1JP: Drugs and Drug Resistance 8 (2018) 386-393

journal homepage: www.elsevier.com/locate/ijpddr

IJP: Drugs and Drug Resistance

Contents lists available at ScienceDirect

Modelling anthelmintic resistance by extending eggCounts package to allow R

individual efficacy

Craig Wang®, Paul R. Torgerson”, Ray M. Kaplan®, Melissa M. George®, Reinhard Furrer

Check for
updates

a,d,

@ Department of Mathematics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland

b Section of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
€ Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA

d Department of Computational Science, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland

ARTICLE INFO ABSTRACT

Keywords:

Bayesian hierarchical model
Statistical analysis

Faecal egg count reduction test
Anthelmintic resistance
Simulation study

The same anthelmintic treatment can have variable efficacy on individual animals even if the parasite popu-
lation is homogenously susceptible. An extension of the R package eggCounts is proposed to take individual
efficacy into account using a Bayesian hierarchical model. A simulation study is conducted to compare the
performance of five different methods on estimating faecal egg count reduction and its uncertainty interval.
Simulation results showed the individual efficacy model offered robust inference to two different data simulation
procedures with low root mean squared error on the reduction estimate and appropriate uncertainty estimates.

Different methods were used to evaluate the anthelmintic resistance in a dataset from USA with sheep and cattle
faecal egg counts, where a strong anthelmintic resistance was detected. Open-source statistical tools were up-
dated to include the proposed model.

1. Introduction

Helminth infections impose burden on human and livestock popu-
lations, and their control often relies on periodic mass administration of
anthelmintics. Widespread anthelmintic resistance is now being re-
ported (Rose et al., 2015). An important test to diagnose anthelmintic
resistance is the faecal egg count reduction test (FECRT). Central to the
FECRT is the estimation of the abundance of eggs, usually expressed as
eggs per gram of faeces (epg) in helminth infected or potentially in-
fected hosts. Egg counts are also used for monitoring in epidemiological
studies and for developing alternative control methods that do not use
anthelmintics. Thus, the accuracy of techniques to estimate epgs and
hence the reduction will affect the results of such studies.

The FECRT was established in the World Association for the
Advancement of Veterinary Parasitology (WAAVP) guideline (Coles
et al., 1992) and is a straightforward group-based method to evaluate
overall reduction of epgs. The FECRT is commonly used in practice and
it has been shown to provide robust estimation of reductions in
asymptotic settings (Levecke et al., 2012; Pefa-Espinoza et al., 2016;
Wang et al., 2017). However, it neglects some of the nowadays well-
accepted issues, such as aggregation of egg counts between animals
(Morgan et al., 2005; Dobson et al., 2012) and Poisson errors from
sampling procedures (Torgerson et al., 2012). Improved formulations

have been proposed (Lyndal-Murphy et al., 2014; Levecke et al., 2015),
but those methods do not completely address these issues. In addition,
they cannot be used to obtain uncertainty estimates in some rare cases,
for example, when 100% reduction is observed or when sample stan-
dard deviation of both before- and after-treatment counts are zero.
Recently, there has be an advocacy of Bayesian methods to evaluate
FECR. Bayesian methods can address those issues and provide un-
certainty estimates when the FECRT cannot. At the moment, there are
two open-source R packages that are commonly used for evaluating
FECR, namely eggCounts (Torgerson et al., 2014; Wang and Paul, 2018)
and bayescount (Denwood et al., 2010). Pena-Espinoza et al. (2016)
showed the paired model from eggCounts has poor coverage prob-
ability, as a result of narrow uncertainty intervals when analysing da-
tasets with varying before- and after-treatment aggregation. Levecke
et al. (2018) showed the model does not provide different inference
when after-treatment counts are randomly reordered. Those undesir-
able results arise because of its model assumption, which assumes the
same true efficacy (or egg count reduction) for every animal within a
group. However, host related factors may effect efficacy. For example, it
has been shown that the level of feed intake can effect the pharmaco-
kinetics and hence efficacy in sheep (Ali and Hennessy, 1996). Diet has
also been shown to effect the pharmacokinetics of benzimadazoles (e.g.
Oukessou and Chkounda, 1997). Thus, even if all animals in a
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population are infected by equally susceptible helminth parasites, there
may be variation in efficacy between individual animals due to varia-
tions in feed intake or other factors. Furthermore, the species compo-
sition of helminth fauna may not have the same proportions in every
animal in a group and drug efficacy may vary between helminth species
(Vidyashankar et al., 2012). The limitation of assuming the same true
efficacy in humans was also discussed by Kriicken et al. (2017) in a
study on school children. In such a population, efficacy in individuals
may have greater heterogeneity, as the children were from a number of
different villages attending different schools, compared to a more
homogeneous population of sheep grazing a single pasture.

Currently the only choice of Bayesian hierarchical model allowing for
individual efficacy is by Geurden et al. (2015) and is implemented within
the R package bayescount. However, the model recommends for replicated
samples for individual animals (Denwood, 2015). The package also con-
tains models that allow for varying before- and after-treatment aggrega-
tion, which can be a consequence of having individual efficacy. Pena-
Espinoza et al. (2016) performed a simulation study comparing the paired
and unpaired models in the eggCounts package with bayescount varying-
aggregation model. However, the simulated data were generated under
the assumption of the bayescount model, with a compound gamma-
gamma-Poisson distribution and varying after-treatment aggregation. This
violated the assumptions of the eggCounts model, which created a mis-
match between the data and the model structure. Therefore, with such a
violation, it is reasonable to expect eggCounts models to have inferior
performance. The bayescount model provided better coverage probability,
but no results regarding bias or mean squared error was provided in their
simulation study. In this paper, we propose a new Bayesian hierarchical
model that takes individual efficacy into account, while providing robust
estimation of reduction in egg counts. We further provide a refined si-
mulation study, with improvements reflected in two aspects. Firstly, we
simulate datasets with two different procedures, one with our model as-
sumptions and another with bayescount model assumptions. This en-
courages fair comparison between the methods. Secondly, we provide
comparison of root mean squared error (RMSE) on reduction estimates in
addition to coverage probabilities. This evaluates the methods in terms of
both bias and variance.

The aim of the present study is to propose and to evaluate an im-
proved Bayesian hierarchical model that addresses individual efficacy
between animals. During this process, 1) we determine a suitable dis-
tribution for individual reduction of egg counts based on real dataset; 2)
we provide a fair and thorough comparison of existing Bayesian and
non-Bayesian methods against our proposed model; 3) we analyse a
recent dataset to determine its anthelmintic resistance status; and 4) we
offer updated open-source tools for evaluating FECR and general ad-
vices for using Bayesian hierarchical models.
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2. Materials and methods
2.1. Data description

The before- and after-treatment faecal egg count data were collected
from 287 sheep and 212 cattle, a total of 499 animals in 28 FECRTs (14
sheep FECRTs and 14 cattle FECRTs). All sheep tested were housed at
the University of Georgia Sheep Unit, Athens, Georgia, USA. Sampling
of sheep occurred between August 2011 and June 2015. Of the 14
FECRTSs completed on sheep, 6 were completed with the high sensitivity
3 chamber modified-McMaster method (8 eggs per gram sensitivity)
and 8 were completed with the 2 chamber modified-McMaster method
(25 eggs per gram sensitivity). For modified-McMaster analysis, 4 g of
faeces were placed into a cup with 26 mL (25 eggs per gram sensitivity)
or 25mL (8 egg per gram sensitivity) of sodium nitrate flotation solu-
tion (specific gravity = 1.25-1.30, FECA-MED, Vedco, Inc., St. Joseph,
Missouri, USA). Homogenization of sample and sodium nitrate solution,
slide preparation, and counting were completed as previously described
(Noel et al., 2017). Cattle tests were performed on weaned stocker
cattle on properties in Georgia and Mississippi, USA as part of a study
addressing the use of composite faecal samples when performing a
FECRT (George et al., 2017). Faecal egg counts were performed as
described by George et al. (2017).

2.2. Proposed model

2.2.1. Determine the distribution of treatment efficacy

Using pooled data, we empirically select a suitable distribution to
model treatment efficacy of individuals. It is common to firstly model
the proportion of egg counts remaining after treatment, then subtract
the proportion from 1 to obtain the reduction of egg counts. We denote
this proportion as §; for the ith animal and compute it for each animal.
30 observations with zero before-treatment counts are excluded since
these reductions are not well defined. In addition, 6 observations which
had more than 15-fold increase in after-treatment counts were also
excluded. Finally, a goodness-of-fit statistic was used to determine a
suitable distribution based on the empirical cumulative distribution
function. Several candidate distributions were considered, including
gamma, inverse gamma, half-Cauchy, and half-normal distributions.
Based on the computed proportions from 463 pairs of counts, the best
fitted distribution according to Cramér-von Mises distance is the
gamma distribution as shown in Fig. 1. A gamma distribution is then
used to model the reduction in our proposed Bayesian hierarchical
model.
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Fig. 1. Fitted gamma distribution. Left: histogram of individual reductions with fitted gamma distribution shown in red. Right: empirical quantiles with data points
against fitted theoretical gamma quantiles, the y = x line is shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to

the Web version of this article.)
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2.2.2. Bayesian hierarchical model formulation

Suppose we have a group of animals from the same species with
sample size n, and their true epg follow some unimodal distribution. For
notational simplicity, the analytical sensitivity is assumed to be the
same throughout the sampling procedures. A faecal egg count (FEC) is
obtained twice from each animal with analytical sensitivity f, once
before applying treatment and once some days after treatment. We
denote the raw number of counts as Y;¢ and Y;T respectively, with
i =1,2, ..,n. Given the true epg of sampled faeces before treatment Yic,
Y;€ follows a binomial distribution with size Y and probability 1/f.
This captures the counting variability, where the number of eggs
counted from diluted homogeneous samples is random. Then the true
epg of sampled faeces Y  follows a Poisson distribution with latent
mean 4, this addresses Poisson error, which arises because of randomly
distributed eggs within the faecal sample. Finally, the latent mean ;
follows a gamma distribution with shape x and rate x/u, which has
mean u and variance p?/x. The gamma distribution captures FEC ag-
gregation between animals. After treatment, we expect a change in the
latent mean of each animal. We take a random effect model approach
and assume their treatment efficacy is different. The raw number of
counts Y;T follow another binomial distribution with size Y/ and
probability 1/f, where the true epg of sampled faeces after treatment Y;"
follows a Poisson distribution with latent mean &;y;. The new latent
mean allows each animal to have its own treatment efficacy. The effi-
cacies §; follows another gamma distribution as determined in section
2.2.1. with shape 7 and rate 7/v.

The proposed Bayesian hierarchical model is formulated as,

Y€ Y€ =y -BinGF, 1),
Y |/‘i ~ Pois (),

YT Y! =y ~BinG/!, 1/f),
Y |8, w4 ~ Pois(8ipt),

w; | %, p~Gamma (x, x/p),

8i~Gammal(t, T/v).

The median of reduction &; is computed based on the quantile
function of a gamma distribution, which then is used as the reduction
estimate. The model is implemented in R (R Core Team, 2018) using
Stan modelling language (Carpenter et al., 2017), which is a modern
computational tool for conducting Bayesian inference.

2.3. Simulation study

A simulation study is conducted to investigate the performance of
the proposed Bayesian hierarchical model. The proposed model is
compared against four other existing methods. Faecal egg counts are
simulated under two different procedures, one that matches our model
assumptions with individual efficacy and another that matches bayes-
count model assumptions. Generally speaking, models that have the
same assumptions as the simulation procedure have a natural ad-
vantage over models that assumes otherwise. Finally, the simulation
parameters are also varied within each procedure to cover a broader
range of possible scenarios.

The simulation is setup as follows. Procedure one: for each animal
before treatment, we firstly draw random samples of latent mean epg u;
from a gamma distribution with shape x and rate x/u. Then the true epg
from observed sample yic is drawn from a Poisson distribution with
mean ;. The observed count y° is simulated from a binomial dis-
tribution with probability 1/f and size y. Since this is a paired design,
the latent mean epg y; remains the same for each animal after treat-
ment. We assume each animal experiences various levels of efficacy,
hence the true epg from observed sample after treatment yiT is now
simulated from a Poisson distribution with mean &;u;, where §; is
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sampled from a gamma distribution with shape 7 and rate 7/v. Finally,
the observed count yiT is simulated from a binomial distribution with
probability 1/f and size yl.T. Procedure two: we draw again random
samples of u; from a gamma distribution with shape x and rate x/u. The
true epg from observed sample yl.C follows a gamma-Poisson (i.e. ne-
gative binomial) distribution mean y; and dispersion «€, the level of
aggregation increases with decreasing xC. After treatment, yiT is simu-
lated from another gamma-Poisson distribution with updated mean vy,
and aggregation x!. The observed counts are again simulated from a
binomial distribution. Such procedure allows a change of aggregation
before and after treatment.

For each procedure, we simulate FEC datasets with eight combina-
tions of parameters, each repeated 500 times. Specifically, we use latent
mean epg for the group u = {150,500}, between animal aggregation
x = {1,2} and mean reduction v = {0.03, 0.15}. For procedure one, 7 is
generated from a uniform distribution between 0.5 and 2.0 for each
simulated dataset, representing large to medium variability in efficacy.
This leads to substantially to moderately increased FEC aggregation after
treatment. For example, when 7 = 0.5 and the before-treatment ag-
gregation x = 1, the observed after-treatment aggregation is reduced to
0.2. When 7 = 2, the observed after treatment aggregation is only re-
duced to 0.5. For procedure two, there is no variability in efficacy itself
hence a single v is used. We set ¢ = xT = x to represent cases of no
change in FEC aggregation after treatment.

We assign a Beta(1l,1) prior (equivalent to Uniform(0,1)) to the
mean reduction v. We adapt the prior of u and x from Wang et al.
(2017). A weakly informative Gamma(1,0.001) is assigned to u where
90% of the probability mass lies between 60 and 3000. A weakly in-
formative Gamma(1,0.7) prior is assigned to x, where 90% of prob-
ability mass lies between 0.1 and 4.3, corresponding to substantial and
little aggregation. The shape parameter of reduction 7 is often weakly
identified by faecal egg count data due its small sample sizes in prac-
tice, hence we assign a moderately informative prior zero-truncated
Normal(2,1), with 90% of probability mass lies between 0.36 and 3.6,
corresponding to large and small variability in efficacy. This serves to
regularize the model and enhance its stability without interfere with the
result.

Next, we describe four additional existing methods to analyse the
simulated FEC datasets for comparison.

2.3.1. Faecal egg count reduction test

According to the WAAVP guideline (Coles et al., 1992), the per-
centage reduction in FECs can be calculated by 1 — y7/y€, where y©
and yT are arithmetic means of before- and after-treatment counts. Its
95% uncertainty interval can be computed based quantiles of Student's
t-distribution with 2n — 2 degrees of freedom and asymptotic variance
of their log ratio. This method is performed using fecrtCI() function in
the eggCounts package.

2.3.2. Asymptotic variance method

The asymptotic variance method by Levecke et al. (2015) assumed a
Poisson-negative binomial distribution of the observed FECs, and a
single reduction within a population. The authors derived asymptotic
expectation and variance of the reduction, and then computed its un-
certainty interval based on quantiles of a gamma distribution. The
shape and scale parameters of the gamma distribution are found via
moment matching. The asymptotic expectation is 1 — y7/y€, which is
the same as the estimated reduction from FECRT. The asymptotic var-

iance is
s€ sT
—<=r |
yoy

— 2 2 2
I+ (2 o

where s€, sT are the sample standard deviation of the before- and after-
treatment counts respectively. Cor(y©, yT) is the sample correlation
between before- and after-treatment counts.
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2.3.3. Model from bayescount package

The bayescount model assumes a compound gamma-gamma-
Poisson distribution, which matches with the procedure two of our si-
mulation study. The individual efficacy model implemented in bayes-
count recommends replicated samples for individual animals, which is
not the spirit of our study, hence we select the model with fixed efficacy
but allowing different aggregation. The level of aggregation is strongly
associated with the amount of variability in efficacies, hence this does
not put the bayescount model in an unfavourable situation. The func-
tion fecrt.model() is used with setting paired.model, fix.controls and
fix.efficacy all set to TRUE, while fix.variation and zero.inflation set to
FALSE. Default weakly informative priors were used for the mean
parameters in the simulation study, while the default Beta(1,1) prior is
used for the reduction. The same Gamma(1,0.7) prior from our in-
dividual efficacy model is used for the dispersion parameters to facil-
itate model comparison. Simulation results using default precision prior
from bayescount is in the Supplementary Material.

2.3.4. Model from eggCounts package

The eggCounts paired model is a special case of our proposed model
with a simplifying assumption. Instead of a gamma-distributed reduc-
tion §;, a single reduction is assumed for every animal. The function
fecr_stan() is used to analyse the simulated FEC datasets with setting
paired set to TRUE and zero.inflation set to FALSE.

The performance of our proposed individual efficacy model is
compared against those four existing methods, in terms of the following
criteria: 1) RMSE on the reduction estimates of FEC; 2) coverage
probability of 95% confidence interval for the case of non-Bayesian
methods and 95% credible interval for the case of Bayesian models,
they are collectively referred to as 95% uncertainty intervals (Uls); and
3) the width of Uls.

3. Results
3.1. Simulation results

The performance criteria are evaluated based on the simulation
results. Fig. 2 shows the width of 95% Uls and Fig. 3 shows their
coverage probabilities. Table 1 shows the RMSE based on their FECR
estimates. While generally one should not expect Bayesian credible
intervals to have the same frequentist properties, namely having 95%
coverage probability, we still compare them here since the estimation
of uncertainty for FECR is important in the decision-making process of
detecting anthelmintic resistance.

The width of 95% Uls differ significantly between different
methods. Our proposed individual efficacy model has moderate UIL
width. The eggCounts model has very narrow intervals across all the
scenarios while the bayescount model has wide Uls under both simu-
lation procedures, which are consistent with the simulation study in
Pena-Espinoza et al. (2016). The asymptotic variance method and the
FECRT sometimes have extremely wide intervals when the true re-
duction is 85%. There are 14 and 89 intervals respectively that are
wider than 1 hence lie beyond the range of y-axis displayed in Fig. 2. An
untruncated version of the figure is provided in Supplementary Mate-
rial. Procedure two simulates the datasets with two separate gamma
distributions, hence more variability in observed counts is expected
compared to procedure one. The Uls have reasonable width when the
true reduction is 97%. However, 69 out of 4000 (500 x 8) simulations
resulted in undefined UIs with the asymptotic variance and the FECRT
method. This occurs when all of the after-treatment counts are zero
such that the sample variance is undefined.

Fig. 3 shows the coverage probabilities of those Uls, i.e. the per-
centage of datasets with the true reduction being within the estimated
UL As it can be expected based on the width of their Uls, the eggCounts
model has low coverage probability while the bayescount model has
high coverage probability. As a result of their differences in model
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assumption, the eggCounts model provides insufficient coverage prob-
abilities for both procedures. The bayescount model has almost 100%
coverage when the datasets are simulated under procedure one, while it
has reasonable coverage under procedure two. The asymptotic variance
method also consistently provides insufficient coverage probability, but
improved upon the eggCounts model. In contrast, the individual effi-
cacy model has consistently reasonable coverage under both simulation
procedures. Based on both Figs. 2 and 3, our individual efficacy model
can achieve good coverage probability with much narrower Uls, while
the bayescount model provides too wide intervals albeit having good
coverages.

As shown in Tables 1 and 2, the level of RMSE are comparable
across the methods, with bayescount model having higher RMSE when
simulated under procedure two. Our proposed individual efficacy
model has small RMSE for all the scenarios. When simulating using
procedure one, the individual efficacy model has lowest RMSE. The
model also has achieved low RMSE as well when simulating under
procedure two, which uses the compound gamma-gamma-Poisson dis-
tribution.

3.2. Evaluating FECR for the USA dataset

The dataset consists of 28 flocks. Flocks here refer to both sheep
flocks and cattle herds. Exploratory data analysis showed the flock-wise
median reduction ranges from 100% to —-322%, corresponding to
complete elimination of egg counts in the sample and a 2.22-fold in-
crease in egg counts after treatment. Within each flock, the efficacy
between animals also varied dramatically. Since individual efficacy is
not a part of original eggCounts model assumption, it is not considered
in this evaluation. We also drop the asymptotic variance method in
favour of the more widely used FECRT. In order to allow for increased
egg counts in the FECR estimation, we place a Uniform(0,4) prior on v
in the individual efficacy model and the bayescount model. In practice,
one should carefully check if the pre-assigned prior includes the pos-
sible outcome of the current dataset. Fig. 4 shows the estimated FECR
along with Uls from four different methods. Their estimates are mostly
similar, with the individual efficacy model having smaller Uls in most
cases compared to the bayescount model.

Flock number 4, 5 and 28 result some discrepancies among the
models. Flock 4 consists of 15 animals, two of already-heavily infected
animals had a 4-fold and a 7-fold increase in egg counts respectively
after treatments. Since FECRT does not explicitly model the pairwise
relationship, the overall reduction is strongly influenced by those two
animals. This results in a higher after-treatment mean egg counts in the
flock hence a negative reduction estimate. In flock 5, 18 out of 19 an-
imals experienced an increase in their after-treatment FECs, with a
mean increase of 230%. There are 4 out of 19 animals that had less than
100% increase. The bayescount model was influenced by those ob-
servations hence the estimate is biased towards smaller increase. Since
our individual efficacy model uses median reduction, it provides a
reasonable estimate and it is similar to the result from FECRT. Flock 28
consists of 13 animals, where all of the after-treatment counts are zero,
while there are only 3 non-zero before-treatment counts. Bayescount
model provides an extremely wide UI This observation is consistent
with the simulation study, where bayescount model generally provides
much wider Uls especially when the before-treatment mean count is
low and reduction is large. Both the individual efficacy model and the
FECRT provide reasonable estimates for flock 28, but only former is
able to provide a valid UL

4. Discussion

The efficacies of anthelmintic treatments can be different between
animals due to the factors discussed previously. In this paper, we pro-
posed an individual efficacy model within a Bayesian hierarchical fra-
mework to analyse FECR. The model extended upon the original
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Fig. 2. Uncertainty interval widths of simulations. Boxplots of 95% uncertainty interval width, grouped by true reduction percentage, simulation procedure, before-
treatment mean and dispersion. Data outside the y-axis range are not shown. An untruncated version of the figure is available in Supplementary Material.

eggCounts paired model to allow varying individual efficacy and offers
robust estimation of the reduction in egg counts.

The original eggCounts model assumes every animal in the same
group has the same reduction, consequently there is a perfect correla-
tion between the latent before- and after-treatment epg. Although this
does not automatically suggest that observed counts are also perfectly
correlated due to Poisson errors in the sampling process, it does indicate
a strong correlation is expected. The correlation approaches 1 asymp-
totically as the observed FECs increases. In our pooled sample of FECs,
we observe a highly significant correlation of 0.417 (p < 0.001) of the
observed counts, nevertheless it is much lower than 1, which indicates
that the individual efficacy model we propose is a reasonable approach
to model this correlation and will give more robust results than the
assumption of equal efficacy across all individuals.

The original eggCounts model provided narrow Uls on the reduction
estimate in all scenarios. The small uncertainty can be explained by its
model assumption, where a single reduction parameter is assumed for
every animal within the same group. Hence the variation is forcibly
captured by the dispersion parameter such that the uncertainty for re-
duction remains relatively small. The bayescount model has the flex-
ibility of allowing varying before- and after-treatment aggregation.
However, in our simulation study with two different simulation pro-
cedures, the model with varying aggregation consistently provided
wide Uls and slightly higher RMSE, which can lead to undesirable re-
sults of having many inconclusive decisions. One possible reason is that
the model has more hierarchical layers. With limited data available,
there is hardly any information on latent parameters of the model. In
addition, it uses mean reduction as the reduction estimate, this exposes
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it to be easily influenced by extreme observations. For the bayescount
model, we have also experimented with fix.efficacy set to FALSE while
fix.variation set to TRUE, and it did not lead to significantly different
results, suggesting the different efficacy between animals can be ef-
fectively addressed by either allowing for varying aggregation or
varying efficacy itself. The FECRT is based on straightforward compu-
tation of the after- and before-treatment mean counts ratio, hence it
neglects features of the data generating process, such as individual ef-
ficacy, between-animal aggregation and Poisson errors. The simulation
showed relatively good performance for the FECRT, but the method
also generated undefined estimate and wider than 100% Uls. The
asymptotic variance method improved upon the FECRT and captures
some of the data generating process. However, it suffers the same
weakness as the FECRT which can generate undefined reduction esti-
mates. Meanwhile, our newly proposed individual efficacy model does
not suffer the constraint of having the same efficacy for every animal,
which avoids the potential mismatch between model assumption and
data, hence leads to improvement in coverage probability.

When simulating under procedure two, separate gamma-Poisson
distributions are assumed for before- and after-treatment mean. This
leads a difference in the observed reduction, which is “heavy-tailed” as
a result of over-dispersion. When an extreme reduction is generated in a
dataset, the mean estimate of FECR can be strongly influenced by this
single observation. Although the bayescount method can effectively
model the distribution in procedure two, it tends to generate biased
estimate of FECR hence having higher RMSE. However, for the original
eggCounts and the asymptotic variance/FECRT method, the pairwise
before- and after-treatment relationship is not explicitly modelled,
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Fig. 3. Coverage probability of simulations. Coverage probabilities of 95% credible or confidence intervals, grouped by true reduction percentage, simulation

procedure, before-treatment mean and dispersion parameter.

hence mitigates this problem. Our individual efficacy model uses
median reduction as the reduction estimate, providing robust inference
while take the pairwise relationship into account. The simulation study
showed superior performance of the individual efficacy model com-
pared to other methods, it has low RMSE and reasonable Uls across all
the scenarios under both simulation procedures. Another advantage of
Bayesian models is that they allow a probabilistic view on the anthel-
mintic resistance status. Rather than providing an estimated reduction
and 95% UI as in the asymptotic variance/FECRT methods, the
Bayesian models provide entire distributions of the estimated reduc-
tion, which allows for the computation of anthelmintic resistance
probability given an arbitrary threshold.

When evaluating the present dataset, the FECR estimates were si-
milar across the individual efficacy model, bayescount model and the
FECRT. This particular dataset contains flocks with increased after-

treatment FECs, such that the commonly used Beta(1,1) prior for the
reduction is deemed inappropriate. Therefore, after exploring the da-
taset, we selected a Uniform(0,4) prior to allow for up to 3-fold in-
creased after-treatment mean epg. In practice, researchers should apply
Bayesian models with care. First of all, every Bayesian model comes
with assumptions and constraints from the model structure itself and
from the priors. For example, Wang et al. (2017) proposed zero-infla-
tion models that deals with over-represented zero counts; the egg-
Counts paired model assumes the same reduction for every animal. As
shown in our simulation study, the paired model provides overly-
narrow Uls when the assumption is violated, which can lead to mis-
classification in the end. In terms of prior constraints, researchers
should check if the priors at least cover the possible parameter values
observed from the dataset. For example, the default prior for modelling
reduction is Beta(1,1). This does not allow for increased mean epg after

Table 1
Root mean squared error of the faecal egg count reduction estimates from five different methods, based on 500 simulations for each scenario under procedure one.
Procedure One Individual efficacy eggCounts Bayescount asym.variance/FECRT
85% reduction x=1 u =150 0.0519 0.0602 0.0643 0.0602
u = 500 0.0457 0.0565 0.0522 0.0565
x=2 u =150 0.0515 0.0573 0.0660 0.0579
M = 500 0.0464 0.0486 0.0483 0.0487
97% reduction k=1 u =150 0.0171 0.0197 0.0309 0.0197
M = 500 0.0113 0.0123 0.0211 0.0122
x=2 M =150 0.0149 0.0167 0.0297 0.0168
M = 500 0.0110 0.0131 0.0171 0.0128
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Table 2
Root mean squared error of the faecal egg count reduction estimates from five different methods, based on 500 simulations for each scenario under procedure two.
Procedure Two Individual efficacy eggCounts Bayescount asym.variance/FECRT
85% reduction x=1 u =150 0.1011 0.1020 0.1488 0.1025
M = 500 0.1053 0.0945 0.1360 0.0942
x=2 u =150 0.0607 0.0601 0.0846 0.0606
= 500 0.0689 0.0562 0.0737 0.0565
97% reduction x=1 M =150 0.0297 0.0268 0.0593 0.0269
= 500 0.0258 0.0214 0.0450 0.0214
x=2 u =150 0.0203 0.0204 0.0381 0.0204
= 500 0.0148 0.0139 0.0217 0.0139

treatment. In evaluating the present dataset, an alternative strategy is to
use Beta(1,1) prior only for those flocks with reduced after-treatment
counts, and use Uniform(0,4) prior only for increased after-treatment
counts. We expect the flocks with Beta(1,1) prior to have a slightly
narrower Uls compared to our analysis. Arguably this may not be of
clinical relevance because an increase in FECs after treatment clearly
indicates lack of anthelmintic efficacy. However, the use of this in-
dividual efficacy model would not be confined to anthelmintic efficacy
testing but could also be used for experiments where alternatives to
anthelmintics are used for parasite control and hence allowing for an
increase in FECs with the Uniform(0,4) prior adds additional flexibility.
Secondly, researchers should be aware of the relevant contribution of
information from priors and data. This can be checked by plotting
posterior parameter distributions overlapped with corresponding prior
distributions (See section 4 in Wang and Furrer, 2018). While our de-
fault priors are weakly informative (except for T which is moderately
informative) for most faecal egg count datasets, the relative contribu-
tion of information also depends on the data available (Gelman et al.,
2017). Researchers should ensure the priors used are sensible for their

data. Another potential issue with Bayesian models implemented using
Markov chain Monte Carlo (MCMC) sampling is that there can be
convergence problems. This can occur when there is limited informa-
tion available, including low counts and small sample sizes. The issues
can be detected by checking the effective sample size of MCMC chains
(Gelman et al., 2014) and potential scale reduction factors (Brooks and
Gelman, 1998). The updated eggCounts package version 2.0 which
implemented the individual efficacy model also has built-in warning
messages when convergence problems occur. We agree with Pefa-
Espinoza et al. (2016), that unexperienced users should seek statistical
advice when problems occur, otherwise unreliable results could be
obtained. When there are convergence problems, a possible solution is
to further constrain the priors. In some cases, Monte Carlo simulation
can be used to obtain some information about the weakly identified
latent parameter from the data. This leads to empirical Bayes approach
(Carlin and Louis, 1997).

The proposed individual efficacy model was extended based on the
predecessor eggCounts paired model, it is shown to have superior
performance in both the simulation study and when analysing the
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present dataset. The eggCounts package version 2.0 (Wang and Paul,
2018) and the online analysis tool (Torgerson et al., 2014; Furrer et al.,
2016) have been updated to include the newly proposed individual
efficacy model, and a vignette to guide using the eggCounts package
was made available (Wang and Furrer, 2018). As we learn more about
the different generating process of egg counts, the model used for FECR
evaluation should be continuously iterated to ensure model assump-
tions closely matches the actual data generating process.
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