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Abstract: Our group has recently developed 1-tbutyl carbamoyl, 7-methyl-indole-3-ethyl 

isothiocyanate (NB7M), a novel indole ethyl isothiocyanate analog. We now describe its 

selective cytotoxicity in both central nervous system (CNS) and neuroblastoma (NB) cancer 

cells. In an effort to understand its mechanism of action we examined the effects of NB7M on 

apoptosis, cell cycle arrest, and pro-survival/mitogen-activated protein kinase (MAPK) signaling 

in neuroblastoma cells. NB7M proved highly cytotoxic to NB cell lines (SMS-KCNR, SK-N-

SH, SH-SY5Y, IMR-32) with IC
50

 values ranging from 1.0–2.0 μM, whereas lung fi broblasts 

were less affected (IC
50

 � 10 μM). In the NCI 60 cell screen 1-dose assay, NB7M (10 μM) 

reduced the growth (−89 to −27 % growth) of CNS cancer cell lines SF-268, SF-295, SNB-75 

(glioblastoma), SF-539 (gliosarcoma), and U251 (astroglioma) while SNB-19 glioblastoma cells 

were relatively resistant (19% growth). Hoechst staining of SMS-KCNR cells treated with NB7M 

(3 μM) for 24 hrs exhibited signifi cant chromatin condensation and DNA fragmentation, whereas 

Annexin-v/7AAD staining revealed that the majority of cells accumulated in the early-apoptotic 

and late-apoptotic/necrotic stages. NB7M treatment of SMS-KCNR and SH-SY5Y cells also led 

to the cleavage of procaspases-3, and PARP-1 while causing activation of pro-apoptotic MAPKs 

and down-regulation of pro-survival factors AKT and PI-3K. Furthermore, NB7M treatment 

caused S-phase arrest in SMSKCNR and G1-phase arrest in SH-SY5Y cells. NB7M is active 

against CNS cancers and NB.
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Introduction
Cancers of the brain and spinal cord represent the second most common types of cancer 

affecting children, accounting for 20% of all childhood cancers. About 20% of all 

brain tumors occur in children younger than 15, usually peaking between ages fi ve and 

10. Similarly, neuroblastoma (NB), predominantly a tumor of the peripheral nervous 

system (PNS), occurs in early childhood and is the most common extracranial solid 

tumor. Two-thirds of these tumors occur in children younger than age 5. NB accounts 

for 7%–10% of all childhood cancers; in the majority of patients older than age 1 the 

disease is fatal (Brodeur et al 2001). Treatment methods currently available include 

surgery, radiation, chemotherapy, and autologous stem-cell transplantation (Matthay 

et al 1999; Perez et al 2000). However, despite intensive multimodality treatment, more 

than 50% of children with high-risk NB relapse, due to drug-resistant residual disease 

(Perez et al 2000; Goldsby and Matthay 2004). Elimination of refractory microscopic 

disease remains one of the most signifi cant challenges in the treatment of the high-risk 

nervous system cancers and innovative treatments are still needed.
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Isothiocyanates (ITCs) are currently being investigated as 

anti-tumor agents (Kalkunte et al 2006; Satyan et al 2006), 

and in animal models ITCs have been shown to inhibit chemi-

cally induced tumor genesis in the lung, stomach, colon, liver, 

esophagus, bladder, and mammary glands (Conaway et al 

2002). Several mechanisms of action have been proposed, 

including (i) induction of apoptosis and G2/M cell cycle 

block (Jackson et al 2007), (ii) inhibition of phase-I and -II 

carcinogen-activating enzyme (Dick and Kensler 2002), (iii) 

increase in nuclear content of NF-κB (Jakubikova et al 2006), 

(iv) inhibition of histone deacetylase (Jakubikova et al 2005) 

and (vi) up-regulation of thioredoxin reductase-1 (Johnson 

et al 2004). Various other effects such as disruption of micro-

tubulin polymerization (Jackson and Singletary 2004) and 

disruption of mitochondrial membrane potential have been 

reported (Yuesheng et al 2003). Moreover, naturally occur-

ring ITCs (Figure 1) inhibit activation and/or function of 

factors implicated in the emergence of multi-drug resistance 

(Tseng et al 2004).

Naturally occurring indole derivatives, such as Indole-

3-carbinol, exhibit potent antiproliferative activity, induce 

apoptosis, and cause cell cycle arrest in many human solid 

and nonsolid tumors (Garcia et al 2005). Recently, we 

described the identifi cation of a novel indole scaffold-based 

isothiocyanate class of potent cytotoxic agent (7Me-IEITC) 

which showed potent antitumor activities in both high risk 

neuroblastoma (Singh et al 2007) and platinum-resistant 

ovarian cancer (Singh et al 2008). Interestingly, further 

structural optimization by tert-butyloxycarbonyl (tBOC) 

protection of the indole nitrogen led to the identifi cation of 

a more potent analog (NB7M; Figure 1) which has recently 

shown a broad range of antitumor activity in the NCI 60 

cell in vitro screen 1-dose assay against multiple cancer 

cell-types, including central nervous system (CNS) cancers. 

Furthermore, we have recently investigated the in vitro 

cellular apoptotic effects of NB7M in platinum-resistant 

ovarian (SKOV-3) cancer cells (unpublished).

The primary objective of the present study was to 

investigate the cytotoxic effects of NB7M against both high 

risk CNS cancer cell lines and neuroblastoma. This was 

accomplished by (i) screening NB7M against a panel of 

CNS cancer and neuroblastoma cell lines, (ii) defi ning its 

antiproliferative and apoptotic effects in conjunction with key 

signaling changes in SMS-KCNR and SH-SY5Y NB cells, 

and (iv) by studying its effects on cell cycle progression.

Material and methods
Cell lines (human)
The human neuroblastoma cell lines SK-N-SH, IMR-32, SH-

SY5Y (ATCC, Manassas, VA), SMS-KCNR (gift from John 

Maris, Children’s Hospital of Philadelphia, Philadelphia, 

PA), and MRC-5 human lung fi broblasts, (ATCC, Manassas, 

VA) were maintained in RPMI 1640 media supplemented 

with 10% (v/v) fetal bovine serum, 100 units/ml penicillin 

and 100 μg/ml streptomycin at 37 ºC in a 5% CO
2
, humidifi ed 

incubator. SH-SY5Y cells were grown in complete DMEM 

media (10% FBS+100 units/mL penicillin and 100 μg/mL 

streptomycin, supplemented with 1% MEM NEAA, catalog 

#11140, Invitrogen). Cells were then grown in T75 cell cul-

ture fl asks (Corning, New York, NY) to ~80% confl uency in 

complete medium (Gibco, Rockville, MD). For all assays, 

cells were allowed to attach overnight and treated in com-

plete RPMI medium. Details regarding the maintenance and 

handling of CNS cancer cells lines used in NCI 60 cell screen 

1-dose assay are available at http://dtp.nci.nih.gov.

Cell viability assay
Viability of cells was determined by the 96®Aqueous-One-

Solution Assay (Promega, Madison, WI). This colorimetric 

assay is based on the ability of mitochondria to reduce a 

substrate (MTS) into a soluble formazan product with an 

absorbance at 490 nm (ELISA plate reader; Thermo Labsys-

tems, Waltham, MA) directly proportional to the number of 

living cells (Malich et al 1997). Cells (5 × 103) were plated 

in 96-well fl at bottom plates (Corning, Inc., Corning, NY) 

and treated with NB7M. Experiments were performed in 

triplicates; data are expressed as the mean of the triplicate 

determinations (X ± SD) of a representative experiment in % 

of absorbance of samples with untreated cells (100%).

Measurement of mitochondrial 
transmembrane potential
Variations in mitochondrial transmembrane potential (ΔYm) 

during the induction of apoptosis were examined using 

3,3-dihexyloxacarbocyanine iodide (DiOC63) (Invitrogen, 

Figure 1 Naturally occurring ITC; design and structure of novel Indole ethyl ITC (IEITC). 
(A) Various naturally occurring ITC: (i) BITC; (ii) PEITC; (iii) Sulforaphane. (B) Design of 
novel Indole ethyl isothiocyantes (IEITC) leading to NB7M.
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Oregon, USA). Cells (1 × 106) were seeded in a 100 mm 

Petri dish and treated with media alone or with of NB7M 

(1.5 μM) for 4 or 12 hrs. Following treatment, cells were 

washed with phosphate buffer solution (PBS), re-suspended 

in fresh medium (5 × 105 cells/mL) and incubated with 15 nM 

DiOC63 for 30 min at 37 °C. The cells were then washed 

twice with DPBS, re-suspended in equal volumes of DPBS 

and DiOC63, and measured by fl ow cytometry (excita-

tion = 488 nm, emission = 520 nm). Data was acquired on a 

BD FACSort fl ow cytometer using CellQuest software (BD 

Immunocytometry-Systems, San Jose, CA) and analyzed 

(ModFit LT software, Verity Software House, Inc., Topsham, 

ME). Ten thousand cells were analyzed for each sample.

Morphological studies
Cells were seeded (1 × 104/chamber) in a Lab-Tek Chamber-

Slide System (Nalge Nunc., Naperville, IL) and treated for 

24 hrs with 2 μM of NB7M. Following two washes with PBS, 

cells were fi xed in PBS, 2% PFA, 0.2% Triton X for 20 min 

at room temperature and stained for 10 min with 200 ng/mL 

Hoescht in PBS before mounting. Representative images 

were taken with an inverted microscope (Nikon Eclipse 

TE2000-E, CCD camera) and 20X objective.

Apoptosis (AnnexinV assay) 
by FACS analysis
SMS-KCNR cells (1 × 106) were seeded in a 100 mm2 

Petri dish and treated with NB7M (0, 1.5, and 3 μM) for 

24 hrs. Following treatment, cells were washed twice 

with cold PBS, re-suspended in binding buffer (1X) at 

a concentration of 1 × 106 cells/mL. 100 μL of the cell 

suspension (1 × 105) was transferred to a 5 mL culture tube. 

Five μL of AnnexinV-PE and 5 μL of 7-AAD were added 

to each tube. Cells were gently vortexed and incubated 

with for 15 min at room temperature (25 °C) in the dark. 

Next, 400 μL of binding buffer (1X) was added to each 

tube and the cell suspension was subsequently analyzed by 

fl ow cytometry (excitation = 488 nm, emission = 520 nm). 

Data was acquired on a BD FACSort fl ow cytometer using 

CellQuest software (BD Immunocytometry-Systems, San 

Jose, CA) and analyzed (ModFit LT software, Verity 

Software House, Inc., Topsham, ME). Ten thousand cells 

were analyzed for each sample.

Western blot analysis
Cells were seeded in 100 mm2 tissue culture dishes 

(5 × 105 cells/dish), cultured to ~80% confl uency, and treated 

as indicated. The cells were then rinsed in PBS, pH 7.4, 

scraped, spun down in a microcentrifuge (10,000 g, 5 min) 

and cell pellets re-suspended in lysis buffer (1%NP-40, 

20 mM Tris pH 8.0, 137 mM NaCl, 10% glycerol, 2 mM 

EDTA, 1 mM activated sodium orthovanadate, 10 μg/mL 

Aprotinin, 10 μg/mL Leupeptin, Inhibitor Cocktail P-2714; 

Sigma-Aldrich, St. Louis, MO). Lysates were rocked at 4 °C 

for 5 min, sonicated (10 pulses 5 sec), centrifuged at 14,000 g 

for 10 min, and the protein concentration of the supernatant 

quantifi ed (BioRad protein estimation kit, Hercules, CA). 

The samples were boiled in the presence of 5X SDS-PAGE 

sample buffer to achieve a fi nal concentration of 1X and 

50 μg total protein/lane were separated on 12% SDS-poly-

acrylamide gels and blotted onto PVDF membranes. The 

blots were blocked with 5% nonfat dry milk in PBST for 

1 hr at room temperature and incubated overnight at 4 °C 

with antibodies specifi c for pro-caspase-3, cleaved caspase-3, 

phosphorylated and total p38, JNK1/2, ERK1/2, PI3-K, Akt, 

and STAT-3 (purchased from Cell Signaling Technology, 

Beverly, MA or Amersham-Pharmacia Biotech, Piscataway, 

NJ) at a 1:1000 dilution in 5% BSA in PBST on a rotating 

platform. Actin was probed using mouse anti-actin antibodies 

(Sigma Chemical Company, St. Louis, MO) and used as inter-

nal loading control. The protein bands were photographed 

(BioRad, Gel Document System, GDS 8000). After washing 

in PBST, the blots were incubated with secondary antibodies 

(peroxidase-conjugated antibodies; Amersham-Pharmacia 

Biotech, Piscataway, NJ). The bands were visualized by 

enhanced chemiluminescence and autoradiography (F-Bx810 

Film, Pheonix, Hayward, CA). As a size standard, pre-stained 

Precision plus Protein Kaleidoscope (Biorad, Hercules, CA) 

marker was used.

Cell cycle analysis (by FACS)
Cell cycle analysis and quantifi cation of apoptosis was 

carried out by fl ow cytometry. Cells were seeded in 100 

mm2 tissue culture dishes (7.5 × 105 cells/dish), allowed to 

attach overnight, and treated for 12 and 24 hrs (500 nM and 

1.0 μM). At the end of the incubation period, detached cells 

were collected in 15 mL polypropylene centrifuge tubes 

along with the medium; culture dishes were washed once 

with PBS, adherent cells scraped off and combined in the 

same tube. After centrifugation (250 g, 5 min) cells were 

fi xed (ice-cold 70% ethanol for 30 min) followed by incuba-

tion with 50 μg/mL of propidium iodide and 100 μg/mL of 

RNase for 30 min at 37 °C in the dark. Data was acquired 

on a BD FACSort fl ow cytometer using CellQuest software 

(BD Immunocytometry Systems, San Jose, CA) and ana-

lyzed using ModFit LT software (Verity Software House, 
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Inc., Topsham, ME). Ten thousand events were analyzed 

for each sample. Appropriate gating was used to select the 

single cell population NB cells. The same gate was used on 

all samples, ensuring that the measurements were made on 

a standardized cell population.

Data analysis
Mean and standard deviation (SD) were calculated. Mean 

differences were determined by Student’s t-test or deter-

mined by one-way ANOVA, using the Newman-Keuls test 

to account for multiple comparisons in post hoc analyses. 

Software used for these analyses was GraphPad Prism 3.0 

(San Diego, CA).

Results
NB7M is cytotoxic to both CNS cancer 
and neuroblastoma cell lines
As an initial approach to evaluation of antitumoral activity 

of NB7M, a cell viability assay (Malich et al 1997) of vari-

ous neuroblastoma cancer cell lines treated with NB7M was 

carried out. NB7M dose-dependently reduced the viability 

of all NB cell lines SMS-KCNR, SH-SY5Y, IMR-32, and 

SK-N-SH (IC
50

 below 1.0 μM; Figure 2A). NB7M was 

selectively cytotoxic for NB cells. The viability of primary 

lung fi broblasts (MRC-5, passage 10), which like NB cell 

lines possess a high metabolism and growth rate and, thus, 

were used as controls, were not affected by NB7M treatment 

(Figure 2A drug concentrations as high as 10 μM).

Given its activity against NB cells, we were interested 

in the effects of NB7M against CNS cancer cells. To this 

end, NB7M was submitted to the NCI Developmental 

Therapeutics Program (http://dtp.nci.nih.gov) and screened 

against a panel of 60 cancer cell lines. This panel consists 

of well characterized CNS cancer cell lines such as SF-

268, SF-295, SNB-19, SNB-75 (glioblastomas), SF-539 

(gliosarcoma), and U251 (astroglioma). Following an initial 

1-dose screen (10 μM, per NCI-DTP protocol), NB7M was 

selected for 5-dose screening and all cancer cell lines and 

these results are currently pending. Analysis of the 1-dose 

assay revealed that SF-268, SF-295, SF-539, SNB-75 and 

U251 were sensitive (−89% to −27 growth, Figure 2B) to 

NB7M treatment, whereas, SNB-19 (adherent fi broblastic 

cells of human glioblastoma) were relatively insensitive 

(19% growth). NB7M appears to be a potent cytotoxic agent 

against nervous system cancer cells.

NB7M affects mitochondrial membrane 
depolarization potential and produces 
morphological hallmarks of apoptosis 
in SMS-KCNR cells
We next focused our efforts on the effects of NB7M on 

NB cells, and specifically SMS-KCNR cells (a known 

chemotherapy-resistant cell line). To understand the effects 

of NB7M on cellular functions, we measured the integrity/

loss of mitochondrial transmembrane depolarization potential 

(ΔΨm). NB7M treatment of SMS-KCNR cells resulted in a 

time-dependent increase in the number of cells with ΔΨm. 

After 4 hrs, 20% of the cells, and by 12hrs, 26% of the cells 

had lost their Ψm (Figure 3A). Even within the population of 

remaining cells (74%), fl uorescent staining with DiOC6(3) 

showed a broader distribution of intensity compared with 

nontreated cells, indicating an altered mitochondrial trans-

membrane depolarization potential (Figure 3A, insert at top 

of bar diagram).

To visualize nuclear changes and apoptotic body 

formation that are characteristic of apoptosis, SMS-KCNR 

cells treated with NB7M (3 μM, 24 hrs) were stained 

with Hoechst 33258 staining (Kasibhatla et al 2006). This 

bisbenzimidazole dye is known to penetrate the plasma mem-

brane and stain DNA in cells without permeabilization. In 

this assay, apoptotic cells have a stronger blue fl uorescence 

compared with nonapoptotic cells. In contrast to control cells, 

NB7M-treated cells exhibit highly condensed chromatin that 
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Figure 2 Comparative analysis of the cytotoxic effect of NB7M in a human NB cell lines 
(SMS-KCNR, SH-SY5Y, IMR-32, SK-N-SH). Panel A: NB cells were treated with various 
concentrations (0.625 μM to 10 μM) of NB7M for 48hrs. Viability was measured using the 
MTS assay (see Materials and methods). Experiments were performed in triplicates; data 
are expressed as the mean of the triplicate determinations (X ± SD) of a representative 
experiment in % cell viability of untreated cells (100%). Panel B: CNS cancer cells were 
treated with NB7M (10 μM) for 48 hrs and the cell growth measured according to the 
NCI/DTP assay (see http://dtp.nci.nih.gov/docs/cancer/cancer_data.html for details).
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was uniformly stained by Hoechst 33342 (Figure 3B). Based 

on these morphologic fi ndings, NB7M appears to cause 

apoptosis in SMS-KCNR cells.

Apoptosis is executed by caspases. Initiator caspases (such 

as caspase-2, −8, −9, and −10) function mainly as upstream 

apoptotic signals. Once activated, the initiator caspases 

cleave and activate downstream effector caspases (such as 

caspase-3, −6, and −7), that are responsible for the cleavage 

of many intracellular proteins, ultimately leading to the mor-

phological and biochemical changes associated with apoptosis 

(Salvesen and Abrams 2004). Accordingly, immunoblotting 

of lysates of SMS-KCNR and SH-SY5Y cells confi rmed 

that NB7M treatment resulted in strong activation/cleavage 

of caspase-3 (Figure 3C) and PARP-1, another hallmark of 

apoptosis. Furthermore, within 3, 12, and 24 hrs of the NB7M 

treatment (1 μM), 24%, 39%, and 42% cells lost the membrane 

depolarization potential, which is an indicator of the integrity 

and health of the cells and indicates how rapidly NB7M can 

induce the apoptotic events. The direct consequence of the 

induction of apoptosis by NB7M is the reduction of viability 

in NB cells as demonstrated in (Figure 2A).

To further understand the effects of NB7M on cell 

death and specifi cally to distinguish between apoptosis and 

necrosis, two major cell death pathways, NB7M (1.5 and 

3.0 μM) treated cells were stained with Annexin-V and 

propidium iodide (Van et al 1996). Apoptosis is an active, 

genetically regulated, disassembly of the cell from within. 

Disassembly creates changes in the phospholipid content of 

the cytoplasmic membrane outer leafl et. Phosphatidylserine 

(PS) is translocated from the inner to the outer surface of the 

cell for phagocytic cell recognition. The human anticoagu-

lant, annexin-V, is a 35 kD Ca2+-dependent phospholipid 

protein with a high affi nity for PS. Annexin V labeled with 

fl uorescein (FITC) (λ
abs

/λ
em

= 492/514 nm) can identify apop-

totic cells with green fl uorescence by binding to PS exposed 

on the outer leafl et. On the other hand, necrosis normally 

results from a severe cellular insult. Both internal organelle 

and plasma membrane integrity are lost, resulting in spill-

ing of cytosolic and organellar contents into the surround-

ing environment. Propidium iodide is a highly positively 

charged nucleic acid probe that is membrane impermeant 

and generally excluded from viable apoptotic cells, but stains 

necrotic cells with red fl uorescence (λ
abs

/λ
em

 (intercalated 

with DNA) = 528/617 nm). The combination of annexin-V/

PI provides a convenient way to quantify apoptotic (green) 

and necrotic (red) cells within the same cell population by 

fl ow cytometry. NB7M treatment of SMS-KCNR caused a 

concentration dependent increase in annexin V and PI stain-

ing (Figure 3D). Within 24 hrs of NB7M (3 μM) treatment, 

approximately 40% of SMS-KCNR cells were labeled with 

annexin-V (early apoptosis), 39% cells were stained with 

propidium iodide (late apoptosis and necrosis), and only 

a small cell population remained unlabeled (with either 

annexin-V or PI) compared with the untreated control cells 

(Figure 3D).

NB7M downregulates pro-survival signals 
and upregulatess pro-apoptotic signals 
in SMS-KCNR and SH-SY5Y cells
To defi ne the cellular response of NB cells to treatment 

with NB7M, we analyzed the expression and/or activation 

of cellular markers that are hallmarks of pro-survival (Akt), 

and pro-apoptotic signaling (JNK, p38 MAPK) in both 

SMSKCNR and SH-SY5Y cells.

The effect of NB7M on the activation/phosphorylation 

of JNK, p38 MAPKs and Akt was studied by immunob-

lotting of PAGE separated lysates of treated cells using 

antibodies specifi cally recognizing the inactive, as well as 

the phosphorylated active forms of these proteins. NB7M 

caused strong activation of p38 and JNK MAPKs along 

in both SMS-KCNR and SH-SY5Y cells (Figure 4A). 
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Figure 3 NB7M causes apoptosis in neuroblastoma cells. Panel A: Loss of transmembrane 
depolarization potential in SMS-KCNR cells. Cells were treated with NB7M (1 μM) for 
4 and 12 hrs and an increase in the percentage of cells with reduced transmembrane 
potential is noted. All experiments were performed in duplicate. Panel B: SMS-KCNR 
cells were treated with NB7M (3 μM) for 24 hrs. Treated cells (bottom images) reveal 
disrupted cell structure and chromatin condensation as compared to untreated cells 
(top images). All experiments were performed in duplicate. Panel C: SMS-KCNR and 
SH-SY5Y cells treated with NB7M (1.5 μM) exhibit the release of cleaved PARP-1, and 
activation of cleaved caspase-3 (19 and 17 kD). Actin was used as an internal standard 
of protein loading. Numerical ratios of band intensities relative to actin are presented. 
All experiments were performed in duplicate. Panel D: SMS-KCNR cells treated with 
NB7M (0, 1.5 and 3.0 μM, left-to-right, 3D-1) reveal a concentration-dependent increase 
in apoptotic cell populations. The same results is shown in graph form (3D-2).
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This fi gure also shows that SMS-KCNR and SH-SY5Y cells 

possess an elevated basal level of activation/phosphorylation 

of pro-survival factor Akt in untreated cells that is down-

regulated within 36 hrs of NB7M treatment.

Next, we investigated signal transducer and activator of 

transcription 3 (STAT-3) protein expression in NB (SMS-

KCNR and SH-SY5Y) cells treated with NB7M. STAT-3 

is activated in diverse human tumors and may play a direct 

role in malignant transformations. Various inhibitors of 

STAT-3 protein and STAT-3 pathways have been identifi ed 

and shown, both in vitro and in vivo, to possess antitumor 

activities (Barre et al 2006). We investigated the effect of 

NB7M treatment on the expression profi le of STAT-3 in both 

SMS-KCNR and SH-SY5Y cells by Western blot analysis 

(Figure 4B). NB7M treatment signifi cantly reduced the phos-

phorylation of STAT-3 in resistant phenotypic SMS-KCNR 

cells. Similarly, the phosphorylation of STAT-3 in SH-SY5Y 

cells was down-regulated by 18–36 hrs following NB7M 

treatment. Our results indicate that NB7M is a micromolar 

antagonist of STAT-3 phosphorylation/signaling.

NB7M arrests the cell cycle progression 
of SMS-KCNR cells in S phase and G1 
arrest in SH-SY5Y cells
NB7M acts as a cytotoxic drug and leads to a protein expres-

sion profi le characteristic of apoptotic events. Based on our 

previous work (Singh et al 2007), we hypothesized that 

NB7M should affect cell cycle progression in SMS-KCNR 

and SH-SY5Y cells. To test this hypothesis, we analyzed 

the cell cycle progression of SMS-KCNR and SH-SY5Y 

cells treated with NB7M. Treatment of SMS-KCNR and 

SH-SY5Y cells with NB7M (1.0 and 0.5 μM, respectively) 

leads to a preponderance of cells in the apoptotic sub-G0/G1 

(Figure 5) within 12 hrs. The apoptotic sub-G0/G1 population 

represents cells with signifi cant DNA damage. This observa-

tion directly correlates with the reduction of SMS-KCNR 

and SH-SY5Y cells viability by NB7M at concentrations 

of 625 nM to 1.25 μM (Figure 2A). With respect to cycling 

cells, NB7M treatment of SMS-KCNR cells for 12 hrs caused 

a signifi cant increase of cells in S-phase, whereas SH-SY5Y 

cells were arrested in the G1-phase with concomitant increase 

in the sub-G0/G1 population and decrease in the S-phase 

population (Figure 5). Apparently, in this asynchronous cell 

culture, NB7M treatment affected cell-cycle checkpoints in 

G2/M and S-phases causing a reduction of cell-cycle pro-

gression along with transition to the apoptotic stage. Even 

though not the objective of the present report, further studies 

emphasizing cancer related cell cycle features (Mazumder 

et al 2004) could focus on the specifi c checkpoints in G1/S 

and G2/M phase affected by sub-cytotoxic NB7M treatments. 

This would require the study cell cycle regulators (cyclin-

dependent kinases and cyclins) (Pines 1999) in synchronized 

neuroblastoma cultures.

Discussion
NB7M is a novel synthetic indole ethyl isothiocyante analog, 

which was synthesized by incorporating an additional 
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tert-butyl carbamate group to protect the sec-amino group 

of 7Me-IEITC (Figure 1). 7Me-IEITC itself is a potent anti-

tumor agent that showed potent antineuroblastoma (Singh 

2007) and antiovarian cancer activities (Singh et al 2008). 

The rational for adding a tert-butyl carbamate group was to 

protect the sec-amino group of 7Me-EITC, thereby, possibly 

resulting in better pharmacokinetic and pharmacodynamic 

properties (Serova et al 2007).

NB7M has shown promising in vitro cytotoxicity in 

many well characterized human solid tumor cancer cell 

lines collectively known as ‘NCI60 cell lines’ which broadly 

represent tumors of organs such as lung, ovarian, prostate, 

skin and renal, prostate, breast, colon, central nervous system, 

and leukemia. Most of these cell lines are representative 

of tumors warranting the development of novel anticancer 

agents due to the current lack of effi cacious drugs. NB7M 

exhibited potent in vitro activity against many central nervous 

system cancer cell lines such as SF539 (−89% growth) and 

U251 (−73% growth). A comparison analysis of cytotoxicity 

of various drugs in clinical use (data available at NCI-DTP 

website) indicates that NB7M is more potent than current 

drugs in clinical use (eg, cisplatin, oxiplatin, seliciclib, 

CNDAC, 5Fu, and cyclophosphamide) in most of the cell 

lines but is less potent than doxorubicin, docetaxel, and 

gemicitabine. Additionally, the cytotoxic potential of NB7M 

against neuroblastoma cancer cell lines (SMS-KCNR, SK-N-

SH, IMR-32, and SH-SY5Y), which are not represented in 

NCI60 panel, were also investigated. All four cell lines were 

highly sensitive to NB7M treatment (IC
50

 � 1.0–1.5 μM). 

The cytotoxicity profi les of the other isothiocyanate analogs 

tested, including 7Me-IEITC and PEITC, appeared to 

partially differ from that of NB7M suggesting differences 

in the metabolism, mechanism of action and/or resistance 

between NB7M and these other isothiocyanate analogs 

(Singh et al 2007).

Our in vitro investigations have shown that even though 

NB7M and 7Me-IEITC (Singh et al 2007) display overlap-

ping cytotoxic effects in the case of SH-SY5Y and IMR-32, 

SMS-KCNR cancer cells were more sensitive to NB7M 

than 7Me-IEITC. Sapacitabine (Serova et al 2007), a N4-

protected analog, exhibited similar selective cytotoxicity 

profi les when compared with structurally related nucleoside 

analogs. NB7M displayed cytotoxic effects against most of 

the cancer cell lines tested irrespective of the origin of the 

tumor and usually at lower concentrations than that required 

for 7Me-IEITC and PEITC (a naturally occurring anticancer 

ITC). It is not surprising that NB7M and 7Me-IEITC dis-

play overlapping cytotoxic effects, especially if the later is 

a metabolite of the former. However, differences observed 

between those two compounds suggest that NB7M may act as 

a metabolite of 7Me-IEITC but also by its own mechanisms 

of action. It remains to be demonstrated whether NB7M 

requires conversion to 7Me-IEITC in vitro or can be directly 

incorporated into cancer cells.

The introduction of a tertiary butyl carbamoyl substituent 

onto the indole nucleus of NB7M may have endowed this 

molecule with resistance to intramolecular and/or intermo-

lecular reactions leading to a signifi cant increase (3x) in cyto-

toxicity versus 7-MeIEITC (Singh et al 2007). The unique 

stereo-electronic properties of the tertiary butoxy carbamoyl 

group may allow NB7M to interact more effectively with 

target proteins. This simple structural modifi cation may also 

affect the kinetics of drug absorption in different cell lines, 

as suggested by the relative increased sensitivity to NB7M 

versus 7Me-IEITC in SMS-KCNR cells.

NB7M and its precursor 7Me-IEITC displayed strik-

ingly similar effects on modulating the phosphorylation or 

expression of a multitude of molecular targets, including 

PI-3K and Akt, MAPKs ERK, p38, and JNK, and STAT-3 

(Figure 4). Among these targets, the ability of NB7M to cause 

PI-3K/Akt/ERKs dephosphorylation (down-regulation) in 

conjunction with increased phosphorylation (up-regulation) 

of JNK, and p38, is mechanistically signifi cant in the overall 

goal to development of NB7M as an antitumor agent against 

CNS cancers and neuroblastoma. Many types of tumors are 

associated with activated oncogenic kinases. These molecules 

play two complementary roles: (i) stimulation of signaling 

pathways that enable cells to function independently of their 

environment and, (ii) allow tumor cells to become resistant 

to genotoxic therapies (Hanahan and Weinberg 2000). For 

example, the serine/threonine kinase, Akt, and its family 

members are amplifi ed or their activity is constitutively 

elevated in human carcinomas such as breast, pancreatic, 

ovarian, brain, prostate, and gastric adenocarcinomas (Nich-

olson and Anderson 2002). As it is a direct downstream target 

of phosphatidylinositol 3-kinase (PI3-K), Akt is also a key 

oncogenic survival factor and can phosphorylate and inac-

tivate a panel of critical pro-apoptotic molecules, including 

Bad, caspase-9, the Forkhead transcription factor FKHRL1 

(known to induce expression of pro-apoptotic factors such 

as Fas ligand), GSK3-β, cell cycle inhibitors p21 and p27, 

and tumor suppressor TSC2 (Nicholson and Anderson 

2002). Akt can also inactivate p53, a key tumor suppressor, 

through phosphorylation and nuclear localization of MDM2 

(Zhou et al 2001). Akt has also been shown to regulate the 

expression of p38 (Liao and Hung 2003). Thus, molecules 
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that can block Akt activity may play a signifi cance role in 

cancer therapy and drug sensitization.

Akt plays an important role in cell survival and prolifera-

tion and has been strongly implicated in the development of 

resistance against chemotherapy agents such as paclitaxel, 

cisplatin, vincristine, and rapamycin in various human solid 

tumors (Kim et al 2005). It has also been shown that Akt is a 

direct target gene of STAT-3, which binds directly to its pro-

moter to enhance its expression (Barre et al 2006). Because 

Akt is a well known positive mediator of cell survival, its 

up-regulation is likely to contribute to the antiapoptotic func-

tion of STAT-3 (Barre et al 2006).

Constitutive activation of STAT-3 has been reported in 

several primary cancers and tumor cell lines where it induces 

cell transformation through a combined inhibition of apoptosis 

and cell-cycle activation. Several studies have suggested that 

STAT-3 prevents cell-cycle arrest and cell death through up-

regulation of survival proteins and down-regulation of tumor 

suppressors. STAT-3 inhibitors are being considered as cyto-

toxic drugs. Various STAT-3 inhibitors, such as cucurbitacin 

(Blaskovich et al 2003) and indirubin derivative (E804) (Nam 

et al 2005), induce apoptosis and display antitumor properties. 

Similarly, NB7M caused the down-regulation of STAT-3 in 

our in vitro treatments of NB (SMSKCNR and SH-SY5Y) 

cells. Unlike cucurbitacin and E804, which selectively inhibit 

STAT-3 expression, NB7M down-regulated the phosphoryla-

tion of PI-3K and Akt along with STAT-3. This broad effect 

could explain the pronounced cytotoxicity of NB7M in NB 

cell lines, specifi cally in resistant phenotype SMS-KCNR 

cells, as STAT-3 and Akt pathways have been implicated in 

the resistance of NB cells to cytotoxic drugs.

In contrast, JNK and p38 MAPKs are involved in the 

apoptotic response to cytotoxic agents (Mansouri et al 2003). 

Activation of p38 and JNK has been observed in human 

breast cancer cells treated with AplidinTM (Cuadrado et al 

2003), a depsi-peptide molecule currently undergoing Phase 

2 clinical trials. JNK mediates apoptosis induced by DNA-

damaging drugs such as etoposide (VP-16) and Camptothecin 

in human myeloid leukemia cells (Brozovic and Osmak 2007) 

and vinblastine in KB3 lung carcinoma cells (Brozovic et al 

2004). In MDA-MB-231 breast cancer cells, Taxol induced 

apoptosis via JNK, which causes inactivation of the antiapop-

totic Bcl-2 protein (Wang et al 1999). Taxol has also been 

shown to increase p38 MAPK, ERK, and JNK activities in 

human breast cancer cells (Chen et al 1996). Similarly, our 

results suggest that NB7M suppresses pro-survival signal-

ing and induces pro-apoptotic signaling in SMS-KCNR and 

SH-SY5Y NB cells (Figure 4).

The cytotoxic action of NB7M may be further explained 

by the fact that neuroblastoma cells (eg, SMS-KCNR and 

SH-SY5Y) accumulate and retain the more lipophilic 

NB7M and that this analog blocks the further progression 

of cells beyond the G1 phase. We observed that while the 

G1 population of NB7M treated SMS-KCNR cells slightly 

decreased, the S-phase population increased with increas-

ing drug concentration. Hence, NB7M treatment prohibits 

the progression of treated SMS-KCNR cells to the G2/M 

checkpoint. Similarly, the progression of SH-SY5Y cells 

was halted at G1. Both NB cell lines (SMS-KCNR and 

SH-SY5Y) treated with sub-cytotoxic concentrations of 

NB7M, were prevented from entering the G2/M phase. This 

checkpoint is a known contributor to drug resistance since 

the G2/M checkpoint allows cells to repair potentially lethal 

damage such as single-strand DNA breaks. Thus, blocking 

the progression of unregulated dividing cells to the G2/M 

checkpoint reduces the possibility of repair and leads to 

increased cell death and potentially less drug resistance.

In summary, NB7M is cytotoxic to both CNS cancer 

cells and neuroblastoma. It also activates pro-apoptotic 

signaling, downregulates pro-survival signaling, promotes 

signifi cant caspase activation, and regulates cell cycle 

progression. NB7M promotes apoptosis through multiple 

pathways, all of which are clinically relevant to the 

tumorigenesis and progression of ovarian and other cancers. 

This broad range of biological activities underscores 

the in vitro effi cacy of NB7M in both CNS cancers and 

neuroblastoma and warrants further development of this 

drug as an anticancer agent.
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