
1Scientific Reports |         (2019) 9:20316  | https://doi.org/10.1038/s41598-019-56751-x

www.nature.com/scientificreports

Quantum process capability
Chung-Cheng Kuo1,2, Shih-Hsuan Chen1,2, Wei-Ting Lee1,2, Hung-Ming Chen1,2, He Lu3 & 
Che-Ming Li1,2,4*

Physical processes in the quantum regime possess non-classical properties of quantum mechanics. 
However, methods for quantitatively identifying such processes are still lacking. Accordingly, in this 
study, we develop a framework for characterizing and quantifying the ability of processes to cause 
quantum-mechanical effects on physical systems. We start by introducing a new concept, referred to 
as quantum process capability, to evaluate the effects of an experimental process upon a prescribed 
quantum specification. Various methods are then introduced for measuring such a capability. It is 
shown that the methods are adapted to quantum process tomography for implementation of process 
capability measure and applicable to all physical processes that can be described using the general 
theory of quantum operations. The utility of the proposed framework is demonstrated through several 
examples, including processes of entanglement, coherence, and superposition. The formalism proposed 
in this study provides a generic approach for the identification of dynamical processes in quantum 
mechanics and facilitates the general classification of quantum-information processing.

Physical processes in quantum mechanics attract considerable interest on account of their unusual character-
istics and potential applications. Investigating how and why these processes cannot be explained using clas-
sical physics provides an important insight into the fundamentals of quantum mechanics1–3. By definition, 
engineering-oriented procedures are physical processes. Then such purely physical investigation inspires the 
question as to how quantum-mechanical effects can be harnessed to perform practical tasks4. Moreover, feasible 
techniques for fully exploring the possibilities and limitations of these tasks based on quantum mechanics are still 
lacking5. The effort to address these issues has revolutionized the conventional methods for engineering physical 
systems and has greatly advanced the development of quantum technology6–8.

Quantum information processing9 provides a new paradigm for the emerging generation of quantum technol-
ogies, such as quantum computation10 and quantum communication11. The underlying manipulations of quan-
tum systems are all derived from dynamical processes in quantum mechanics, and range from gate operations10,12 
to information storage and protection against the effects of noise13, from the creation of entanglement to tele-
portation14,15 and entanglement swapping16. Identifying the elementary classes of quantum dynamical processes, 
therefore, is not only significant in its own right, but is also a fundamental goal in uniting work on quantum 
information theory9.

Considerable progress has been made in understanding quantum dynamical processes; in particular, in iden-
tifying the quantum properties of the output states17–24. However, a fully comprehensive analogue for dynamical 
processes has yet to be found. Moreover, despite the success of theoretical methods in describing the dynamics 
of quantum systems, such as the quantum operations formalism3, the problem of characterizing the prescribed 
quantum-mechanical features of dynamical processes in a quantitatively precise manner has yet to be resolved. 
As a result, it is presently intractable to quantitatively distinguish the different processes in quantum mechanics.

Motivated by this problem, and driven by the desire to ultimately identify all quantum dynamical processes, 
we present herein a method for quantifying the extent to which a process quantum mechanically behaves and 
affects a system. We commence by introducing a new concept referred to as the quantum process capability for 
evaluating the prescribed quantum-mechanical ability of a process. We then introduce two capability measures 
and a task-oriented capability criterion, which demonstrate that such process evaluation can be quantitatively 
determined through experimentally feasible means. We show that with the proposed tools, it is possible, for the 
first time, to quantitatively identify several fundamental types of dynamical process, including processes of entan-
glement, coherence and superposition.

We begin by systematically characterizing the physical process acting on a system using the quantum opera-
tions formalism. In doing so, we assume that the system of interest and its environment are initially in a product 
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state. Furthermore, it is supposed that, after the physical process, the density matrices of the system states, ρout, can 
be determined via the state tomography25,26. These experimentally measurable quantities, conditioned on differ-
ent initial system states, ρin, are further used in a process tomography algorithm9,27. In such a way, the physical 
process acting on the system can be fully described by a positive Hermitian matrix, referred to hereafter as the 
process matrix, χexpt.

The manner in which a system evolves from an arbitrary input state, ρin, to some process output state, ρout, is 
specified by the process matrix χexpt through the mapping χ ρ ρ=( )expt in out, where this mapping preserves the 
Hermiticity, trace and positivity of the original density matrix of the system. With this representation of a dynam-
ical process under our belt, we now turn our attention to defining the concept of quantum process capability.

Results
Quantum process capability.  When a process has the ability to show the quantum-mechanical effect on a 
system prescribed by the specification (for example, entanglement generation), the process is defined as capable, 
and is denoted as χ . By contrast, if the process is unable to meet the specification at all, or is either fully describ-
able using the theory of classical physics or lacks any ability to make the system states quantum mechanical, it is 
said to be incapable.

An incapable process is defined as an operation, χ , with the following properties:
(P1) If a process is composed of two cascaded incapable processes:  χ χ χ= 1 2, then process χ is also incapa-

ble, where  denotes the concatenation operator.
(P2) If a process is a linear combination of incapable processes: χ χ= ∑ pn n n, where ∑ =p 1n n , then χ is also 

an incapable process.
These properties imply that manipulating incapable processes inevitably results in another incapable process.
Furthermore, if the process χexpt cannot be described by any incapable processes χ  in any way at all, then χexpt 

must be capable regarding the corresponding quantum-mechanical specification.
To place the basic definitions of capable and incapable processes into a wider context, we now introduce a 

measurable property of a process called the quantum process capability, which provides a quantitative understand-
ing of how well χexpt might work, and helps identify processes with prescribed quantum process abilities. The 
proposed property has applications not only for exploiting the quantum effects behind an unknown process, but 
also for assisting in the evaluation and improvement of primitive operations for task-oriented purposes. (Note 
that more general features will be described in the later discussion section).

The quantum process capability of a process can be quantitatively evaluated using different tools according 
to the type of specification or subsequently used experimental process. The following discussions propose two 
methods for evaluating the quantum process capability, namely the capability measures and the task-oriented 
capability criterion.

Capability measure.  We desire to have a tool that can faithfully reflect the features of capable and incapable 
processes, respectively, and reliably show how the quantum process capability of χexpt changes after applying 
additional operations to the system. Let the capability measure be defined as a function of the process matrix, 

χC( ), which has the following three properties:
(MP1) χ =C( ) 0 if and only if χ is incapable.
(MP2) Since incapable processes consist of only incapable ingredients by definition [see (P1) and (P2)], one 

cannot increase the capability of a process by incorporating additional incapable ones. In other words, it follows 
that

(2a) The capability measure of χ monotonically decreases with an incorporated incapable process, i.e., 
χ χ χ≤C C( ) ( ) .
(2b) The capability measure reflects the non-increasing capability of a process under stochastic incapable 

operations: χ χ χ∑ ≤p C C( ) ( )n n n .
(MP3) The capability measure is convex, meaning that χ χ χ χ∑ ≤ ∑ C p p C( ) ( )n n n n n n  .
To show how the quantum process capability can be concretely quantified, we now introduce two different 

types of capability measure, which both satisfy properties (MP1)-(MP3) defined above (see Methods section).
M1. Capability composition α. A process matrix, χexpt, can be represented as a linear combination of capable 

and incapable processes, i.e.,

χ χ χ= + −a a(1 ) , (1)expt C I

where ≥a 0. The capability composition of χexpt is then defined as



α ≡
χ

amin ,
(2)

which specifies the minimum amount of capable process that can be found in the experimental process.
In the practical examples presented later in this study, α is obtained by minimizing the following quantity via 

semi-definite programming (SDP) with MATLAB28,29: α χ= −χ 



min [1 tr( )]
. Note that the solution is obtained 

under a set of specified conditions for the incapable process, χ


D( ), such that χ χ χ− = ≥
 

0expt I C
. Here, χ

  and 

χ


 are both unnormalized process matrices with  χ χ= − = −


a atr( ) tr((1 ) ) 1  and  χ χ= =


a atr( ) tr( ) , 
respectively. Rephrasing the process matrices in terms of unnormalized matrices reduces the number of variables 
to make the problem solvable using SDP. The number of variables is determined by the number of elements in a 
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process matrix. For example, there are at least 16 variables that need to be solved in a single qubit system. For 
different capabilities, it may need more variables to describe the constraints χ


D( ) . See Methods. χ


D( )  places 

constraints on the process matrix construction of the incapable process in the process tomography algorithm, 
which specifies how the input and output states for the process tomography behave under an incapable process.

M2. Capability robustness β. An experimental process, χexpt, can become incapable by mixing with noise, i.e.,

χ χ
χ

+ ′

+
=

b

b1
,

(3)
expt



where ≥b 0 and χ′ is the noise process. The capability robustness of χexpt can be defined as the minimum amount 
of noise which must be added such that χexpt becomes χ , i.e.,

β ≡ .
χ′

bmin
(4)

In practical cases, β can be obtained by using SDP to solve β χ= −χ 



min [tr( ) 1]
, under χ


D( )  such that 

 χ χ χ≥ − ≥
 

tr( ) 1, 0expt , which ensure that β ≥ 0 and χ′ is positive semi-definite, respectively.

Quantum criterion.  When χexpt is created with respect to a target process, χtarget, that is defined as capable 
for engineering-oriented purposes9–11, the process fidelity, χ χ≡F tr( )expt expt target , enables us to examine the simi-
larity between them. In particular, χexpt is judged to have a capability close to that of the target process if it goes 
beyond the best mimicry by incapable processes to χtarget, i.e.,

χ χ> ≡
χ

F F max[tr( )],
(5)expt target 



meaning that χexpt is a faithful operation which cannot be simulated by any incapable processes. Note that F  in 
(5) can be evaluated by performing the following maximization task with SDP:  

χ χ= χ 



F max [tr( )]target , under 
χ


D( )  such that χ =


tr( ) 1. Moreover, from a reasonable engineering-oriented perspective, we consider χtarget 
capable and to be the default, i.e.,  <F 1. Note that the criterion (5) does not satisfy (MP1)-(MP3). If the process 
fidelity under the criterion (5) is used to serve as a capability measure, say χ ≡ −C F F( )expt expt  , this fidelity 
measure will not be necessarily equal to zero when the χexpt is an incapable process. The reason is that F  is the 
optimal value for all incapable processes, which means that the fidelity criterion (5) does not satisfy (MP1). Since 
(MP2) and (MP3) are derived from (MP1), such criterion also does not satisfies (MP2) and (MP3).

Capability examples.  Let the following capable processes be used to demonstrate the formalism described 
above:

E1. Non-classical dynamics. As defined in ref. 30, a non-classical dynamics is a dynamical process that cannot 
be explained using a classical picture: the initial system is considered a physical object with properties satisfying 
the assumption of classical realism, and the system thus evolves according to classical stochastic theory.

Non-classical dynamics can be quantified and used as the requirement for the non-classical manipulation of a 
system30, e.g., the fusion of entangled photon pairs31. In the present context of quantum process capability, 
non-classical dynamics is capable of going beyond the generic model of classical dynamics, compared to incapa-
ble classical processes. The quantifications of non-classical processes introduced in ref. 30 reveal the capability of 
non-classical dynamics, and include the capability composition α (2), the capability robustness β (4) and the 
capability criterion (5).

E2. Entanglement generation. Creating entanglement is a crucial dynamical process in both quantum mechan-
ics and quantum-information processing9,10. However, the means to quantify the ability of a process to generate 
the entanglement of two qubits remains unclear.

Let entanglement creation be defined as a capable process, χent. Any process that merely preserves the separa-
bility of a quantum system is therefore said to be incapable, and is denoted by χ ,ent . The capability measures of 
χent, such as α and β, confirm that χ >C( ) 0ent . By contrast, the capability measure of χ ,ent is minimum, i.e., 

χ =C( ) 0,ent . The concrete set of constraints acting on the incapable process χ


D( ),ent  in calculating α, β and F  is 
given by

 χ ρ ρ χ ρ ρ≥ ∀ ≥ ∀ ∈
 

s( ) 0 ; ( ( )) 0 , (6),ent in in ,ent in
PT

in sep

where ssep denotes the set of separable states. The first constraint in Eq. (6) ensures that the output states are posi-
tive semi-definite for all the input states required in the process tomography algorithm. As will be illustrated 
below, this condition is necessary for all incapable processes. The second constraint is based on the positive partial 
transpose (PPT) criterion32,33, and guarantees that if the input states are separable states, the output states are 
separable states as well. In other words, the PPT criterion stipulates that an output state ρout after partial transpo-
sition (PT) is positive semi-definite, i.e., ρ ≥ 0out

PT , if and only if the state ρout is separable.
E3. Coherence creation and preservation. Quantum coherence is one of the main features of quantum sys-

tems18,21–23, and is the main power behind quantum technology6,7. If the density matrix of a d-dimensional system 
is not diagonal in a given orthonormal basis | 〉| = … −j j d{ 0, 1, , 1}, then the system is said to possess coherence 
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with respect to basis | 〉j{ }21. A mixture consisting only of the basis states of the form: ∑ | 〉〈 |=
− p j jj

d
j0

1 , is then said to be 
an incoherent state.

Coherence creation and preservation are essential in performing state preparation and manipulation in quan-
tum engineering9–11,13. They represent two different abilities of capable processes, and are denoted hereafter as χcre 
and χpre, respectively. The capability measure of coherence creation shows that χ >C( ) 0cre . Compared with χcre, 
an incapable process, χ ,cre , cannot create coherence, i.e., incoherent states remain incoherent, and hence the 
coherence capability measure is minimum, χ =C( ) 0,cre . To evaluate α, β and F , for a process incapable of 
coherence creation, χ


D( ),cre  is set as

 χ ρ ρ χ ρ ρ≥ ∀ ∈ ∀ ∈
 

s s( ) 0 ; ( ) , (7),cre in in ,cre in incoh in incoh

where sincoh and sincoh denote the sets of unnormalized incoherent states and incoherent states regarding the basis 
| 〉j{ }, respectively. In other words, if the input states are incoherent states, then the output states must also be inco-

herent states.
Regarding the capability of coherence preservation, χC( )pre  has a positive value for a capable process. By con-

trast, an incapable process causes the states to decohere, i.e., 
χ =C( ) 0,pre . The constrain set, χ


D( ),pre

, for an 
incapable process is formulated as

χ ρ χ ρ ρ≥ ∈ ∀ .
 

s( ) 0, ( ) (8),pre in ,pre in incoh in 

In other words, all of the output states are incoherent states, regardless of the input state ρin. It is noted that this 
is different from the coherence creation case, in which the input states are restricted to incoherent states.

E4. Superposition of quantum states. The superposition principle of quantum mechanics24,34 describes how 
any two or more quantum states can be superposed together to form another valid quantum state (and vice versa). 
The superposition of quantum states therefore generalizes the capability of coherence creation in the orthonormal 
basis | 〉j{ } to the ability to superpose states in a normalized and linear independent basis | 〉| = … −h j d{ 0, 1, , 1}j . 
Superposition states cannot be explained by any mixture of the basis states: ∑ | 〉〈 |=

− p h hj
d

j j j0
1 , and are hence referred 

to as superposition free states24.
For a capable superposition process, the capability measure has a positive value, χ >C( ) 0sup . By contrast, for 

an incapable process, χ ,sup
, i.e., a process which merely preserves the mixture in the superposition free states, the 

capability measure is given as 
χ =C( ) 0,sup . The constraints on the incapable process, 

χ


D( ),sup  are stated as

χ ρ ρ χ ρ ρ≥ ∀ ∈ ∀ ∈
 

s s( ) 0 ; ( ) , (9),sup in in ,sup in supf in supf 

where 
ssupf  and ssupf  denote the sets of unnormalized superposition free states and superposition free states under 

the basis | 〉h{ }j , respectively. χ


D( ),sup
 indicates that if ρin is a superposition free state, then the output state must 

also be superposition free.

Demonstration of the process capability measures.  We now provide an explicit example illustrating 
how a dynamical process of interest can be identified upon the prescribed quantum specification (i.e., E1–E4). We 
consider the case of a composite system consisting of two qubits. Let the qubits be coupled via an interaction, 
equivalent to the quantum Ising model, of the Hamiltonian35: = ∑ − | 〉〈 |=H jk jk1/2 ( 1)j k

jk
int , 0

1 , which is an impor-
tant primitive for creating cluster states in a one-way quantum computer36. The composite two-qubit evolution 
can be represented by an unitary transform = ∑ | 〉〈 |=

. −U t e jk jk( ) j k
it

, 0
1 0 5( 1) jk

. When π=t , the unitary transform 
π = ∑ − | 〉〈 |=U jk jk( ) ( 1)j k

jk
, 0

1  can be considered as an implementation of the controlled-Z gate. Moreover, assume 
that one of the qubits is depolarized at a rate γ. The depolarization of a qubit can be represented in the form 
ρ ρ= + −γ γ− − ˆe e I(1 ) /2t t

final initial , where Î  is identity matrix. By using the process tomography algorithm, the 
process matrix of such depolarization is

χ =


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Given γ = 0.02, Fig. 1a,b illustrate the variations of α and β, respectively, for the five different capabilities 
described above with the qubit interaction time, t. The set of specified conditions for different capabilities for the 
incapable process, χ


D( ), used to evaluate α, β, and F  for this example are given in Methods section. Figure 1c 

compares the process fidelity, Fexpt, with the four different thresholds F  of the capable processes, with respect to 
a target process, the controlled-Z gate. When =F 1expt , it means the χ t( )expt  arrives at the target process, the 
controlled-Z gate. There are oscillations of α, β , and Fexpt  in Fig.  1. The oscillation period is 2π for 
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π= +U t U t( ) ( 2 ), which is determined by the Hamiltonian. If we double the values of the interaction intensity 
in Hint and the Hamiltonian become ′ = ∑ − | 〉〈 |=H jk jk( 1)j k

jk
int , 0

1 , the oscillation period will become π in our 
example. An observation of Fig. 1 yields several important conclusions regarding process identification and clas-
sification, as described in the following.

First, compared to α, the capability robustness measure β provides a clearer distinction between the various 
processes under different interaction periods. This distinction can be realized by characterizing how close χ t( )expt  
is to an incapable process in the sense of how large the minimum amount of noise β is required to be to make 
χ t( )expt  incapable (see Methods). Second, while the process considered in Fig. 1 has no ability to create coherence, 
it enables the two qubits to be entangled. Such a result implies that the coherence of the output entangled qubits 
is not generated by the process χ t( )expt  itself, but is transformed from the input states. In other words, χ t( )expt  has 

Figure 1.  Evaluating dynamical processes with process capability measures. The five different capabilities in the 
dynamics χ t( )expt  of two coupled qubits under a single-qubit depolarizing channel are examined using the 
capability measures (a) α, (b) β, and (c) capability criterion. Note that the coherence and superposition of the 
states are defined in the bases | 〉 | 〉 | 〉 | 〉{ 00 , 01 , 10 , 11 } and | 〉{ 00 , | 〉 + | 〉( 00 01 )/ 2 , | 〉 + | 〉( 00 10 )/ 2 , 
| 〉 + | 〉( 00 11 )/ 2 }, respectively. For comparison with the capability change over time under qubit 

depolarization, the insets show the corresponding cases without noise. The depolarizing rate γ affects the curves 
of α, β, and Fexpt. Here we set γ = .0 02 in the present example. It is worth noting that χ t( )expt  can serve as a 
controlled-Z (CZ) gate at a proper interaction time36. When setting this gate operation as the target process, the 
process fidelity Fexpt varies with time. As indicated in (c), the capability thresholds F  for superposition, 
entanglement generation, non-classical dynamics, and coherence preservation are: 0.750, 0.500, 0.467 and 
0.250, respectively. Since the CZ gate can be described by incapable processes χ ,cre, and is not a proper target 
process for coherence creation, such process capability is not considered in (c). Note that, in (a), for coherence 
preservation, the process is always a capable process, since the depolarization only acts on one of the qubits and 
another qubit can still preserve coherence of single qubit. According to the definition of the incapable process of 
coherence preservation (i.e., all the output states must be incoherent states), this process is always capable 
process of coherence preservation.
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the ability to convert the coherence of the input states into an entanglement of the qubits at specific qubit interac-
tion times. The efficiency of this coherence conversion process can be determined by the capability of entangle-
ment generation, as evaluated by β, for example (see Methods).

Third, superposition can be performed either by purely unitary evolution or by quantum jumps of depolariza-
tion. The latter phenomenon can be seen in Fig. 1b, in which χ t( )expt  for large t (where the depolarization domi-
nates the dynamics) possesses this ability, as described by β > 0.

Finally, since superposition can be implemented using incoherent operations, the capability of superposition 
does not show how efficiently the coherence of the input states ∑ | 〉〈 |=

− p h hj
d

j j j0
1  can be converted into a superposi-

tion of the basis states | 〉hj . (Note that this fact can be understood in an analogous fashion to that used to under-
stand the conversion of the coherence of the input states into entanglement) (see Methods).

Discussion
The quantum process capability framework introduced above possesses several important features for practical 
utility and extensions, as described in the following.

(D1) Since constructing the process matrix is experimentally feasible, the process capability can be readily 
quantified in various present experiments. The quantum operations formalism underlying the process matrix 
is a general tool for describing the dynamics experienced by closed or open quantum systems in a wide variety 
of physical scenarios. Our formalism is therefore applicable to all physical processes described by the general 
theory of quantum operations, including, but not limited to, the fundamental processes postulated in quantum 
mechanics2,9, the dynamics of energy transfer systems37, the task-orientated processes associated with quantum 
information10,11,31, and the atomic-physics and quantum-optics experiments on a chip38.

(D2) In addition to the capable processes illustrated above (i.e., E1-E4), the present framework can also be 
used to explore other types of quantum process capability, including the creation of genuine multipartite entangle-
ment39, Einstein-Podolsky-Rosen steering40, Bell non-locality20, and genuine multipartite quantum steering41,42.

(D3) Process identification and classification. As distinct process capabilities are given, dynamical processes 
can be identified and classified accordingly using the capability measures, such as the capability robustness. This 
is helpful in uniting existing works on quantum information under a given type of quantum process capability, for 
example, the preservation of quantumness30 or the coherence of quantum information9–11,13.

(D4) Benchmark for process engineering. The capability criterion (5) sets a level F  of quantum-mechanical 
quality that can be used as a standard when comparing other experimental processes for task-oriented pur-
poses9–11; as illustrated in Fig. 1c.

(D5) Insightful description of processes. A given quantum process capability may be linked in some way with 
other concepts. For example, the capability of non-classical dynamics can be used to reveal the non-Markovianity 
of dynamical processes30,43,44. Alternatively, the capability of entanglement generation also provides an under-
standing of the efficiency of coherence conversion. The framework proposed herein thus facilitates a more com-
prehensive understanding of the characteristics of quantum dynamics.

(D6) Maximum extraction of resources from processes. The quantum effects of a process on the system inputs, 
ρin, as revealed by the output states, ρout, are usually considered as quantum resources, such as entanglement45,46 
and coherence21,22. The maximum amount of resources that can be extracted from a given process, χexpt, can be 
quantified in terms of the quantum process capability, χC( )expt , using an appropriate capability measure. The 
reason for this lies in the fact that the quantum process capability provides an optimal description of the pre-
scribed quantum specification in χexpt in the sense that the framework proposed in this study does not depend on 
any specifics of the states being processed (see Methods section).

In conclusion, we have developed a novel formalism for performing the quantitative identification of quantum 
dynamical processes. The concept of quantum process capability and its various quantifications have been intro-
duced to evaluate the prescribed quantum-mechanical features of a dynamical process. The ability to quantify the 
ability of a process in terms of its quantum process capabilities makes it possible to discriminate quantitatively 
between different dynamical processes. Overall, the rigorous framework of quantum process capability proposed 
in this study provides the means to go beyond the usual analysis of state characteristics and to approach the goal 
of uniting work on quantum information theory.

Future studies will aim to improve the performance and scalability of the process tomography47 underlying the 
proposed formalism, including scenarios such as where the measurement outcomes are continuous and unbound, 
e.g., as for nanomechanical resonators48. It is anticipated that the enhanced framework will thus facilitate the 
novel recognition and classification of physical processes with quantum process capability.

Methods
Basic properties of capability composition α.  The capability composition measure α possess the three 
required properties of capability measures, namely, (MP1)-(MP3).

(MP1): From the definition of capability composition, Eqs. (1) and (2), it follows directly that (MP1) is a ful-
filled property.

(MP2): (2b)
Property (2a) can be proven by properties (2b) and (MP3). We start by proving (2b).
We consider a process consisting of the experimental process9,27, χexpt, and an incapable process, χ , of the 

form

∑χ χ χ χ= p ,
(10)n

n nexpt expt 

https://doi.org/10.1038/s41598-019-56751-x
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where each χ n is an incapable process and p{ }n  is the corresponding probability distribution with ∑ =p 1n n . Using 
Eqs. (1) and (2), the process χ χ nexpt 

 can be represented as

I C I I Iχ χ αχ χ α χ χ= + − .  (1 ) (11)n n nexpt

Note that, while α is the capability composition of χexpt, i.e., the optimal result for χexpt, it is not necessarily the 
optimal result for χ χ nexpt 

. Since χ n  and χ  are both incapable processes, χ χ n   must also be an incapable process.
For χ χ nC I , there exists a possibility that the process is not capable, i.e., it contains a certain non-vanished 

amount of incapable process. Therefore, the minimum amount of capable process that can be found in 
χ χ nexpt  

cannot be greater than α. In other words, it follows that it is possible to find specific capable and incapable pro-
cesses, denoted by χ ′n  and χ ′n , respectively, which yield the following decomposition:

χ χ α χ α χ= + − .′ ′ (1 ) (12)n n n n nexpt I C I

Since αn is the capability composition of 
χ χ nexpt , i.e., it is optimal for χ χ nexpt 

, it follows that

α α≤ , (13)n

which implies that

∑ α α≤ .p
(14)n

n n

Thus, we conclude that the capability composition measure satisfies the property, 
χ χ χ∑ ≤p C C( ) ( )n n nexpt expt .

(MP3): The process χ χexpt 
 (10) can be reformulated as

χ χ χ χ= + −′ ′ a a(1 ) , (15)expt I I C I I

where χ α χ= ∑′ ′p a/n n n nC C I ,   χ α χ= ∑ − −′ ′p a(1 ) /(1 )n n n n , and  α= ∑a pn n n. Note that a  is not necessar-
ily optimal for χ χexpt 

.
Since each process χ ′n  is an incapable process, χ ′ is also an incapable process. In accordance with the defini-

tion of capability composition, we have α χ χ= ∑ C p( )n n nexpt 
 and  α ≤ a . Moreover, since 

α χ χ= C( )n nexpt , 
we finally get

 ∑α α≤ p ,
(16)n

n n

which satisfies the property, 
 χ χ χ χ∑ ≤ ∑ C p p C( ) ( )n n n n n nexpt expt .

(MP2): (2a)
From (2b) and (MP3), we conclude that

 ∑α α α≤ ≤p ,
(17)n

n n

(MP3) (2b)

i.e., 
χ χ χ≤C C( ) ( )expt expt .

Here we take the capability composition α of entanglement generation for example to demonstrate the three 
properties (MP1) - (MP3) for capability measure. Let us consider the instance of coupled qubits discussed in 
Fig. 1. As shown in the inset of Fig. 1a for time evolution without noise effect, when =t 0, the process χ (0)expt  is 
identity process which has no capability to generate entanglement from separable states. Then χ (0)expt  is an inca-
pable process and its χC( (0))expt  is 0 (MP1). If we incorporate the incapable process χ (0)expt  into the capable 
process χ π( )expt , we find that the incapable process does not increase the capability composition α,

χ π χ χ π= =C C( ( ) (0)) ( ( )) 1,expt expt expt

which satisfies property (2a) in (MP2). Since other incapable processes χ πn(2 )expt  do not increase the capability compo-
sition, i.e., χ π χ π =C n( ( ) (2 )) 1expt expt , it satisfies property (2b) in (MP2), χ π χ π χ π∑ ≤p C n C( ( ) (2 )) ( ( ))n n expt expt expt . 
To show an example of the property (MP3), we mix χ π χ( ) (0)expt expt  and χ π χ π( ) (2 )expt expt  together, where χ (0)expt  
and χ π(2 )expt  are both incapable processes. After mixing, the capability composition does not increase,

χ π χ χ π χ π

χ π χ χ π χ π

+

=


 +





=

 

 

C C

C

1
2

( ( ) (0)) 1
2

( ( ) (2 ))

1
2

( ) (0) 1
2

( ) (2 )

1,

expt expt expt expt

expt expt expt expt

which satisfies (MP3).
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The properties (MP1)-(MP3) also hold for the time evolution under the noise effect. In Fig. 1a, when π=t 2 , 
the process χ π(2 )expt  is a process that has no capability to generate entanglement from separable states, so 
χ π(2 )expt  is an incapable process and its χ πC( (2 ))expt  is 0 (MP1). The capability composition of a capable process 
χ π( )expt  does not increase by incorporating additional incapable process χ π(2 )expt , i.e.,

χ π χ π χ π= . < = .C C( ( ) (2 )) 0 742 ( ( )) 0 909,expt expt expt

and satisfies property (2a) in (MP2). The example for property (2b) in (MP2) can be known from the case,

χ π χ π χ π χ π

χ π



 +





= . <

= .

 C

C

1
2

( ) (2 ) 1
2

( ) (4 )

0 669 ( ( ))

0 909,

expt expt expt expt

expt

where χ π(2 )expt  and χ π(4 )expt  are both incapable processes. If we mix χ π χ π( ) (2 )expt expt  and χ π χ π( ) (4 )expt expt  
together, the mixed process satisfies the property (MP3),

χ π χ π χ π χ π

χ π χ π χ π χ π

+

=


 +





= .

 

 

C C

C

1
2

( ( ) (2 )) 1
2

( ( ) (4 ))

1
2

( ) (2 ) 1
2

( ) (4 )

0 669,

expt expt expt expt

expt expt expt expt

that the mixing does not increase capability composition.

Basic properties of capability robustness β.  The capability robustness measure β has the three proper-
ties of capability measures, (MP1)-(MP3).

(MP1): From the definition of capability robustness, Eqs. (3) and (4), it is apparent that (MP1) is a fulfilled 
property.

(MP2): (2b)
From the definition of capability robustness, Eqs. (3) and (4), it is additionally clear that

χ β χ βχ= + − ′.(1 ) (18)expt

From Eq. (10), combined with Eq. (18), we have

χ χ β χ χ βχ χ= + − ′ .  (1 ) (19)n n nexpt    

Since χ n  and χ  are both incapable processes, χ χ n   must also be an incapable process. It is worth noting 
that, while β is the robustness of χexpt, i.e., it is an optimal value for χexpt, it is not necessarily the optimal value for 
the resulting process, 

χ χ nexpt .
In general, the quantum process capability cannot be increased by applying additional incapable processes. 

Thus, the minimum amount of noise added to χ χ nexpt 
 should be equal to (or less than) the minimum amount 

of noise added to χexpt. In accordance with Eqs. (3) and (4), we define βn as the optimal result for 
χ χ nexpt . We 

now get

β β≤ , (20)n

from which we conclude that

∑ β β≤ .p
(21)n

n n

In other words, the capability robustness measure possesses the property, χ χ χ∑ ≤p C C( ) ( )n n nexpt expt
.

(MP3): The process χ χexpt 
 (10) can be expressed as

χ χ χ χ= + ′ − ″ b b(1 ) , (22)expt    

where χ β χ″ = ∑ ′ ′p b/n n n n  , χ β χ′ = ∑ − −′p b(1 ) /(1 )n n n n   , and  β= ∑b pn n n. From the definition of the 
capability robustness, we know that β χ χ= ∑ C p( )n n nexpt 

 and  β ≤ b . We thus show that

 ∑β β≤ .p
(23)n

n n

With β χ χ= C( )n nexpt 
, the capability robustness measure then has the property 

χ χ∑ ≤ ∑C p p( )n n n n nexpt

χ χC( )nexpt .
(MP2): (2a)
Properties (2b) and (MP3) lead property (2a) as follows:

https://doi.org/10.1038/s41598-019-56751-x
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 ∑β β β≤ ≤ .p
(24)n

n n

(MP3) (2b)

Thus, the capability robustness measure has the property χ χ χ≤C C( ) ( )expt expt
.

Comparison between α and β.  The idea underlying the capability composition measure highlights 
whether a process can be described by the model of an incapable process. Such a feature indicates that this meas-
ure is unable to reveal the distinction between processes, in general. By contrast, the idea of how close a process 
is to an incapable process, which underlies the capability robustness measure, makes the difference between 
processes visible.

Constraints on incapable processes.  In this section, we present the constraint sets χ


D( ) required in the 
capability examples presented in the main text, where χ



 is an unnormalized process matrix9. To obtain the con-
straints for the incapable process χ


D( ), we provide in the following the limitations on both the prepared input 

states and their corresponding output states, which are used to construct the process matrix9.
E1. Non-classical dynamics. To demonstrate the constraint set for the incapable processes of non-classical 

dynamics χ


D( ),ncl , shown in Fig. 1, we first introduce classical processes30 for a two qubit system. In general, a 
classical process can be described by its classical states and their evolution. The classical states of input systems 
satisfy the assumption of realism and can be represented by the realistic sets ≡ξ v v v v v vv ( , , , , , )1

1
2
1

3
1

1
2

2
2

3
2 , in which 

∈ + −v { 1, 1}i
j  represents the possible measurement outcomes of the ith physical property for the jth classical 

object. The evolutions of these states are described by transition probabilities, Ωξμ, from ξv  to a final state μ, which 
can be reconstructed as a density operator ρμ

 by using state tomography. Such an evolution can always be 
rephrased as the transition from a specific state set ξv  to some final state ρμ′

 with Ω =ξμ′ 1, where ρμ′
 denotes the 

unnormalized density matrix. The constraint set χ


D( ),ncl  for the incapable process of non-classical dynamics is 
given as

ρ μ≥ ∀ ′μ′ 0 , (25)

which ensures that all the output states ρμ′
 of classical processes are positive semi-definite.

The constraint set χ


D( ),ncl  determines the number of variables that need to be optimized via SDP. For a two 
qubit system, each ρμ′

 in χ


D( ),ncl  is a 4 × 4 matrix that contains 16 variables. To describe classical dynamics, we 
need 64 matrices which corresponds to the number of ξv , so there are 1024 variables that need to be solved by SDP.

E2. Entanglement generation. To derive the constraint set χ


D( ),ent  for entanglement generation, we first intro-
duce the process tomography operation for a two qubit system. Any input state ρin for a process can be expanded 
as ρ ξ σ σ= ∑ ⊗k l kl k lin , , where σ = Î0  is an identity matrix; σ1, σ2, σ3 are Pauli matrices X , Y , Z, respectively; and 
ξkl is a coefficient of the form ξ ρ σ σ= ⊗tr( )kl k lin . Similarly, the output state of the process, ρout, can be constructed 
as ρ ξ ρ= ∑k l kl klout , , where ρkl is the output corresponding to σ σ⊗k l. Since each Pauli matrix σ1, σ2, σ3 can be rep-
resented as the spectral decomposition σ = ∑ | 〉〈 |=± m k kk m m m1 , where | 〉km  is the eigenstate corresponding to 
eigenvalue m of Pauli matrix σk, the input states used for process tomography are the tensor product of the eigen-
states of the three Pauli matrices ρ = | 〉〈 | ⊗ | 〉〈 |k k l lm m n nin , and the corresponding output states are ρ

k lm n
. The 

outputs of the Pauli matrices can then be represented as ρ ρ= ∑ =± 
mnkl m n k l, 1 m n

.
Since all of the input states ρin prepared for process tomography are separable states, the output states, ρ

k lm n
, 

must also be separable states for a process with no ability to generate entangled states. The constraint set χ


D( ),ent  
for the incapable process of entanglement generation is given by

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

ρ ρ

ρ ρ

ρ ρ

ρ ρ

≥ ≥ ∀

= ∀

= ∀

= ∀ .

=± =±

=± =±

=± =± =± =±

 

 

 

 

k l m n

k

l

k l

0, 0, , , , ;

, ;

, ;

, ,
(26)

k l k l

m
k l

m
l

n
k l

n
k

m n
k l

m n

PT

1 1
1

1 1
1

1 1 1 1
1 1

m n m n

m n m n

m n m n

m n m n

The first criterion in (26) ensures that the output states ρ
k lm n

 are separable states for χ
 ,ent  by using the positive 

partial transpose criterion32,33, where ρ
k l

PT
m n

 are the density matrices used to perform partial transpose on ρ
k lm n

. The 
remaining constraints in (26) ensure that when the input states are an identity matrix Î , the corresponding output 
states are the same for different decompositions of Î . Such a requirement is used in tomographically characteriz-
ing separable output states ρout of incapable processes, where the outputs of Pauli matrices associated with the 
identity matrix in the inputs σ σ⊗k l should be objectively described, independent of measurement bases. Since 
the identity matrix Î  can be represented as the sum of two eigenstates of the Pauli matrices, i.e., 

= ∑ | 〉〈 | ∀=±Î k k k,m m m1 , the output state of Î  for χ
 ,ent  must be the same no matter how it is decomposed. For 

the second constraint in Eq. (26), which states that the input of the first qubit is Î , the outputs χ ⊗ | 〉〈 |


Î l l( )n n,ent  
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are the same for all decompositions of Î . The third and fourth constraints in Eq. (26) state that the input of the 
second qubit and the input of both qubits are Î , respectively.

E3. Coherence creation and preservation. To construct the process matrix using process tomography9, we first 
prepare the input states

ψ| =











| + | = =

| + | = ≠

| + | = ≠

⟩

⟩ ⟩
⟩ ⟩

⟩ ⟩

m n k m n

m n k m n

m i n k m n

( ), if 1,

( ), if 2,

( ), if 3, , (27)

kmn

1
2

1
2

1
2

where = … −m n d, 0, 1, , 1. The density matrix of the input states has the form ρ ρ ψ ψ= = | 〉〈 |kmn kmn kmnin . We 
then obtain the output states χ ρ


( )kmn , which correspond to the prepared input states. An arbitrary output state 

χ ρ


( ) can be obtained as a linear combination of the output states χ ρ


( )kmn
9. The above specification is also appli-

cable to superposition.
The constraint set χ


D( ),cre  for the incapable process of coherence creation is given by

∑

χ ρ

χ ρ

≥ ∀

= | 〉〈 | ∈ ∀
=

−






k m n

p j j s m

( ) 0, , , ;

( ) , ,
(28)

kmn

mm
j

d

j

,cre

,cre 1
0

1

incoh





where ≥p 0j  are the non-negative coefficients of each pure state | 〉〈 |j j  and sincoh denotes the set of unnormalized 
incoherent states regarding the basis | 〉j{ }.

By contrast, the set of constraints for the incapable process of coherence preservation, χ


D( ),pre
, is given as

∑

χ ρ

χ ρ

≥

= | 〉〈 | ∈ ∀ .
=

−





p j j s k m n

( ) 0,

( ) , , ,
(29)

kmn

kmn
j

d

j

,pre

,pre
0

1

incoh





The number of variables that needs to be optimized by SDP is related to the output states χ ρ


( )kmn,cre  in 
χ


D( ),cre . For single qubit system, each χ ρ


( )kmn,cre  is a 2 × 2 matrix that contains 4 variables. To determine the 
process matrix, we need four matrices, χ ρ


( ),cre 100 , χ ρ


( ),cre 111 , χ ρ


( ),cre 201 , and χ ρ


( ),cre 301 , so there are 16 variables 

that need to be solved by SDP. For two qubit system, each χ ρ


( )kmn,cre  is a 4 × 4 matrix that contains 16 variables. 
To determine the process matrix, we need 16 matrices, so there are 196 variables that need to be solved by SDP in 
two qubit system. This is less than the number of variables for non-classical dynamics, since they have different 
constraint sets χ


D( ).

For the quantum Ising model shown in Fig. 1, the system is a four-dimensional system with =d 4. For 
χ


D( ),cre , the set of constraints indicates that the output states of the incoherent states | 〉〈 | ∈j j j, {0, 1, 2, 3} are 
incoherent states belonging to sincoh, i.e., mixtures of the basis states ∑ | 〉〈 |= p j jj j0

3 . Meanwhile, χ


D( ),pre
 ensures that 

the output states of all the input states prepared for process tomography are incoherent states belonging to sincoh.
E4. Superposition of quantum states. The superposition free states24 in 

ssupf  are mixtures of the basis states 
| 〉〈 |h hj j . To make each superposition free state under 

χ
 ,sup belong to 

ssupf , the constraints for the incapable process 
are that the output states of the superposition free states must satisfy χ | 〉〈 | ∈ 


h h s( )j j,sup supf

.
To construct the process matrix using process tomography, we first prepare the input states 

ρ ρ ψ ψ= = | 〉〈 |kmn kmn kmnin  described in Eq. (27) and the corresponding output states χ ρ


( )kmn,supf
.

The basis states can be decomposed into a linear combination of the input states ρkmn. That is, 
ρ| 〉〈 | = ∑h h ej j k m n jkmn kmn, , , where the coefficients ejkmn are as follows:

∑

= | 〉〈 | 〉〈 | ≠

= | 〉〈 | 〉〈 | ≠

= | 〉〈 | 〉〈 | − + = .
= ≠

−

e h h m n m n
e h h m n m n

e h h m n e e m n

2Re[tr( )], ;
2Im[tr( )], ;

tr( ) 1
2

( ),
(30)

j mn j j

j mn j j

j mn j j
l l m

d

j ml j ml

2

3

1
0,

1

2 3

The output states of basis states | 〉〈 |h hj j  through χ
 ,supf

 can be expressed as χ χ ρ| 〉〈 | = ∑ 
h h e( ) ( )j j k m n jkmn kmn,supf , , ,supf 

.
The constraints on the incapable process constituting 

χ


D( ),supf  are given as

∑ ∑ ∑

χ ρ

χ ρ ρ

≥ ∀

= | 〉〈 | ∈ ∀ = | 〉〈 |
=

−






k m n

e p h h s e h h

( ) 0, , , ;

( ) , ,
(31)

kmn

k m n
jkmn kmn

j

d

j j j
k m n

jkmn kmn j j

,supf

, ,
,supf

0

1

supf
, ,





where pj are the non-negative coefficients of each pure state | 〉〈 |h hj j .
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For the quantum Ising model in Fig. 1, we use a four-dimensional system to describe a composite 
two-dimensional system, i.e., | 〉 = | 〉00 0 4, | 〉 = | 〉01 1 4, | 〉 = | 〉10 2 4 and | 〉 = | 〉11 3 4. Moreover, we choose a normal-
ized and linear independent basis: | 〉 = | 〉h 00 4, | 〉 = | 〉 + | 〉h ( 0 1 )/ 21 4 4 , | 〉 = | 〉 + | 〉h ( 0 2 )/ 22 4 4  and 

= | 〉 + | 〉h ( 0 3 )/ 23 4 4 . The superposition free states can be decomposed into the following prepared input states: 
ρ| 〉〈 | =h h e0 0 0100 100 ,  ρ| 〉〈 | =h h e1 1 1201 201 ,  ρ| 〉〈 | =h h e2 2 2202 202 ,  a n d  ρ| 〉〈 | =h h e3 3 3203 203 ,  w h e r e 

= = = =e e e e 10100 1201 2202 3203 .

Conversion from coherence to entanglement.  In order to evaluate the coherence conversion efficiency 
of process χ t( )expt , we choose the maximally coherent and separable state | 〉 = | 〉 + | 〉 + | 〉 + | 〉s ( 00 01 10 11 )/2 as 
the input state. Furthermore, we define the conversion efficiency from coherence to entanglement, η t( )ent , as the 
ratio of the concurrence49 of the output state χ | 〉〈 |t s s( )( )expt , denoted as C t( )ent , to the normalized coherence 
robustness of the input state, =s 1coh . In other words, η =t C t( ) ( )ent ent . (Note that, before normalization, the 
coherence robustness of the input state22 is =s 3coh ). For example, we have η π = .( /2) 0 7071ent  and η π =( ) 1ent  for 
a process with no depolarizing effect.

We note that these values are exactly the same as those for the entanglement generation robustness, β, for 
χ π( /2)expt  and χ π( )expt , respectively (see Fig. 1b). Notably, this fact holds for all other interaction times. Moreover, 
for processes with a depolarizing effect, the change in conversion efficiency over time is highly coincident with the 
change in the entanglement generation robustness. For example, we have η π = .( /2) 0 6743ent  and 
η π = .( ) 0 9087ent , which correspond to β = .0 6698 and .0 9087, respectively. Therefore, the capability of entangle-
ment generation can also be used to examine the coherence conversion efficiency.

Conversion from coherence to superposition.  The conversion efficiency from coherence to superposi-
tion for process χ t( )expt  is defined as η = t s s( ) /sup sup coh, where ssup is the normalized superposition robustness24 of 
the output state from χ t( )expt , and =s 1coh  denotes the normalized coherence robustness of the input state. To 
evaluate the coherence conversion efficiency, let the input state, | 〉h3 , be chosen from the basis | 〉 = | 〉h{ 000 , 
| 〉 = | 〉 + | 〉h ( 00 01 )/ 21 , | 〉 = | 〉 + | 〉h ( 00 10 )/ 22 , | 〉 = | 〉 + | 〉h ( 00 11 )/ 2 }3 . (Note that | 〉h3  is a coherent and 
superposition free state, and the coherence robustness of the input state before normalization is =s 1coh ). For 
example, η π = .( /2) 0 621sup  and η π =( ) 1sup  correspond to β = .0 8624 and β = .1 366, respectively, for χ t( )expt  
with no depolarizing effect (see Fig. 1b). For χ t( )expt  with a depolarizing effect, η π = .( /2) 0 624sup  and 
η π = .( ) 0 9848sup  correspond to β = .0 8489 and β = .1 361, respectively. Notably, depolarization at π=t /2 
causes the η π( /2)sup  to increase, but makes the superposition robustness β decrease. As a result, the capability of 
superposition cannot be used to examine the coherence conversion efficiency.

Maximum extraction of resources from processes.  Since  χ ρ ρ=( )in  is incapable for all incapable 
input states ρin, Eqs. (1) and (3) can be rephrased as ρ ρ ρ= + −a a(1 )out C I  and ρ ρ ρ+ ′ + =b b( )/(1 )out , 
respectively, where ρ χ ρ′ = ′( )in , and ρ χ ρ= ( )C in  are assumed to possess the prescribed resources. One can con-
sider the minimum values of a and b as the quantities of resources that can be found in ρout under a given input 
state ρin and for all possible ρ  and ρ′. By maximizing the quantity of resources for all incapable input states, we 
obtain the maximum amount of resources that can be extracted from χexpt. Since the above optimization tasks 
have been considered in Eqs. (2) and (4), we conclude that α and β can quantify the maximum extraction of 
resources from a process.
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