ch’ng and Reid (2010) only reported a
seemingly exponential decay. However, they could measure noise
correlations for a maximum pair distance of only 400 µm. Our
model simulations imply that only beyond this distance one

3Note the scale difference in network extents and parameterization between our

and their model is on the order of the difference in the spatial modulation of the

correlations. For example, in our model the excitatory recurrent connection had

a spread corresponding to σE = 150 µm whereas Rosenbaum et al. (2017) used

σE = 500 µm.

should expect an increase in correlations due to a sinusoidal
modulation. Therefore, Ch’ng and Reid (2010) might have
measured only the first quarter of a cycle of the spatial oscillation.

The emergence of spatially inhomogeneous patterns of
spontaneous activity on the scale of several hundredmicrometers
has been long known (Arieli et al., 1995). For instance, Kenet
et al. (2003) reported bump shaped spontaneous activity in
the visual cortex of anesthetized cats using voltage sensitive
dyes. More important, the spatial scales of the patterns, i.e.,
the size of the bumps, matched the distances of pinwheel
centers of the preferred orientation map. They measured
about one bump per pinwheel. This is also the case in
our simulations. In our 2D network model we measured a
spatial autocorrelation of about 2.2 cycles per 100 neurons,
which agrees with the frequency of 4 pinwheels per 100× 100
cells. This means we also observed about one bump per
pinwheel.

4.1.4. Limitations
The qualitative comparison of our model with biological
data should, however, be taken with care because of our
assumption of conditionally independent afferent Poisson input.
This afferent input is not consistent with realistic LGN
input. For instance, Lin et al. (2012) demonstrated that
more realistic LGN models can change response characteristics
such as tuning sharpening of post-synaptic V1 neurons. In
this manuscript, however, we study the effect of recurrent
connectivity in isolation and excluded other sources of correlated
variability.

In our model all cells of a population exhibited equal
parameter values (except those for coupling). In biology,
however, one can observe a large variability among neuronal
parameters such as membrane and adaptation time constants
(Sanchez-Vives et al., 2000) or for the amplitudes of spike
triggered post-synaptic potentials (Mason et al., 1991). A
modeling study by Mejias and Longtin (2012) suggests that
such heterogeneities can even enhance information processing in
neural networks.

Furthermore, in our 2D networks with 100× 100
and 200× 200 excitatory neurons corresponding to
1.5mm× 1.5mm or 3mm× 3mm of cortical area, respectively,
we obtain an average number of about 5,500 neurons per square
millimeter (including inhibitory neurons). This is much less than
the number of 15,000 neurons per square millimeter estimated
for layer 4 (Beaulieu and Colonnier, 1983). Yet, the theory
by Rosenbaum and Doiron (2014) states that increasing the
network size by keeping the spatial extent constant even fosters
inhomogeneous activity and stable Mexican hat networks may
yield pattern formation of spiking activity due to a vanishing
finite size effect. Accordingly, we could also demonstrate (in
the Supplementary Material) that larger neuron numbers per
extent yielded correlated variability for even more parameter
settings.

We assumed periodic boundary conditions. Yet, we do
not believe that our results would change considerably
using other boundary conditions. We tested reflecting as
well as absorbing boundary conditions in one-dimensional
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networks (see Supplementary Material) and observed the
formation of similar patterns including the moving bump
structures.

4.2. Neural Coding
We demonstrated that noise correlations observed for Mexican
hat topologies decrease the Fisher information in comparison
to shuffled data where correlations have been removed.
However, in comparison to other topologies like balanced or
inverse Mexican hat, more information about the stimulus
could be extracted even if correlations were present (cf.
Figure 8) as long as a subset of neurons were considered for
readout.

4.2.1. Sharpening of Orientation Tuning
The sharpening of the orientation tuning due to the Mexican
hat configuration may explain this relative gain in information
in comparison to other topologies for neuron sub-sampling.
Yet, as number of readout neurons increased, the deteriorating
effect of correlation worsened and eliminated the advantage
of tuning sharpening. Whether the improvement of coding of
a sample readout population in terms of Fisher information
carries over to situations where neurons are tuned to more
than one feature, however, remains unclear. For stimulus feature
spaces with more than two dimensions and uncorrelated neural
firing, sharpening of feature tuning yields a reduction in Fisher
information (Zhang and Sejnowski, 1999; Dayan and Abbott,
2005).

4.2.2. Comparison to Other Modeling Studies
Similar to our study Seriès et al. (2004) investigated the influence
of noise correlations and sharpening of tuning curves on
stimulus information. They used two different models. In the
first model tuning was sharpened by strong recurrent Mexican
hat connectivity much like in our model. In the second model
the tuning of the afferent input was already sharp and no
excitatory recurrent connections were present. The afferent
inputs were chosen such that the output tuning curves of the
two network models matched. In this setting, the Mexican hat
network performed much worse than the model with afferent
tuning. Besides a strong reduction in information due to noise
correlations, Mexican hat networks showed already amuch lower
value of Fisher information for shuffled data where correlations
were removed. However, Seriès et al. (2004) used a Mexican
hat defined over orientation space with a very large inhibitory
spread of σI = 60◦ compared to a very narrow excitatory
width of σE = 7.5◦. In our simulations we discovered that
very wide inhibitory spreads can have devastating effects on
the encoding quality. Information was enhanced only for a
particular regime of Mexican hats (see Figure 10). Thus, the
wide inhibitory spread used by Seriès et al. (2004) might explain
why already shuffled information was low in their Mexican hat
network.

Likewise, Hansen et al. (2012) developed a model with a
Mexican hat defined over orientation space. However, their ratio
between excitatory and inhibitory widths was smaller (σE = 15◦

and σI = 40◦). Accordingly, in comparison to the work by Seriès

et al. (2004), less Fisher information was lost in Mexican hat
networks relative to topologies with wider excitatory spread.

Moreno-Bote et al. (2014) demonstrated analytically and
numerically with networks of leaky integrate-and-fire neurons
that a particular type of correlations is detrimental to stimulus
encoding. They termed these differential correlations. The authors
showed that the noise covariance matrixQ of neural responses to
a stimulus s can be decomposed as:

Q(s) = Q0(s)+ ε f ′(s) f ′T(s), (8)

where Q0 represents noise that is not harmful to encoding,
whereas correlations that are detrimental can take up the
form ε f ′(s) f ′T(s). ε is a potentially small coefficient. f ′

denotes the derivative of the neural tuning curve vector
with respect to stimulus s, and f ′T its transpose. Hence,
correlations are limiting encoding quality if they shift joint
neural responses tangentially along the stimulus manifold
in the neural response space. More simply, assuming a
one-dimensional stimulus, like orientation, and a network
response in form of a Gaussian curve or a bump profile
defined over the stimulus space, the following holds: If
noise moves the response curve back and forth across the
stimulus space, this yields differential correlations and one
cannot discriminate the noise from the actual stimulus. Indeed,
we made similar observations in our network model with
heterogeneous stimuli. The heterogeneous input locked bump
activity to a particular location, but we still observed small jitter
around the location of maximum afferent input (cf. Figure 7).
Consequently, in our 2D networks featuring an orientation
map, small movements of the bump responses defined over
the two-dimensional neural space simultaneously imply jitter of
network responses in the stimulus space because the preferred
orientations of neurons smoothly change along the two spatial
axes.

Similarly, the spatial profile of the differential correlations
found by Moreno-Bote et al. (2014) are reminiscent of a
sinusoidal modulation whose amplitude decays with distance
in stimulus space akin to our results (cf. Figure 4A). The
authors argued that differential correlations are small (ε ≪
1) compared to other correlations (Q0), which makes them
difficult to identify by simply measuring correlation coefficients.
In order to detect differential correlations the authors suggested
to use the decoder approach of Seriès et al. (2004) to estimate
Fisher information. Accordingly, in case Fisher information is
reduced in comparison to shuffled data, differential correlations
are present. This is what we observed in our simulations (cf.
Figure 8).

Kanitscheider et al. (2015) developed a generative model
of differential correlations based on convergent feed-forward
projections in a primary visual cortex model. In this model noise
correlations emerged due to shared noise from LGN input to
V1. The convergence of afferent inputs onto their V1 network
model gave rise to shared input among their V1 model neurons.
This produced correlations among the input currents which in
turn led to correlations among the spiking output of the model
neurons. In contrast, one can interpret our findings as a model
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of differential correlations originating from recurrent processing
instead of afferent input. In our model recurrent connections
enable noise and adaptation to cause a drift of the network
activity representing an orientation stimulus, which in turn yields
differential correlations among neuron pairs.

4.2.3. Biological Relevance of the Results
A modulation of information due to noise correlations has been
reported frequently in visual cortex experiments (Gu et al., 2011;
Chelaru and Dragoi, 2014). Similar to our observations that noise
correlations are less disadvantageous if neurons within a network
were sub-sampled (cf. Figure 11), Montijn et al. (2014) measured
a saturation of decoding performance with sample size using a
variety of decoders in mouse visual cortex. Similar observations
were made by Freiwald et al. (2002) reconstructing stimuli with
a Bayesian decoder from data recorded in rat primary visual
cortex. Comparable to our Mexican hat networks (cf. Figure 8),
Graf et al. (2011) discovered that correlations among neurons
in macaque primary visual cortex carry a significant amount of
information. They reported that decoding accuracy could drop
by more than five percent if a decoder ignored correlations.

Hansen et al. (2012) as well as Smith et al. (2013) found that
the magnitude of correlations in monkey primary visual cortex
is laminar dependent. For the input layer, often referred to as the
granular (Hansen et al., 2012) or middle layer (Smith et al., 2013),
the measured average rSC was almost 0. Whereas in the deep or
infra-granular (IG) as well as the superficial or supra-granular
(SG) layers the experimenters measured significant correlations
on the order of 0.1–0.2 for cells up to 300 µm apart. This can
give rise to the interpretation that correlations are predominant
in layers that are projecting to higher cortical areas. The output
layers (IG and SG) use other stimulus encoding strategies that

are less accurate in comparison to the input layer. In contrast, the
middle layer, receiving input from the LGN, and projecting only
to other layers in V1, provides a very accurate and unmodified
representation of a stimulus.
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