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Abstract

Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River

Lagoon (IRL) estuarine system along the east coast of Florida are impacted by anthropo-

genic activities and have had multiple unexplained mortality events. Given this, managers

need precise estimates of demographic and abundance parameters. Mark-recapture photo-

identification boat-based surveys following a Robust Design were used to estimate abun-

dance, adult survival, and temporary emigration for the IRL estuarine system stock of bottle-

nose dolphins. Models allowed for temporary emigration and included a parameter (time

since first capture) to assess evidence for transient individuals. Surveys (n = 135) were con-

ducted along predetermined contour and transect lines throughout the entire IRL (2016–

2017). The best fitting model allowed survival to differ for residents and transients and to

vary by primary period, detection to vary by secondary session, and did not include tempo-

rary emigration. Dolphin abundance was estimated from 981 (95% CI: 882–1,090) in winter

to 1,078 (95% CI: 968–1,201) in summer with a mean of 1,032 (95% CI: 969–1,098). Model

averaged seasonal survival rate for marked residents was 0.85–1.00. Capture probability

was 0.20 to 0.42 during secondary sessions and the transient rate was estimated as 0.06 to

0.07. This study is the first Robust Design mark-recapture survey to estimate abundance for

IRL dolphins and provides population estimates to improve future survey design, as well as

an example of data simulation to validate and optimize sampling design. Transients likely

included individuals with home ranges extending north of the IRL requiring further assess-

ment of stock delineation. Results were similar to prior abundance estimates from line-tran-

sect aerial surveys suggesting population stability over the last decade. These results will
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enable managers to evaluate the impact of fisheries-related takes and provide baseline

demographic parameters for the IRL dolphin population which contends with anthropogenic

impacts and repeated mortality events.

Introduction

Anthropogenic impacts continue to threaten both coastal and estuarine cetacean populations

[1–9], rendering the accurate evaluation of abundance and demographic parameters critical to

population management. Various methods have been employed to estimate the abundance of

cetacean species, most based on line-transect or mark-recapture methodology [10–15]. Both

approaches can provide accurate estimates. While line-transect surveys (aerial and vessel

based) are the most utilized methods for coastal species, they only estimate density (abun-

dance) and cannot estimate survival or distinguish between resident and transient animals. In

contrast, mark-recapture methods, which rely on patterns of individuals resighted over time,

can estimate abundance, survival, and temporary immigration [16,17]. Identifying resident

animals within a population is critical, as those animals are most vulnerable to the impacts of

repeated anthropogenic activities as well as ecological deterioration in the region.

Common bottlenose dolphins (Tursiops truncatus truncatus) inhabiting the Indian River

Lagoon (IRL) estuarine system along the east coast of Florida between Ponce Inlet and Jupiter

Inlet have been studied for decades and are considered long-term residents comprising the

IRL estuarine system dolphin stock [18–20]. The expansive range (~250 km) of this dolphin

stock has made vessel-based abundance estimation difficult and prior studies have thus

employed line-transect aerial surveys [21–23]. However, more recent studies support the

occurrence of transients as well as movements of some individuals that extend beyond the

northern boundary of the IRL [21,24–27]. Many cetacean species, including bottlenose dol-

phins, can be individually identified by naturally occurring markings on the trailing edge of

the dorsal fin [28–30]. Photo-identification, or the identification of individuals based on these

unique markings, is widely used to study cetaceans [30]. It is commonly combined with mark-

recapture methods where marked individuals are “captured” (first identified) and subse-

quently “recaptured” (resighted) during survey efforts [31–36].

Accurate estimates of abundance and demographic parameters are essential to the manage-

ment and conservation of the IRL dolphin stock and have become increasingly important as

IRL dolphins have experienced multiple Unusual Mortality Events (UMEs) (2001, 2008, 2013;

2013–2015) [37]. During the largest mortality event (2013 UME), a minimum of 77 dolphin

mortalities occurred. Based on the mean abundance estimate prior to the event (1,032 dol-

phins) [21], mortalities represented ~7.5% of the population (19 marked individual mortalities

in 2013). Concurrent with this event, the Mid Atlantic UME (2013–2015) coincided and fur-

ther impacted IRL dolphins [37]. Reoccurring mortality events could indicate serious ecologi-

cal pressures that may lead to the decline of this stock. Indian River Lagoon dolphins are listed

as a strategic stock since anthropogenic mortality likely exceeds Potential Biological Removal

set by managers (PBR; the maximum number of mortalities, excluding natural mortalities,

that can be removed annually while still allowing the stock to reach or maintain an optimal

sustainable population level) [37]. In recent years, the IRL has undergone several large-scale

ecosystem changes, most notably phytoplankton blooms that yielded catastrophic seagrass loss

[38]. Seagrass meadows have been found to provide critical habitat to prey consumed by estua-

rine dolphins [39]; therefore, these significant ecological changes are likely to jeopardize the
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health of the already vulnerable IRL dolphin stock. Recent studies have documented dimin-

ished health in IRL dolphins including high concentrations of mercury [40], lingual and geni-

tal papillomas [41], and skin disease (lacaziosis) [42,43]. Moreover, interactions with both

commercial and recreational fisheries account for up to 12% of the annual mortality [8,44].

The Marine Mammal Protection Act requires dolphin stock assessment, and abundance

estimates that are necessary to manage stocks and to calculate the level of sustainable anthro-

pogenic mortality (PBR). Data from aerial surveys and observations of movements of IRL dol-

phins through inlets have suggested that temporary emigration (movement of resident

individuals out of the study area during a portion of the study), and transience (movement of

non-resident dolphins through the study area) may have contributed to fluctuating abundance

estimates. This is most obvious in portions of the lagoon near inlet access, particularly in

response to dramatic declines in water temperature [21,23] which may influence dolphin

movement [45–48]. Satellite telemetry has further corroborated oceanic habitat usage in resi-

dent IRL dolphins [49]. Photo-identification surveys further support transience occurrence,

documenting dolphin movements between the northern portion of the IRL (Mosquito

Lagoon) and the St. Johns River (Jacksonville Estuarine system stock-JES), [24,25,50] with a

13% exchange in the individuals examined [25]. Furthermore, genetic research suggests that

dolphins inhabiting the Mosquito Lagoon sub-basin may be a disjunct community from the

IRL as these animals are genetically distinct from the rest of the IRL and most closely associ-

ated with the JES stock [50], suggesting genetic exchange [26,27]. Evaluating transience in IRL

dolphins is imperative as parameter estimates will be biased if transients are not considered.

The objectives of this study were to utilize dolphin photo-identification surveys and mark-

recapture methodology as components of a Robust Design survey [51] to estimate abundance,

survival, occurrence of transients, and temporary emigration of IRL dolphins. Prior to survey

initiation, a simulation study was conducted to validate the study design (S1 Text, S1 Fig). We

measured transient rates by incorporating a time since first capture parameter into our sur-

vival sub-models. Closed population capture-recapture models were used to estimate abun-

dance by sub-basin and primary period (= season).

Methods

Ethics statement

Data collection, vessel-based photo-identification surveys of free-ranging bottlenose dolphins,

was conducted under permits issued by NOAA Fisheries under General Authorization Letter

of Confirmation No.: 16522, 18182, and 20377–01 in tandem with permits issued by Canaveral

National Seashore: CANA-2015-SCI-0010 and the U.S. Fish and Wildlife Service: MI-2016-

207R. This allowed data collection on the protected/privately owned lands including national

wildlife refuges (Cape Canaveral National Seashore, Merritt Island National Wildlife Refuge)

and otherwise secured properties (Canaveral Air Force Station, Kennedy Space Center). Data

collection did not involve animal handling and thus did not require additional IACUC

authorization.

Study area

The IRL is a shallow and diverse estuarine system located along the east coast of central Flor-

ida. It opens to the Atlantic Ocean at four inlets and consists of three interconnected basins:

the Indian River, Banana River and Mosquito Lagoon [52–54] (Fig 1). The 902 km2 estuary

spans 220 km with a width of 0.93 to 9.30 km [22] extending from Ponce Inlet to Jupiter Inlet

[54]. Although most of the estuary is shallow (<1 m at high tide), depths > 5 m occur in the

dredged basins and channels of the Intracoastal Waterway (ICW) [52], which encompasses
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Fig 1. Map of the Indian River Lagoon (Ponce Inlet to Jupiter Inlet; insert lower right) along the east coast of Florida. Sub-basins aligned N-S are:

Mosquito Lagoon; Banana River; northern Indian River; southern Indian River. Contour lines and alternating saw-tooth transects were utilized

throughout the lagoon as illustrated in the inset portion of the Banana River (upper right). The map was generated using ERSI software, ArcGIS 10.8

(http://www.esri.com/software/argis), using geographic data from Florida Fish and Wildlife Conservation Commission. Reprinted from [Florida Fish
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approximately 2.2% of the lagoon. The IRL in its entirety was divided into four regions (= sub-

basins). The Banana River (BR) (202 km2) and the Mosquito Lagoon (ML) (140 km2) included

each sub-basin in its entirety (Fig 1). The Indian River basin was divided into two sub-basins:

the northern Indian River (NIR) (378 km2, previously defined as north of Eau Gallie Causeway

[55], with little tidal and non-tidal flushing [56]), and the southern Indian River (SIR) (182

km2) which consisted of three previously defined basins [55] and includes three of the four

inlets (Fig 1). Due to a lack of tidal flushing, the BR and NIR have decreased water quality com-

pared to the majority of ML and SIR [56–58], and were the common epicenter of prior IRL

UMEs [37,59]. By portioning the lagoon, we were able to compare our results with previous

abundance studies [21,23] and with community estimates peripheral to the basins [60].

Capture-recapture photo-identification surveys

We used a Robust Design photo-identification survey [16,61], which is the preferred method

for estimating estuarine dolphin abundance [12,13,51]. The design grouped photo-identifica-

tion surveys into four short-duration (less than three weeks) primary periods, each containing

three replicate surveys (secondary sessions), during which population closure was assumed.

The four primary periods were separated by longer duration time intervals (~three months)

during which an open population was assumed. The Robust Design estimates abundance

using closed mark-recapture models based on recaptures of individuals between the secondary

sessions, and survival and temporary immigration/emigration using open mark-recapture

models based on recaptures of individuals between the primary periods. Vessel based capture-

recapture surveys were conducted in the IRL between August 2016 and May 2017, with the fol-

lowing assumptions: 1) Population closure within a primary period and emigration/immigra-

tion between primary sampling periods being temporary; 2) Dorsal fin marks were unique,

permanent, and correctly identified; 3) Individual capture probabilities were equal within a

secondary session, and 4) Individual survival probabilities were equal among individuals

within a primary period [16,61,62]. To account for the potential occurrence of non-resident

individuals, we included a transient parameter by modeling survival for individuals during the

interval following the primary period of their first sighting differently than for subsequent

intervals. Additional assumptions were that marked and unmarked animals did not differ in

detection, movement, or survival parameters, and mixed randomly [16,61,62]. We defined

four primary periods (summer = June-August, fall = September-November,

winter = December-February, and spring = March-May) [63]. Primary periods contained

three secondary sessions that were completed under optimal conditions with a Beaufort Sea

State�3 (conditions = glassy to crests of some large wavelets breaking), in the shortest time

period to meet the assumption of closure (target:�3 weeks). Secondary sessions (complete

survey of the IRL) were separated by at least one day to allow for population mixing [13]. Exist-

ing dorsal fin catalogs were utilized and established protocols were closely followed [51]. The

survey design used both depth contour lines and alternating saw-tooth transects (total length

~ 743 km) to minimize capture heterogeneity (Fig 1). Alternating saw tooth transects (2.5 km

apart) were traversed in areas where lagoon width exceeded 1.25 km in either direction from

the N-S contour line (based on 95% of prior sightings) [64]. Predetermined routes were down-

loaded into a Global Positioning System unit to ensure transect adherence. Each secondary

survey covering the IRL bottlenose dolphin stock (Ponce Inlet-Jupiter Inlet) [65] was com-

pleted within one to three days (Fig 1).

and Wildlife Conservation Commission. Florida Marine Research Institute. Atlas of Marine Resources, Version 1.3] under a CC BY license, with

permission from [Richard Flamm, Florida Fish and Wildlife Conservation Commission], original copyright [2000].

https://doi.org/10.1371/journal.pone.0250657.g001
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Vessels (5–7 m) containing researchers (n�3) traveled at 10–12 knots to search along pre-

determined tracks. Dorsal fins of encountered dolphins were photographed using a Canon

EOS digital camera with a 100–400 mm telephoto lens (Canon USA, Inc., Melville, NY, USA).

A dolphin group (= sighting) was defined as all dolphins within 100 m that were engaged in

similar behavior with the same general heading [66]. Calves were identified as<75% adult size

and swimming in adult echelon (i.e., in proximity to adult mid-lateral flank). Young-of-year

(YOY) were <50% adult size, swimming in echelon, and characterized by: (a) dark coloration;

(b) floppy dorsal fin; (c) presence of fetal lines; (d) extreme buoyancy; and (e) rostrum-first

surfacing [67–69]. Animals not identified as calves or young of the year were considered

adults. Additional data included: (a) time-location-GPS readings; (b) lat-long in decimal

degrees; (c) behavior; (d) estimated water depth; (e) estimated group size/composition; (f)

environmental covariates; and (g) sighting conditions (Beaufort Sea state, chop height, glare).

Photo-identification analyses and cumulative curve

Dorsal fin image analyses followed established protocols [70]. Briefly, marked dorsal fins were

sorted by notch patterns, with the best photograph serving as the ‘type’ for each dolphin. Sub-

sequently, unambiguous matches were accepted as re-identifications if a minimum of two

experienced personnel agreed. A new individual was added to the catalog if distinctly marked

but not matched with an existing photo.

To minimize false matches, images were graded for photographic quality based on a

weighted scale of five characteristics [71]. Images were then assigned a quality score as follows:

Q1 = excellent; Q2 = average; Q3 = poor. Dorsal fin distinctiveness was assigned a rating as fol-

lows: D1 = very distinct, D2 = moderately distinct, at least two features or one major feature;

and D3 = not distinct, few to no features [71,72]. To avoid potential identification errors, only

Q1 and Q2 quality photographs were used as individual detections in capture-recapture analy-

ses. Thus mark-recapture estimates only applied to the identifiable individuals (D1 and D2).

Unidentifiable individuals (D3; not meeting D1, D2 criteria), were used to estimate the pro-

portion of marked individuals and, as discussed below, the total population size of an area.

Because of the potential for changes in distinctiveness, non-independence from mothers, and

other causes of capture heterogeneity, calves and YOY were excluded from capture-recapture

analyses [51]. Dolphin survival can vary greatly by age class [73]; therefore, focusing on only

adults ensured less capture heterogeneity and more reliable survival estimates.

To informally evaluate population closure, a cumulative curve of marked individuals (i.e.,

discovery curve) [74] was plotted based on the cumulative total number of distinct (D1

andD2) dolphins across each secondary session. Lastly, the percent of exchange of marked dol-

phins between sub-basins was evaluated.

Robust design models

We used program MARK [75] via package RMark [76] in R [77] to assess various Robust

Design capture-recapture models. For each primary period, parameters estimated included

dolphin abundance (N), the probability of apparent survival (φ), the probability of detection

(p), and two temporary emigration parameters: the conditional probability of an animal not

being available for capture (e.g., outside of the study area or within the study area but not avail-

able for detection) given that it was available (U’’) or not available (U’) during the previous pri-

mary period. Some models also included a time since initial capture (“transient”) parameter to

allow separate estimates of survival for animals captured in more than one primary period-sea-

son (= residents) [78].
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A total of 36 models were fit with combinations of structural covariates for detection, sur-

vival, and temporary emigration parameters. Detection models allowed detection to vary

between primary periods (p(season)), secondary sessions (p(season�session)), or to be equal

across all sampling occasions (p(.)). The probability of first detection and the probability of

recapture was assumed equal for all models (no behavioral response). Survival was modeled as

varying by primary period (ϕ(season)) or as a constant (ϕ(.)). A transient covariate was also

included in some models to allow survival during interval following the primary period of an

individual’s initial capture to be estimated separately from survival for all subsequent primary

periods [78]. For those models, survival was allowed to vary by primary period (ϕ(tran-

sient�season)) or to be constant (ϕ(transient)). We assumed that transients were likely to be

sighted in only one primary period and the set of dolphins captured for the first time in any

primary period was a mixture of transients and residents. Therefore, survival estimates for the

first primary period after initial capture (φ1) included apparent mortality (due to permanent

emigration) and were likely biased low [79]. The survival estimates for the remaining observa-

tions (φ2) more accurately reflected resident survival since animals seen in more than one pri-

mary period (season) were likely residents. Assuming that the transients and residents had the

same detection probability within the relatively short primary periods (and thus that the tran-

sients left between the primary periods), then the proportion of transients among the newly-

marked animals (distinct dolphins seen for the first time) can be calculated as τi = φ i2/φ i1

where the i subscript refers to the primary period at the beginning of the survival interval.

Although the number of transients could be computed as Ti = Ni/(Ni + mi), where Ni = the

number of newly-marked individuals and mi = the number of previously marked individuals

captured within time period i [79,80], we did not adjust abundance estimates by removing esti-

mated transients. Temporary emigration was modeled as: 1) Markovian movement in which

the probability of availability was dependent on the previous state (available or unavailable)

(U’’(.) U’(.)); 2) random movement in which availability probability did not differ based on the

previous state (U’’ = U’(.)); or 3) no movement models (U” = U’ = 0) with no temporary emi-

gration. For Markovian and random movement models, the temporary emigration parameters

were constrained to be constant throughout the study. Attempts made to model temporary

emigration as varying over time resulted in some parameters not being identifiable when the

transient covariate was included, potentially due to the number of primary periods (n = 4)

[81]. We chose to constrain movement parameters to be equal over time for all models with

temporary emigration as a conservative approach to comparing models.

The robust design lacks an overall goodness-of-fit test, therefore to evaluate model fit we

used Fletcher’s generic goodness-of-fit statistic (c-hat) [82,83] calculated by program MARK

for the two most parameterized models. This included both time (season) and “transient”

(time since initial capture) effects on survival, time-specific (season and session) detection

parameters, and random temporary emigration parameters. The assumption of population

closure during primary periods was evaluated using goodness-of-fit statistics implemented in

program Close Test version 3 [84]. Model comparisons were based on the small-sample

adjusted Akaike Information Criterion AICc [85], calculated with the theoretical number of

estimable model parameters (i.e., the column rank of the design matrix), rather than the esti-

mated rank of the variance–covariance matrix. Models with ΔAICc < 10 were evaluated for

evidence of numerical estimation errors (indicating a lack of parameter identifiability). Akaike

weights were reported and convey the relative support compared to all candidate models for

each model on a scale of zero to one [85]. Akaike weights and final abundance estimation were

based on model sets including only similar movement sub-model types [85], excluding models

with numerical estimation problems for some parameters (S1 Table).
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To obtain abundance estimates for the total population (identifiable, D1+D2 and unidentifi-

able, D3 dolphins) an ad hoc adjustment was applied as follows [78]. The proportion of identified

individuals (θ) was calculated as the number of adult individuals that were marked (D1 +D2)

divided by the total number of adult individuals (D1 + D2 + D3) observed during each primary

period (season). Abundance estimates for the total population ðN̂ totalÞ in each primary period

(season) were then calculated by dividing the population estimates for identified individuals ðN̂Þ
by the proportion marked (θ). The variance of each total population estimate was calculated as:

var N̂ total

� �
¼ N̂ 2

total �
varðN̂Þ
N̂ 2

þ
1 � ŷ

n � ŷ

 !

where n was the number of dolphins from which θ was estimated. Log-normal 95% confidence

intervals for total population size was calculated with a lower limit of N̂ total/C and an upper limit

of N̂ total�C, where

C ¼ exp za
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1þ ½CVðN̂ totalÞ�
2

q� ��

in which z is the normal deviate, CV is the coefficient of variation, and α = 0.05. Density was esti-

mated as dolphins/km2 by dividing total abundance as calculated above by IRL area: (902 km2).

Closed sub-basin abundance models

To obtain seasonal abundance estimates (N̂ ) for each of the four sub-basins, closed population

capture-recapture abundance models were fit with program MARK [75] via package RMARK

[76] in R [77]. These capture-recapture abundance models made the following assumptions:

population closure (no births, deaths, immigration or emigration), unique marks that were

permanent and correctly read, and equal capture probability for marked and unmarked ani-

mals (random mixing after first capture) [86,87]. A separate model was fit to each sub-basin by

primary period (season), which allowed each secondary session to have a unique capture prob-

ability [88]. Multi-state robust design capture-recapture models could potentially have pro-

vided sub-basin-specific abundance estimates (and movement probabilities), but these models

require many additional parameters. Given that data were limited to four primary periods

[81], such complex models were prohibited (too many parameters for the available data).

Although potentially losing some statistical power, fitting separate closed models produced

reasonable abundance estimates with good precision and provided valuable baseline estimates

for resource managers. Closed population capture-recapture abundance estimates were

adjusted for unidentifiable individuals following the methods described above for Robust

Design abundance estimates. Density by sub-basin was estimated as dolphins/km2 by dividing

the total abundance estimates by the area of each sub-basin.

Results

Field effort and photo-identification

From August 2016 through May 2017, 135 vessel surveys (25 survey days) were conducted

throughout the IRL during four capture-recapture primary periods (12 secondary sessions).

Each secondary session (complete IRL survey replicate) employed 11–13 vessels (11.42 ± 1.00

SD) over 1–3 d (2.3 ± 0.65 SD). Each primary period was completed in 13–36 d (20.0 ± 10.9

SD). Vessel surveys ranged from 3.28–14.25 h (8.72 ± 2.21 SD; total field hours: 1,177.58 h).

Over 159,000 photographs were taken of 1,465 dolphin groups, totaling 5,973 dolphins (S2
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Table). Dorsal fin images used in analyses were Q1 = 87.3% or Q2 = 8.4%, while Q3 = 4.3%

were excluded. Calves and YOYs comprised 19.2% of animals sighted. Mean group size was

4.08 (± 4.24 SD) (Table 1).

Cumulative curve of marked individuals and distribution patterns

Distinctively marked individuals (n = 503) were recorded, with 369 (73.4%) observed in one

sub-basin. The southern Indian River had the greatest number with 124 (33.6%) followed by

115 (31.2%) in Mosquito Lagoon, 73 (19.8%) in the northern Indian River and 57 (15.4%) in

the Banana River. A total of 112 marked individuals (22%) were seen in two sub-basins. Move-

ments between three sub-basins were only observed between the NIR, BR and SIR, 22 individ-

uals (4%). Of the individuals seen in two sub-basins, the greatest exchange occurred between

the northern Indian River and the Banana River, followed by the northern Indian River and

the southern Indian River (Table 2). Eighty-seven percent of the distinct individuals in Mos-

quito Lagoon were only observed there, while the remaining 13% were also observed in the

northern Indian River (Table 2). Of the 503 distinctly marked animals, 84 (16.7%) were sighted

during a single survey only (Fig 2). These 84 animals were distributed across all primary peri-

ods (fall = 17; spring = 18, summer = 29, and winter = 20) and sub-basins (Mosquito

Lagoon = 23, Banana River = 17, northern Indian River = 22, southern Indian River = 22). Fre-

quency of sightings of marked animals over the four seasons was one (n = 105; 20.9%), two

(n = 155, 30.8%), three (n = 168, 33.4%) and four seasons (n = 75, 14.9%), and over the 12 sec-

ondary sessions frequency ranged from one to nine (Fig 2). Over the 12 secondary sessions,

cumulative captures of marked animals increased steadily and plateaued over the final sessions

(Fig 3). Within primary periods, a sharp decline in the number of new marked animals

between sessions two and three was evident for nearly all periods (Fig 3).

Robust design and model selection

Fletcher c-hat statistic was 1.03 for the two most parameterized models, indicating no signifi-

cant overdispersion in our data, thus models were not adjusted for overdispersion. The best

Table 1. Mean group size (± SD) of bottlenose dolphins in the Indian River Lagoon and its four sub-basins by primary period.

Period Indian River Lagoon Mosquito Lagoon Banana River Northern Indian River Southern Indian River

Summer 5.08 ± 5.10 4.27 ± 4.85 6.58 ± 6.05 5.39 ± 5.13 4.40 ± 3.70

Fall 3.68 ± 3.98 3.49 ± 3.43 3.46 ± 3.04 3.83 ± 4.28 4.01 ± 5.04

Winter 3.69 ± 3.73 2.95 ± 2.89 5.26 ± 5.61 3.21 ± 3.21 3.55 ± 2.58

Spring 3.94 ± 3.98 3.01 ± 3.28 4.52 ± 5.00 4.33 ± 4.19 3.83 ± 2.74

Mean 4.08 ± 4.24 3.49 ± 3.81 4.92 ± 5.15 4.10 ± 4.21 3.88 ± 3.56

https://doi.org/10.1371/journal.pone.0250657.t001

Table 2. Percentage of marked bottlenose dolphins exchanged among four Indian River Lagoon sub-basins.

Exchange sub-basin Sub-basin of origin

Mosquito Lagoon Banana River Northern Indian River Southern Indian River

Mosquito Lagoon 87 0 8 0

Banana River 0 36 28 18

Northern Indian River 13 38 35 27

Southern Indian River 0 26 29 55

Each row gives the percent of all the individuals that were initially photographed in one sub-basin (origin) that were also photographed in another sub-basin (exchange).

https://doi.org/10.1371/journal.pone.0250657.t002
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supported models (12 of the 36) had AICc values<4 (S1 and S3 Tables). Of these, five had

ΔAICc < 2 (= high support). The remaining seven had 2< ΔAICc < 4 (= moderate support)

[89]. Population closure during primary periods was supported except during spring when

potential losses between secondary sessions one and two were indicated (S4 Table). The best

supported model allowed survival to vary by primary period (season) and by time since initial

capture (“transient”), and no temporary emigration (S3 Table). The second-best model also

allowed survival to vary by time since initial capture but had random temporary emigration.

All of the best supported models allowed a unique detection probability estimate for each sec-

ondary session within seasons. Model average estimates of detectability ranged from 0.20 to

0.42 between secondary sessions (Table 3, S2 Fig). The model average estimates of seasonal

(three month) marked dolphin survival for residents ranged from 0.85–1.00 (Table 4).

Temporary emigration models with random movement (combined Akaike model

weight = 0.42) had more support than those with no movement (combined Akaike model

weight = 0.34) or Markovian movement (combined Akaike model weight = 0.22) (S1 Table).

Based on model average estimates of Markovian models, the probability that a dolphin became

unavailable if it had been available in the previous primary period (U”) was quite low with the

model average estimate being 0.05 (SE = 0.05). The probability was greater that a dolphin

remained unavailable for observation (outside the study area) given that it had been unavail-

able in the previous primary period (U’), but estimates lacked precision 0.48 (SE = 0.44). The

estimated proportion of transients (transient rate) among the marked population ranged from

0.06 in winter to 0.07 in fall, the only seasons for which the proportion of transients could be

estimated. The proportion of marked individuals ranged from 0.40–0.45 between primary

Fig 2. Sighting frequency of marked bottlenose dolphins in the Indian River Lagoon (Florida east central coast). Number of sightings (= number of

secondary sessions out of 12) in which an individual was photographed.

https://doi.org/10.1371/journal.pone.0250657.g002

PLOS ONE Abundance and survival of Indian River Lagoon dolphins

PLOS ONE | https://doi.org/10.1371/journal.pone.0250657 April 28, 2021 10 / 24

https://doi.org/10.1371/journal.pone.0250657.g002
https://doi.org/10.1371/journal.pone.0250657


periods (Table 5). Abundance for the IRL Estuarine System stock ranged from 981 (95% CI:

882–1,090) dolphins in the winter season to 1,078 (95% CI: 968–1,201) dolphins in the sum-

mer season (Table 5, S3 Fig). Mean estimated dolphin abundance was 1,032 (95% CI: 969–

1,098) (Table 5). IRL density ranged from 1.09–1.20 dolphins/km2 (1.15 ± 0.05 SD) (Table 5).

Abundance by sub-basin (closed models)

The greatest mean abundance was in the southern Indian River, followed by the Banana River

and northern Indian River; while the lowest mean abundance was observed in Mosquito

Lagoon (Table 6, S4 Fig). Mean estimates of detectability were greatest for the Banana River

(0.40) and Mosquito Lagoon (0.32), followed by the Northern Indian River (0.23) and the

Southern Indian River (0.20) (S5 Table). Dolphin density (dolphins/km2) varied by sub-basin

with the largest mean density in the southern Indian River (2.00 ± 0.60 SD), followed by the

Banana River (1.72 ± 0.57 SD), Mosquito Lagoon (1.23 ± 0.32 SD), and the northern Indian

River (0.91 ± 0.27 SD) (Table 6).

The mean percent of identified individuals 43 ± 0.12 SD varied between sub-basins with the

largest occurring in the southern Indian River (58.8%), followed by Mosquito Lagoon (47.0%),

the Northern Indian River (38.0%) and the Banana River (29.4%) (Table 6).

Discussion

Estimating the abundance and demography of bay, sound and estuarine bottlenose dolphin

populations pose challenges due to shallow water inaccessibility, the uncertainty of population

boundaries, and the movement of non-residents within the system [1–3,13,90,91]. Here we

implemented a Robust Design photo-identification survey to estimate bottlenose dolphin

abundance for the Indian River Lagoon estuarine system stock (Florida) while accounting for

both temporary emigration by residents and occurrence of transient (non-resident) dolphins.

Our estimates achieved good precision and were comparable to those derived from recent IRL

studies [21], suggesting that the population size has been stable over the last decade. Addition-

ally, our study provided estimates of high seasonal survival, low transient rate and moderate

temporary emigration rate. Model selection preference for models without temporary emigra-

tion (the ’no movement’ model) and the low estimated transient rate supported a resident IRL

dolphin stock, in agreement with results from prior studies [18,19]. While the observed tran-

sient rate was low, by excluding potential transients we were able to more accurately estimate

resident IRL dolphin survival by separating dolphins sighted in only one season (= transients)

from those sighted in more than one season. These data provide critical guidance for a popula-

tion whose diminishing health, coupled with anthropogenic impacts, likely promotes a mortal-

ity rate that exceeds potential biological removal [37].

Demographic and abundance parameters

Our capture-recapture study estimated a transient rate of 7%, which was less than the observed

rate of single sightings (e.g., 84 of 503 marked dolphins were sighted only once, with 27% of

these in Mosquito Lagoon). This illustrates the utility of the model allowing for transients to be

separated from residents that were potentially only seen once. The low estimate of transient

rate further supported the use of a closed Robust Design. Within primary periods, a sharp

decline in the number of new marked animals between sessions two and three was evident for

nearly all periods (exception was a slight winter increase; 13 to 19 new marked animals

between sessions), supporting population closure within the primary periods [74]. Further-

more, the majority of those that were sighted only once in Mosquito Lagoon (57%) also inhab-

ited the adjacent Halifax River estuary to the north, and a few ranged further north into the
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JES (S6 Table) [25]. However, while this low rate suggests transients did not play a large role in

the population biology of IRL dolphins, results should be interpreted with the understanding

that rates depend on how study boundaries were defined which likely did not perfectly align

Fig 3. Number of marked bottlenose dolphins by seasonal replicate (= secondary session) during Indian River Lagoon surveys (Florida east-central coast).

Superimposed onto the plot is the cumulative curve of distinct (D1) and moderately distinct (D2) individuals.

https://doi.org/10.1371/journal.pone.0250657.g003

Table 3. Model averaged estimates of detection (p) of marked bottlenose dolphins during Indian River Lagoon

surveys (Florida east-central coast) by seasonal replicate (= secondary session).

Session p SE 95% CI

LCL UCL

Summer session 1 0.42 0.03 0.36 0.47

Summer session 2 0.36 0.03 0.31 0.41

Summer session 3 0.39 0.03 0.34 0.44

Fall session 1 0.21 0.02 0.17 0.26

Fall session 2 0.35 0.03 0.29 0.41

Fall session 3 0.20 0.02 0.17 0.25

Winter session 1 0.34 0.03 0.29 0.40

Winter session 2 0.33 0.03 0.28 0.38

Winter session 3 0.39 0.03 0.34 0.45

Spring session 1 0.32 0.03 0.26 0.38

Spring session 2 0.40 0.04 0.34 0.48

Spring session 3 0.23 0.03 0.18 0.28

Detection was estimated with Robust Design capture-recapture models for Indian River Lagoon dolphins (2016–

2017). �LCL = Lower confidence limit; UCL = Upper confidence limit.

https://doi.org/10.1371/journal.pone.0250657.t003
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with biological factors. Furthermore, transient rates may be driven by environmental condi-

tions, as found in a recent study [24]. Although rare (4.3%), it is possible that excluded poor

quality images contributed to some resident dolphins being categorized as transients. Since

apparent survival is a product of true survival and site fidelity [92], it was expected that the

inclusion of a transient parameter would increase survival rates for marked IRL adults by

reducing the effect of non-residents on apparent survival (i.e., reducing negative bias). How-

ever, including the transient parameter may have over corrected and biased resident survival

upward by removing individuals from those estimates with the lowest survival [93]. This could

be reduced in future studies by including covariates that identify dolphins known to range

beyond the study area.

Evidence was mixed for the occurrence of temporary emigration, but model selection gen-

erally supported non-structured movement (i.e., random), suggesting that some dolphins

were, at times, unavailable for re-sighting. Although less supported, the Markovian movement

model indicated that while IRL dolphins rarely temporarily emigrate from the study area,

those that do may remain absent for more than one season. Likewise, we found the probability

of an individual not being available during a primary period if it was not available in the prior

session was greater (48%) than if it was available in the prior session (5%). Temporary emigra-

tion, as measured by the robust design, can be caused by true absence from the study area, or

by individuals present but unobservable during a primary period. Individuals inhabiting the

periphery of the study region, with home ranges extending beyond the IRL border, may have

contributed to such temporary emigration. Resident dolphins have also been documented uti-

lizing oceanic habitat [49]. Availability bias [94] may also occur due to dolphins utilizing the

labyrinth of canals, freshwater creeks, and shallow waters surrounding islands throughout the

IRL [49,64]. This bias could be potentially mitigated by including covariates that model detec-

tion heterogeneity such as distance from shallow labyrinth or inlets.

Table 4. Model averaged estimates of adult survival rates (S) of marked bottlenose dolphins between primary periods during Indian River Lagoon surveys (Florida

east-central coast).

Survival Random S (95% CI) SE No movement S (95% CI) SE Markovian S (95% CI) SE

S transient Summer-Fall 0.94 (0.88, 0.97) 0.02 0.93 (0.88, 0.96) 0.02 0.95 (0.83, 0.99) 0.03

S resident Fall-Winter 0.98 (0.74, 1.00) 0.03 0.98 (0.74, 1.00) 0.03 1.00 (1.00, 1.00) 0.00

S transient Fall-Winter 0.93 (0.74, 0.98) 0.05 0.90 (0.69, 0.98) 0.06 0.94 (0.67, 0.99) 0.06

S resident Winter-Spring 0.92 (0.60, 0.99) 0.08 0.85 (0.64, 0.94) 0.07 0.93 (0.53, 0.99) 0.08

S transient Winter-Spring 0.90 (0.61, 0.98) 0.08 0.84 (0.57, 0.95) 0.09 0.90 (0.59, 0.98) 0.08

Model-averaged survival estimates are given separately for each of the three temporary emigration models (random, no movement, and Markovian-see methods).

Transient refers to survival estimates for the first captures (including transients and residents) while resident refers to survival estimates for all subsequent captures

(residents only). SE = standard error.

https://doi.org/10.1371/journal.pone.0250657.t004

Table 5. Estimated abundance (95% CI) by primary period for the Indian River Lagoon dolphin population (2016–2017).

Primary period N̂^ identified (95% CI) Proportion identified N̂^ identified + unidentified (95% CI) Density (dolphins/km2)

Summer 450 (421, 491) 0.42 1078 (968, 1201) 1.20

Fall 447 (400, 512) 0.43 1040 (903, 1198) 1.15

Winter 445 (411, 492) 0.45 981 (882, 1090) 1.09

Spring 408 (367, 468) 0.40 1027 (895, 1178) 1.14

Abundance of marked fraction (N̂^ identified) was the model averaged abundance estimates for dolphins with identifiable dorsal fins. N̂^ identified + unidentified was the

estimated number for all adult dolphins after adjusting for the proportion identified.

https://doi.org/10.1371/journal.pone.0250657.t005
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Survival rates for identified residents varied widely across movement models. A trend of

initially high resident survival, which decreased between the first (fall-winter) and the second

(winter-spring) interval, was evident across all models that included both transient and season

effects. While variation in survival between seasons may have occurred, the reduction may

instead be due to the limited number of primary periods employed. Low-biased survival at the

end of a study (the last survival estimates in a time series) has been noted in prior studies, and

is a potential result of constraints or biased estimates at the end of the time series [81]. During

our study, cases of documented marked adult mortality were low (n = 3, S7 Table), although

may be underrepresented since even in the well-studied Sarasota Bay estuary, only one-third

of dolphin carcasses were recovered [95]. Marked resident survival in the first (fall-winter)

time period, range 0.98–1.00 more closely matched observed mortality. Thus, the first time

period likely provides the most reliable estimate of survival for utilization by resource manag-

ers. Longer-term studies with increased primary periods should improve survival estimation.

Detection probability between secondary sessions ranged from 0.20–0.42, values which fell

within recommended bounds of effective capture-recapture survey designs (0.2–0.3; [51]).

Detection was least in fall, and likely influenced by an increased sea state (waves) common to

that season [96]. The mean proportion of marked dolphins (0.43 ± 0.12) was less than other

study systems with mean rates of 0.79 and 0.72 respectively [13,97]. Differences in dorsal fin

marking rates between populations may be influenced by ecosystems [98]. Since extensive por-

tions of the IRL are relatively isolated [56] in contrast to more open bays [2,13,90,91], hetero-

geneity between regions (e.g., anthropogenic activities, conspecific interactions) could

contribute to differences in marked ratios. Furthermore, in other study regions, rates of dorsal

fin marking have a sex-bias, with significantly higher rates of dorsal fin nicks in males [99].

Table 6. Estimated abundance (95% CI) and density of bottlenose dolphins in the Indian River Lagoon sub-basins, by primary period during 2016–2017.

Sub-

basin

Primary period N all N identified Proportion identified N̂^ identified (95% CI) N̂^ identified and unidentified (95% CI) Density (dolphins/km2)

ML Summer 445 229 0.51 105 (91,133) 205 (166, 252) 1.46

ML Fall 255 105 0.41 54 (41, 86) 130 (87, 194) 0.93

ML Winter 281 127 0.45 69 (61, 89) 153 (122, 191) 1.09

ML Spring 218 109 0.50 113 (87, 168) 225 (157, 324) 1.61

BR Summer 427 140 0.33 112 (104, 127) 341 (288, 403) 1.69

BR Fall 232 69 0.30 143 (107, 216) 482 (321, 725) 2.39

BR Winter 410 96 0.23 86 (77, 107) 369 (290, 469) 1.82

BR Spring 333 106 0.32 65 (61, 77) 204 (168, 248) 1.01

NIR Summer 356 140 0.39 193 (148, 275) 491 (349, 690) 1.30

NIR Fall 173 62 0.36 109 (74, 192) 303 (178, 517) 0.80

NIR Winter 298 107 0.36 94 (78, 127) 260 (195, 348) 0.69

NIR Spring 287 117 0.41 134 (107, 188) 329 (239, 452) 0.87

SIR Summer 232 153 0.66 147 (115, 208) 223 (163, 305) 1.23

SIR Fall 262 149 0.57 270 (195, 411) 475 (320, 705) 2.61

SIR Winter 364 207 0.57 240 (201, 303) 421 (336, 528) 2.32

SIR Spring 227 126 0.56 188 (132, 304) 338 (216, 527) 1.86

Abundance estimates (N̂^) calculated using closed capture-recapture models are given for the dolphins with identifiable dorsal fins (identified), and the estimated total

for all adult dolphins after adjusting for the proportion of unidentified animals observed in each primary period (identified and unidentified). The raw number of

identified adults (N identified) and all adults (N all) observed during each season is also presented. Sub-basins included the Mosquito Lagoon (ML), Banana River (BR),

northern Indian River (NIR) and southern Indian River (SIR). 95% confidence intervals of the estimates are given in parentheses.

https://doi.org/10.1371/journal.pone.0250657.t006
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Potential heterogeneity in capture probability may occur as larger groups contain more calves

[100], and by extension female dolphins with less propensity to be marked [99]. Interestingly,

the marked ratio varied by sub-basin, with the greatest in the southern Indian River (0.588)

and the least in the Banana River (0.294). Dolphins in the southern lagoon have the highest

prevalence of boat-injuries that yield dorsal fin disfigurement, in relation to other sub-basins

[101], and this may contribute to variability in marks among sub-basins. Much of the northern

Banana River prohibits motorized vessels and has no public usage [102], thereby limiting

entanglement, vessel strikes, and capture-release activities for dolphin health assessment that

may influence dorsal fin marking [8,101,103].

Abundance and distribution patterns

Our mean dolphin abundance and density estimates for the Indian River Lagoon stock were

similar to those derived from multi-year line transect aerial surveys [21]. Both the current

study and prior aerial efforts [21] observed the greatest mean abundance in the southern

Indian River sub-basin and the lowest in Mosquito Lagoon. Only slight changes in abundance

were observed between seasons, in contrast to the aerial surveys, in which dolphin abundance

was greater in winter than summer [21]. Winter aerial surveys were conducted during several

unusually cold periods, which may have contributed to increased abundance in the Mosquito

Lagoon and the southern Indian River [21]. While aerial survey estimates of dolphin detect-

ability did not vary seasonally [21], these extreme cold events possibly influenced abundance

estimates through heterogeneity in availability due to dolphin behavior. Longer-term mark-

recapture studies in northeastern Florida (2011–2016), have found evidence for a winter influx

of transients into Mosquito Lagoon from adjacent northern estuaries [24] which also may

influence abundance estimates. Seasonal variance in abundance for the southern Indian River

(i.e., lower summer abundance and increased winter abundance) was similar to that observed

in previous studies [21], although the cause of this variation has yet to be determined. Studies

aimed at estimating IRL dolphin abundance will ultimately need to address movements of ani-

mals in and out of the study area which may be more common near the perimeters.

Although we found limited evidence for transience and temporary emigration, a prior

study identified two separate dolphin communities in Mosquito Lagoon, with the northern

community extending beyond the IRL boundary [60]. These findings, coupled with studies

that indicate movements of IRL dolphins beyond the northern boundary [24,25], suggest this

sub-basin may have higher temporary emigration and transient rates, causing greater fluctua-

tions in abundance [21]. The majority of dolphins inhabiting the Mosquito Lagoon sub-basin

have been found to exhibit strong site fidelity (71% exclusive to ML) [104], which was also

observed in this study (87% of Mosquito Lagoon individuals were only observed therein).

These results support Mosquito Lagoon dolphins being relatively isolated from the rest of the

IRL. The current study found the greatest sub-basin exchange between the northern Indian

River and the Banana River. Results are similar to a prior study which found four communities

within the Indian and Banana Rivers, with one occupying a portion of the NIR and BR, and

three in the SIR (this study); all overlapping adjacent basins [60]. Movements observed within

the IRL coincided with previously described IRL dolphin communities, further supporting the

lack of connectively between ML dolphins and the other IRL sub-basins.

Dolphin group size may be influenced by environmental factors, with smaller groups pre-

dominating in shallow estuarine waters [66,105–108]. Slightly larger mean dolphin group sizes

were observed in this study than was recorded in the aerial surveys [21]. The proportion of

calves (including YOY) in this study (19.2% of observations) was significantly larger than the

5.42% estimated from the aerial survey [21]. However, differences were likely due to the
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conservative methods utilized to define calves during aerial surveys (half the size of the adult)

which would be expected to under-count calves. Our results were comparable to prior vessel-

based IRL studies where calves constituted 24% of encounters [100], and to Sarasota Bay

where calves constituted 21.5% [109].

Management implications

A goal of future capture-recapture studies should be to improve stock delineation and commu-

nity structure and to better quantify transient movements. Depending on management objec-

tives of future studies, our parameter estimates could be used in simulations to identify

opportunities to reduce sampling effort or increase precision. For example, variability of sur-

vival estimates increased during the current study, possibly influenced by the low number of

primary periods (n = 4). Conducting future survey efforts over a longer time period, with an

increased number of primary periods, could provide more precision in estimating temporal

parameters and thus improve survival estimates. Incorporating long-term monitoring designs

and comprehensive ecosystem monitoring approaches [110] may also help increase efficien-

cies. Lastly, the northern portion of the study area did not incorporate the full extent of the

home range for dolphins in Mosquito Lagoon [21,24,25]. This could potentially cause avail-

ability bias due to temporary emigration; therefore, future studies should give further consid-

eration to stock delineation in this area.

Effective management of the IRL dolphin stock requires data on distribution and abun-

dance. Estimates derived herein demonstrate the feasibility of utilizing a robust design meth-

odology and provide the first estimates of temporary emigration, transient rate, and survival

for this population. The most reliable estimate of marked resident survival for IRL dolphins in

this study was similar to that recorded in other bays and estuaries [31,111]. However, IRL dol-

phins have experienced recurring mortality peaks (2001, 2008, 2013, 2013–2015) where annual

mortality peaked at 77 dolphins [37,59]. Variability in annual mortality is quite high for this

population [37,59], and diminished ecosystem health [38], fisheries-related takes, and other

anthropogenic activities continue to threaten this compromised dolphin population. Thus,

our parameter estimates will provide critical guidance to stock management.

Supporting information

S1 Fig. Parameter estimates from robust design analysis of 1000 simulated data sets. Dol-

phin populations were set with initial size 1000, a detection parameter of 0.3, survival at 0.95,

and the rate of gamma prime (U’ = probability of a dolphin being unavailable for observation

if unavailable in the prior primary period) and gamma double prime (U” = probability of a

dolphin being unavailable if available in the prior primary period) were both set at 0.1. �Mean

parameter estimate = dot, median = triangle, vertical line = true parameter value.

(TIF)

S2 Fig. Model averaged estimates (95%CI) of detection of marked bottlenose dolphins dur-

ing Indian River Lagoon surveys (Florida east-central coast) by secondary session. Detec-

tion was calculated using Robust Design models for capture-recapture in the Indian River

Lagoon Estuarine System.

(TIF)

S3 Fig. Estimated abundance (total and marked) derived for bottlenose dolphins from the

Indian River Lagoon, Florida (2016–2017). Marked abundance estimates include marked

animals only. Total abundance estimates were adjusted for the ratio of marked: Unmarked
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individuals.

(TIF)

S4 Fig. Estimated dolphin abundance estimated by sub-basin and primary period using

closed population capture-recapture abundance models. Total dolphin abundance estimates

were obtained by adjusting for the ratio of marked: Unmarked individuals observed in each

sub-basin of the Indian River Lagoon (2016–2017).

(TIF)

S1 Table. Results of robust design model selection. Parameters include: Apparent survival

(φ), capture probability (p), the probability being unavailable for capture if the individual was

available in the prior period (U’’) or unavailable in the prior period (U’) and were constrained

constant (.) or allowed to vary by primary period (season) and/or secondary session. Models

allowed apparent transient survival to be constant (φ (transient)), or to vary by primary period

(φ(transient�season)). Three models (italics) had numerical estimation problems and were not

included in inferential procedures.

(XLSX)

S2 Table. Observed and photographed bottlenose dolphin groups (sightings) in the Indian

River Lagoon, compiled by sub-basin and primary period. Primary periods as follows: Sum-

mer = 10–23 Aug. 2016, Fall = 1–5 Nov. 2016, Winter = 18 Jan.-3 Feb. 3, 2017, Spring = 17

Apr.-23 May 2017.

(XLSX)

S3 Table. Estimated survival and movement parameters (95% CI) for the 12 best supported

models for Indian River Lagoon bottlenose dolphins. Standard errors were calculated using

profile likelihood estimation. To aid estimate comparisons, models with (a) and without (b)

the transient parameter (time since first capture) are grouped. Time-specific adult survival

rates (S) are presented for transients and residents, and survival estimates for time constant

models are listed in the first time-specific row. Parameters include apparent survival (φ),

model averaged estimates of adult survival rates (S) between primary periods, and temporary

emigration: Conditional probability of an animal not being available for capture if it was avail-

able during the previous primary period (U’’) or not available (U’).

(XLSX)

S4 Table. Population closure test for Indian River Lagoon dolphins suggesting population

closure for all primary periods except for spring. Test subcomponent statistics indicated

lack of closure in spring was due to losses between secondary sessions one and two.

(XLSX)

S5 Table. Estimated detection (p) (95% CI) of marked bottlenose dolphins by sub-basin

and seasonal replicate (= secondary session) during Indian River Lagoon surveys (Florida

east-central coast). Detection was estimated using closed capture-recapture models for Indian

River Lagoon dolphins (2016–2017).

(XLSX)

S6 Table. Sighting history for thirteen bottlenose dolphins sighted only once in Mosquito

Lagoon (considered potential transients). Sighting data were collected between 2008 and the

end of the current study. All animals listed had prior sightings north of the Indian River

Lagoon in the Halifax River. �Indicate animals known to range north into the Jacksonville

Estuarine System stock.

(XLSX)
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S7 Table. Marked adult dolphins sighted during secondary sessions and subsequently

recovered deceased during the study.

(XLSX)

S1 Text. Simulation study methods and results.

(DOCX)
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