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Abstract
COPD (chronic obstructive pulmonary disease) is defined by a fixed expiratory airflow

obstruction associated with disordered airways and alveolar destruction. COPD is caused

by cigarette smoking and is the third greatest cause of mortality in the US. Forced expiratory

volume in 1 second (FEV1) is the only validated clinical marker of COPD, but it correlates

poorly with clinical features and is not sensitive enough to predict the early onset of disease.

Using LC/MS global untargeted metabolite profiling of serum samples from a well-defined

cohort of healthy smokers (n = 37), COPD smokers (n = 41) and non-smokers (n = 37), we

sought to discover serummetabolic markers with known and/or unknown molecular identi-

ties that are associated with early-onset COPD. A total of 1,181 distinct molecular ions were

detected in 95% of sera from all study subjects and 23 were found to be differentially-

expressed in COPD-smokers vs. healthy-smokers. These 23 putative biomarkers were dif-

ferentially-correlated with lung function parameters and used to generate a COPD predic-

tion model possessing 87.8% sensitivity and 86.5% specificity. In an independent validation

set, this model correctly predicted COPD in 8/10 individuals. These serum biomarkers

included myoinositol, glycerophopshoinositol, fumarate, cysteinesulfonic acid, a modified

version of fibrinogen peptide B (mFBP), and three doubly-charged peptides with undefined

sequence that significantly and positively correlate with mFBP levels. Together, elevated

levels of serum mFBP and additional disease-associated biomarkers point to a role for

chronic inflammation, thrombosis, and oxidative stress in remodeling of the COPD airways.

Serum metabolite biomarkers offer a promising and accessible window for recognition of

early-stage COPD.

Introduction
Chronic obstructive pulmonary disease (COPD) is a debilitating cigarette smoking-associated
disease and the third most common cause of death in the US. The natural history of COPD is
marked by episodes of exacerbation, morbidity and ultimately, mortality [1]. Other than O2

inhalation, there are no therapies that diminish mortality of COPD [2]. To promote COPD
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education and set universal standards of treatment, the Global Initiative for Chronic Obstruc-
tive Lung Disease (GOLD) was initiated in 1998, and updated every year, incorporating the lat-
est science for improving the lives of COPD patients around the world [3].

COPD is characterized by progressive restriction to expiratory airflow [4]. The forced expi-
ratory volume in 1 second (FEV1) both defines and characterizes the severity of the disease,
and is a well-known predictor of mortality [5]. However, COPD manifests itself with multiple
phenotypes that cannot be identified through measurement of lung function alone. The impor-
tance of COPD risk assessment, phenotype identification, and early prognosis of exacerbation
periods magnify the need for validated biomarkers in COPD [6]. A variety of promising bio-
markers have been reported for COPD [7], including blood proteins [8–39], miRNAs [40, 41],
and small molecule metabolites [42–50]. These proposed biomarkers are specifically associated
with different aspects of COPD pathophysiology. Indeed, inflammatory markers in blood such
as increased C-reactive protein [21, 33], fibrinogen [8, 9], IL-6 [34–36], IL-8 [37] and tumor
necrosis factor alpha [38] have been linked to exacerbations and mortality, while reduced CC-
16 [22] and elevated adiponectin [30, 31, 39] have been linked to lung function deficits and
severity of emphysema. Notwithstanding rapidly expanding efforts to identify COPD biomark-
ers, especially blood proteins, no single marker has been adopted for routine clinical use to
date.

Radiological markers, such as quantitative CT imaging have been used to define the COPD-
related phenotype in smokers [51]. Gene expression [52, 53] and analysis of molecules in
exhaled breath [54–56] have also been applied for potential discovery of COPD biomarkers.
Most recently, metabolomics-based metabolite profiling has begun to attract attention as a bio-
marker discovery approach [57, 58]. Indeed, metabolites are the ultimate readout of disease
phenotype and accordingly, metabolomics has proven to be a powerful tool for probing com-
plex biological mixtures to discover changes in metabolite levels that arise from drug treat-
ments, gene mutations and disease states. Paige et.al [48] analyzed plasma metabolite profiles
from healthy non-smokers, smokers with emphysema, and smokers without emphysema,
using ultra high performance liquid chromatography/quadrupole–time-of-flight mass spec-
trometry (UPLC–QTOF). Based on observed differences in metabolite profiles, 12 unknown
target metabolites were used to generate a predictive model that identified emphysema patients
with 90% sensitivity [48]. A recent gas chromatography-mass spectrometry (GC-MS) based
plasma metabolite profiling was applied to effectively predict the presence of cancer in 10 out
of 10 lung cancer patients, 8 out of 8 non-smokers, 8 out of 9 COPD smokers and 5 out of 10
healthy smokers, based on 32 differentially-expressed metabolites across the 4 patient groups
[47]. Of these 32 putative metabolite biomarkers, 21 were of unknown molecular identity, but
were defined by their accurate mass and chromatographic retention times.

In attempt to uncover biomarkers for early-stage COPD, we performed untargeted LC/MS
profiling of a cohort of 118 human subjects comprised of healthy smokers, COPD smokers and
healthy non-smokers, all with well-characterized clinical lung function parameters. The COPD
smokers used in this study were classified as mild, belonging to GOLD I /II disease severity
groups [3]. We surveyed relative levels of 1,181 molecular ions that could be measured in 95%
of patient serum samples to generate a COPD prediction model with 87.8% sensitivity and
86.5% specificity. Efficacy of the model for predicting COPD was found to be 80% in a follow-
on study of a small independent cohort. Differentially-upregulated molecules in COPD smok-
ers vs. healthy smokers included a modified form of fibrinogen peptide B along with 3 addi-
tional peptides. To our knowledge, this is the first discovery of significantly elevated (greater
than 2-fold) serum peptides in early-stage COPD patients with predictive potential. These
results point to an intriguing linkage between thrombosis, cell signaling aberrations and early
onset of COPD.
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Materials and Methods

Human patient cohort
Serum samples from an initial cohort of 118 human subjects were categorized into 3 groups:
healthy nonsmokers (n = 37), healthy smokers (n = 40) and COPD smokers (n = 41). These
samples were used in attempt to identify small molecule biomarkers (50–1000 Da) that signifi-
cantly distinguish COPD smokers from healthy smokers and nonsmokers. The validity of
inferred serum COPD biomarkers was further assessed in an independent study cohort com-
prising healthy nonsmokers (n = 10), healthy smokers (n = 9), COPD smokers (n = 10) and
COPD subjects who had quit smoking for> 3 months (n = 19). Serum samples were obtained
in the morning following overnight fasting. All subjects were phenotyped with regard to medi-
cal history, physical exam, routine blood and urine tests, urine nicotine/cotinine levels, lung
function (forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), FEV1/FVC,
total lung capacity and diffusing capacity and chest high-resolution tomography (HRCT).
Serum samples from 3 smokers (2 males and 1 female) were not acquired for LC/MS negative
ion mode due to a sample handling error (See LC/MS methods for description). All COPD sub-
jects were categorized as GOLD I and II in terms of severity, according to post-bronchodilator
lung function defined by the GOLD classification [3].

Reagents
LC-MS grade acetonitrile (ACN), isopropanol (IPA) and methanol (MeOH) were purchased
from Fischer Scientific. High purity deionized water (ddH2O) was filtered fromMillipore (18
OMG). OmniTrace glacial acetic acid and ammonium hydroxide were obtained from EMD
Chemicals. Ammonium acetate and all other chemicals and standards were obtained from
Sigma Aldrich in the best available grade.

Serummetabolite extraction and metabolomic data acquisition
Serum metabolites were extracted by addition to 1 part serum to 20 parts (vol:vol) 70% acetoni-
trile in ddH2O containing 0.2% ammonium hydroxide. The mixture was briefly vortexed and
then centrifuged for 5 min at 16,000 × g to pellet precipitated proteins. An aliquot of the result-
ing extract (3 μl) was subjected to untargeted metabolite profiling using LC/MS and both posi-
tive and negative ion monitoring. The sequence of analyzed samples was randomized to
eliminate sample order bias of results. Additionally, to minimize bias that may be introduced
by drifting of chromatographic retention times and detected mass measurements with large
sample runs, a pooled extract from all serum samples was prepared, stored in single-thaw ali-
quots, and used as a quality control to correct for potential day-to-day and batch-to-batch LC/
MS data drift. One quality control sample was analyzed every 6 study samples and flanking
quality control results were used to normalize the group of intervening samples.

LC/MSmetabolomics platform for untargeted metabolite profiling
Serum extracts were analyzed by LC/MS as described previously [59, 60] using a platform com-
prised of an Agilent Model 1200 liquid chromatography system coupled to an Agilent 6230
time-of-flight MS analyzer. Chromatography of metabolites was performed using aqueous nor-
mal phase (ANP) gradient separation, on a Diamond Hydride column (Microsolv). Mobile
phases consisted of: (A) 50% isopropanol, containing 0.025% acetic acid, and (B) 90% acetoni-
trile containing 5 mM ammonium acetate. To eliminate the interference of metal ions on the
chromatographic peak integrity and electrospray ionization, EDTA was added to the mobile
phase at a final concentration of 6 μM. The following gradient was applied: 0–1.0 min, 99%B;
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1.0–15.0 min, to 20%B; 15.0 to 29.0, 0%B; 29.1 to 37min, 99%B. Raw data were analyzed using
MassHunter Profinder 6.0 and MassProfiler Professional 13.0 software package (Agilent tech-
nologies). Unpaired t-tests (p<0.05) with Bonferroni correction for multiple group compari-
sons and ANOVA were used to determine significant differences between groups.

Differentially expressed metabolite identification
To ascertain the identities of differentially expressed metabolites (P<0.05) among COPD
smokers, healthy smokers and healthy non-smokers, LC/MS data were searched against an in-
house annotatedMETLIN Personal Metabolite Database (Agilent Technologies), based on
accurate monoisotopic neutral masses (<5 ppm) and chromatographic retention times. A
molecular formula generator (MFG) algorithm in MPP was used to generate and score empiri-
cal molecular formulae based on a weighted consideration of monoisotopic mass accuracy, iso-
tope abundance ratios, and spacing between isotope peaks. A tentative compound ID was
assigned whenMETLIN and MFG scores concurred for a given candidate molecule. Tenta-
tively assigned molecules were verified based on a match of LC retention times and/or MS/MS
fragmentation spectra to that of pure molecule standards in our progressively growing in-
house database.

Results

Clinical characteristics of human subjects
Clinical characteristics of the initial study group are summarized in Table 1. A total of 118
serum samples were collected from 92 males and 26 females. The nonsmoker group comprised
a balanced number of male and female patients, whereas the healthy smoker and COPD
smoker groups were dominated by male subjects. Baseline parameters were similar in BMI and

Table 1. Human subjects and associated clinical parameters1.

Non-smokers Healthy smokers COPD smokers

Number of subjects 37 40 41

Gender 19M, 18F 35M, 5F 38M, 3F

Ethnicity 14 His, 13 Afr, 10 Eur 14 His, 11 Afr, 5 Eur 9 His, 23 Afr, 8 Eur, 1 mixed

Packs per year n/a 21.5 ± 11.3 30.6 ± 1.7

Packs per day n/a 0.9 ± 0.6 0.8 ± 0.5

Age of initiation n/a 15.2 ± 2.9 16.7 ± 3.3

Age 39.5 ± 13.0 41.8 ± 10.1 53.2 ± 7.7

BMI 26.6 ± 5.0 26.9 ± 4.9 25.6 ± 3.6

FEV1% 104.0 ± 11.5 105.5 ± 11.0 77.7 ± 18.9

FVC% 108.0 ± 11.3 110.5 ± 11.0 106.0 ± 16.4

FEV1/FVC% 80.0 ± 5.7 77.9 ± 4.3 58.5 ± 7.6

TLC 97.7 ± 15.7 93.8 ± 9.2 101.6 ±14.5

DLCO 90.4 ± 11.4 87.2 ± 8.5 68.5 ±14.3

COHb 1.6 ± 0.8 2.9 ± 1.2 3.3 ± 1.2

Urine cotinine n/a 1687.0 ±1073.4 1619.5 ±885.1

1All values were presented as mean ± standard deviation

M = Male, F = Female; His: Hispanic ethnicity, Afr: African ethnicity; Eur: European ethnicity; FEV1: forced expiratory value in 1 second; FVC: functional

vital capacity; TLC: total lung capacity; DLCO, diffusing capacity of the lung for carbon monoxide. COHb: carboxylhemoglobin. All lung function

parameters are presented as % predicted except for FEV1/FVC which is expressed as % observed. N/A = not applicable.

doi:10.1371/journal.pone.0143937.t001
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ethnicity for all groups. Both healthy smokers and COPD smokers had a comparable cigarette
consumption rate and smoking history. COPD subjects on average were older than healthy
smokers and non-smokers.

Urine cotinine, the nicotine metabolite, and blood COHb were at comparable levels for
healthy smokers and COPD smokers and, as expected, low or undetected in non-smokers.
Compared to healthy non-smokers and healthy smokers, COPD smokers had significantly
decreased DLCO and FEV1/FVC ratio, the basis for clinical diagnosis of COPD. DLCO and
FEV1/FVC were significantly correlated with each other (Pearson correlation coefficient
R = 0.62, P< 6.3 x e-14) and readily discriminated healthy smokers from COPD smokers. Total
lung capacity showed no difference between COPD smokers and nonsmokers. All COPD
smokers were classified as belonging to the least severe, GOLD I and GOLD II disease groups
Given that healthy smokers and COPD smokers had an indistinguishable cigarette exposure
and smoking history, comparison of plasma metabolites between these groups should allow for
discovery of biomarkers with potential to distinguish the groups and predict health outcomes.

Serummetabolite profile of non-smokers, healthy smokers and COPD
smokers
COPD is routinely diagnosed based on clinical parameters related to lung airway function (e.g.
FEV1/FVC%). However, such clinical parameters do not directly correlate with the overall
health status of patients. Moreover, measurements of lung function provide little prognostic
information regarding anticipated disease severity. In contrast, circulating serum metabolites
offer a potential window into systemic physiology/pathophysiology and the possibility of infor-
mative and predictive COPD biomarkers. To compensate for the limited prognostic potential
of clinical lung parameters, we sought to identify serum metabolites that may inform on
COPD health status and outcomes.

Applying an untargeted LC/MS-based metabolomics platform that uses aqueous normal
phase chromatographic separation coupled to time-of-flight MS, we successfully quantified the
relative levels of 586 positive ions and 635 negative ions in 95% of all serum samples studied
(including quality control samples). Combining positive and negative ions, after excluding
duplicate features measured in both MS detection modes, 1,181 total aligned molecular features
in the range of 50–1,000 Da were quantified in all serum samples (Fig 1A). To account for day-
to-day and batch-to-batch LC/MS instrument drift, metabolite stability and other experimental
factors that can contribute to systematic error, we normalized individual serum metabolite
measurements from all subjects based on levels quantified in flanking quality control samples.
This normalization procedure enabled the comparative analysis of data from a relatively large
number of clinical samples, quantified on different occasions.

Unsupervised hierarchical cluster analysis (HCA) revealed a clear and reproducible pattern
of within-group metabolite expression similarities and between-group differences (Fig 1B). A
Venn diagram, depicted in Fig 1C, contrasts the number of differentially expressed metabolites
and shared metabolite changes among healthy non-smokers, healthy smokers and COPD
smokers. Of 1,181 features quantified in 95% of samples, 62 metabolites were found to be sig-
nificantly different in abundance (P<0.05) between healthy smokers and COPD smokers. Of
these, 17 metabolites were differentially-expressed (up or down) in COPD smokers compared
to both healthy smokers and healthy non-smokers, but also showed no difference between
healthy smokers and healthy non-smokers (i.e., metabolites that distinguish COPD smokers
from both healthy smokers and healthy non-smokers). Regardless of whether smokers were
healthy or had COPD, smoking itself was associated with 107 serum metabolite changes, rela-
tive to non-smokers. Among these smoking-associated serum metabolites, 20 were unknowns
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Fig 1. Untargeted metabolite profiling identifies differentially-expressed serummetabolites among
COPD smokers, healthy smokers, and non-smokers (P<0.05). (A) A total of 1,181 aligned molecular
features detected as positive and negative ions were quantified in all 115 serum samples by untargeted
molecular feature extraction. (B) Heat map from hierarchical clustering analysis, showing 314 differentially-
expressed metabolites among COPD smokers, healthy smokers and non-smokers. The relative level of
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that were elevated by 1.5-fold or greater in both healthy and COPD smokers, compared to
non-smokers (P<0.05, Table 2). These 20 unknowns were defined by their accurate neutral
mass and chromatographic retention time on ANP chromatographic matrix. As expected, the
abundant nicotine metabolites, cotinine and hydroxy-cotinine, were dramatically increased in
serum from both healthy and COPD smoker groups. Additionally, smoking was associated
with altered levels of serum phospholipids and bile acids, but the extent of these changes were
undistinguishable between healthy smokers and COPD smokers.

COPD-specific serummetabolite changes
The goal of untargeted metabolite profiling in this study was to discover serum metabolites of
known and/or unknown molecular identities that distinguish the population of COPD smok-
ers. Such biomarkers should meet the criteria of discriminating between COPD smokers from
healthy smokers, but also exhibit no significant differences between healthy smokers and
healthy nonsmokers. Table 3 summarizes the list of metabolites meeting these criteria.

expression of each metabolite is represented by a color coded heat map, where red represents an
expression higher than the mean and blue represents an expression below the mean values. (C) Venn
Diagram depicts shared metabolite changes among COPD smokers, healthy smokers and non-smokers
(p < 0.05). Of these, 62 metabolites were significantly different (P<0.05) between healthy smokers and COPD
smokers. And 17 of these 62 metabolites were differentially-expressed in COPD smokers compared to both
healthy smokers and non-smokers, but showed no difference between healthy smokers and non-smokers.

doi:10.1371/journal.pone.0143937.g001

Table 2. Differential metabolites between COPD smoker and healthy smoker compared to non-smokers.

METABOLITE Mass RT P FC P FC P FC

S vs NS S vs NS COPD vs NS COPD vs NS COPD vs S COPD vs S

Cotinine 176.093 3.67 1.54E-14 23.27 5.84E-18 24.09 7.81E-01 1.04

3-Hydroxycotinine 192.092 3.45 1.99E-13 4.85 4.23E-13 5.51 2.97E-01 1.14

Unknown 1 742.23 0.71 1.36E-03 3.36 2.84E-02 2.5 3.54E-01 0.74

Quinic acid 192.061 4.41 6.98E-03 2.60 5.33E-04 3.77 1.72E-01 1.45

lysoPI(20:0) 628.36 4.47 3.85E-02 2.19 5.14E-02 2.23 9.62E-01 1.02

PI(32:2) 806.506 1.8 1.40E-02 2.11 8.52E-03 1.78 4.83E-01 0.84

Glycochenodeoxycholic acid 3-glucuronide 625.345 6.53 1.81E-03 2.00 7.43E-02 2.23 7.49E-01 1.11

PI(32:1) 808.511 1.84 6.57E-03 1.89 1.90E-02 1.47 2.27E-01 0.78

5-Acetylamino-6-formylamino-3-methyluracil 226.072 0.69 3.85E-03 1.89 2.13E-02 1.42 1.34E-01 0.75

Unknown2 600.451 1.02 1.39E-02 1.83 4.00E-03 1.88 9.00E-01 1.03

PI(32:0) 810.516 1.84 2.73E-03 1.81 1.33E-02 1.47 2.30E-01 0.81

Glycochenodeoxycholate-3-sulfate 529.27 1.61 1.63E-02 1.65 7.96E-02 1.7 9.09E-01 1.03

PE(35:1) 731.546 7.64 7.91E-03 1.65 7.27E-03 1.46 4.52E-01 0.88

Unknown3 200.014 0.72 3.04E-02 1.61 4.91E-03 2.52 7.60E-02 1.57

1α,25-dihydroxy-23-thiavitamin D3 434.296 1.77 1.53E-03 1.54 1.93E-03 1.52 9.34E-01 0.99

PI(40:4) 914.583 1.84 5.95E-04 1.54 2.38E-04 1.5 7.92E-01 0.97

Unknown 602.468 1.03 3.24E-02 1.52 1.75E-03 1.63 6.95E-01 1.07

6-methyltetrahydropterin 181.098 1.19 2.58E-05 1.51 2.85E-07 1.8 3.19E-02 1.19

PE(33:1) 703.516 7.71 2.78E-02 1.51 1.90E-02 1.43 7.24E-01 0.94

PI(34:1) 836.539 1.85 2.67E-03 1.51 1.68E-02 1.3 2.42E-01 0.86

1RT = retention time

P = p value; S = smokers, NS = nonsmoker, FC = fold-change

doi:10.1371/journal.pone.0143937.t002
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Notably, five peptides were uniquely increased in serum from COPD smokers compared to the
other groups. These peptides were all detected by positive ion MS as doubly-charged ions. Frag-
mentation of the unknown peptides by QTOF revealed that one of these was a modified version
of the 14 amino acid fibrinogen peptide B (FPB; EGVNDNEEGFFSAR) (Fig 2), wherein the
N-terminal glutamate was observed as pyroglutamate and the C-terminal arginine was deleted.
Serum products of fibrinogen turnover have been reported be involved in inflammation and
wound healing [61], and elevated plasma fibrinogen has previously been associated with
reduced pulmonary function and increased risk of COPD [8, 9]. To our knowledge, this is the
first report of N-terminal modified and C-terminal truncated fibrinogen peptide B (mFBP) in

Table 3. Differential metabolites between COPD smokers compared to healthy smokers1.

METABOLITEM Mass RT P FC P FC P FC

COPD vs S COPD vs S COPD vs NS COPD vs NS S vs NS S vs NS

Fibrinogen peptide B 1395.559 8.89 5.56E-03 2.41 7.58E-03 2.38 9.60E-01 0.99

Peptide 1 1464.654 10.44 1.14E-02 3.28 1.02E-02 3.74 6.17E-01 1.14

Peptide 2 1308.547 9.51 4.75E-03 2.44 8.47E-03 2.23 7.29E-01 0.91

Peptide 3 1049.464 9.38 9.04E-04 2.51 1.03E-02 1.89 2.40E-01 0.75

Peptide 4 859.3717 8.68 1.12E-02 2.09 6.00E-02 1.65 2.47E-01 0.79

1,7 Dimethyluric acid 196.058 2.17 3.72E-02 1.57 9.34E-03 1.8 4.96E-01 1.14

Myoinositol 180.062 5.61 3.69E-02 1.33 2.93E-04 1.64 9.87E-02 1.23

PI(40:7) 908.542 1.84 4.20E-03 1.24 1.32E-03 1.35 3.92E-01 1.09

L-Cysteinesulfonic acid 200.976 1.87 2.33E-02 1.26 2.46E-02 1.23 8.04E-01 0.97

*Creatinine 113.056 7.52 3.93E-02 1.15 7.08E-02 1.14 9.03E-01 0.99

N-Methylnicotinate 137.049 10.89 5.70E-02 1.72 6.31E-03 2.51 1.72E-01 1.46

* Unknown 1 863.402 8.7 6.54E-03 1.94 5.00E-02 1.58 2.62E-01 0.82

Unknown 2 627.55 1.85 1.72E-02 1.27 2.83E-04 1.55 6.68E-02 1.22

Unknown 3 234.085 9.61 1.53E-03 0.9 6.77E-03 0.87 4.68E-01 0.97

Unknown 5 935.513 7.4 1.14E-02 0.81 1.55E-02 0.84 5.68E-01 0.96

Unknown 6 592.47 1.61 8.60E-03 0.63 4.28E-02 0.72 4.65E-01 1.14

Unknown 7 922.497 1.83 4.73E-02 1.16 1.09E-02 1.27 3.88E-01 1.09

Unknown 8 482.105 0.75 1.90E-02 1.38 2.31E-02 1.39 9.48E-01 1.01

Unknown 9 834.596 7.19 2.43E-04 1.43 8.84E-02 1.17 7.67E-02 0.82

Fumarate 116.011 6.96 1.00E-03 0.72 3.50E-01 0.94 1.00E-02 1.3

3-hydroxyvalerate 118.061 1.7 3.40E-03 0.5 4.40E-01 0.89 1.00E-02 1.86

Unknown 10 72.056 1.71 4.32E-03 0.59 8.70E-01 0.98 9.47E-03 1.66

Unknown 11 496.306 1.05 5.67E-03 0.61 1.27E-01 0.42 4.59E-01 0.70

Unknown 12 576.476 1.52 1.07E-02 0.68 2.75E-01 0.88 9.43E-02 1.28

Unknown 13 736.464 1.02 1.05E-03 0.43 1.58E-01 0.21 3.82E-01 0.48

Unknown 14 290.004 9.28 5.11E-02 1.25 3.10E-01 1.13 4.31E-01 0.90

Unknown 15 225.068 0.68 5.05E-02 0.66 2.24E-01 1.25 4.59E-03 1.91

Unknown 16 660.262 0.78 1.00E-02 0.68 2.74E-01 0.85 1.57E-01 1.25

*2-Methylhippuric acid 193.065 4.36 1.02E-01 1.91 1.54E-02 3.8 1.14E-01 1.99

*5-Acetylamino-6-amino-3-methyluracil 198.072 3.57 6.19E-02 1.49 3.97E-03 1.92 2.45E-01 1.29

1Underlined metabolites were used for generating prediction model.

*denotes metabolites showing significant correlation with mFBP (Pearson correlation R � 0.34, P � 2.0e-4)

RT = retention; P = p value; FC = fold-change; S = smoker, NS = nonsmokers

doi:10.1371/journal.pone.0143937.t003
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early-stage COPD smokers. The amino acid sequences of the other four peptides were not
solved, but their relative levels were significantly and positively correlated with each other, and
with modified fibrinogen peptide B (Pearson coefficient R� 0.68 and P� 9.3 x e-18; Fig 3).

In addition to peptides, serum myoinositol, dimethyluric acid and N-methylnicotinate were
significantly increased in COPD smokers, as compared with both healthy smokers and non-
smokers. Serum cysteinsulfonic acid glycerophosphoinositol, phosphatidylinositol (40:7) and
creatinine were also modestly elevated in COPD smokers. Two metabolites, 2-methylhippuric
acid and 5-acetylamino-6-amino-3-methyluracil, were markedly increased in COPD smokers
compared to healthy non-smokers, and also showed a trend of increase in comparison with
healthy smokers, with P values approaching significance. In contrast, several hydrophobic
unknowns (with chromatographic retention time consistent with fatty acids and lipids) were
mildly decreased in COPD. Notably, the COPD cohort in this study had relatively mild GOLD
I and II classified disease, and non-peptide serum metabolite changes were found to be modest
compared to healthy smokers, but significant. Except for four metabolites that showed a signifi-
cant correlation with mFBP (denoted by asterisks in Table 3), other non-peptide metabolites
were not significantly correlated with mFBP or other observed unsequenced peptides (not
shown). Unknown1 (mass 863.40 Da at 8.8 min retention time), creatinine and 2-methylhip-
purate showed the most significant correlation with mFBP (r = 0.77, P<3.0 x e-23; r = 0.47,
P<1.3 x e-7; and r = 0.47, P<2.5 x e-7, respectively). This raises the possibility that COPD-asso-
ciated changes in non-peptide and peptide metabolites, may have distinct mechanistic implica-
tions for COPD pathophysiology.

Fig 2. MS/MS fragmentation of a doubly-charged ion ([M+2H] = 697.97 Da) reveals the sequence of peptide as pyroEGVNDNEEGFFSA. Fragments
derived from ion fragmentation at 30 EV match the amino acid sequence of fibrinogen peptide B with truncated C-terminal arginine and N-terminal amino acid
modified as pyroglutamate.

doi:10.1371/journal.pone.0143937.g002
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Correlation of serummetabolites with clinical parameters
The spirometric parameter FEV1/FVC is the classic hallmark for defining and characterizing
the severity of COPD, though it does not always correlate well with health status or disease
symptoms. Urine continine and hydroxycotinine reflect the extent of cigarette smoking, but do
not correlate with the severity of lung function deficits. In order to find a link between lung
dysfunction and altered levels of serum metabolites elicited by smoking, we sought to correlate
the relative levels of serum metabolites that distinguish COPD smokers from both healthy
smokers and non-smokers with the clinical lung function parameters FEV1/FVC, DLCO, TLC
and COHb. Table 4 lists those metabolites showing a significant Pearson correlation coefficient
(P<0.05) with at least one of these lung function parameters. Interestingly, five non-peptide
metabolites (N-methylnicotinate, myoinositol, dimethylurate, methylhippurate and 5-acetyla-
mino-6-amino-3-methyluracil) were observed to correlate with all four lung function parame-
ters (P<0.05). In contrast, mFBP and all other non-sequenced peptides selectively and strongly
correlate with FEV1/FVC and DLCO (P<0.0003), weakly correlated with COHb, and demon-
strated no correlation with TLC. Several other non-peptide metabolites strongly correlated

Fig 3. Significant positive correlations of 4 unknown peptides (doubly-charged ions) with des-arginine-fibrinogen peptide B in 115 human serum
samples (Pearson correlation coefficient R > 0.67, P < 9.3E-18).

doi:10.1371/journal.pone.0143937.g003
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with FEV1/FVC, but exhibited no correlation with COHb and TLC. Serum creatinine and
cysteinesulfonic acid showed no significant correlation with any of the lung parameters. Over-
all, serum metabolites demonstrated a heterogeneous correlation with lung function tests.

Serummetabolite prediction model for COPD
A serum metabolite-based prediction model for early early-stage COPD may suggest patho-
physiological mechanisms and have predictive power beyond that offered by lung function
parameters alone. Accordingly, we sought to identify a predictive serum metabolite signature
for GOLD stage I/II COPD. Because non-smokers with no prior exposure to cigarette smoking
and no detectable nicotine metabolites are unlikely to develop COPD, non-smokers were
excluded from COPD model generation. Considering 23 metabolites that distinguished COPD
smokers from healthy smokers (underlined metabolites in Table 3), we conducted a partial
least square discriminant analysis (PLS-DA) to classify the COPD smokers and healthy smok-
ers, employing Agilent MassProfiler Professional 13.0 software. The PLS-DA score plot shows
a marked separation of COPD smokers from healthy smokers (Fig 4A). The sensitivity of the
constructed model was calculated from the ratio of predicted true COPD smokers vs. total
COPD smokers, whereas specificity of the model was calculated as the ratio of predicted true
healthy smokers to the total number of healthy smokers. Applying this quantitative approach,
the classification sensitivity was found to be 36 out of 41 COPD smokers (87.8%), and the clas-
sification specificity was 32 out of 37 healthy smokers (86.5%). Based on these findings, the
overall accuracy of classification was 87.2%. The receiver operator characteristics (ROC) were
obtained by plotting the sensitivity against specificity at different discriminant thresholds. The
area under the ROC, commonly used as a diagnostic statistic for PLS-DA models, was 0.87
(Fig 4B). ROC curves were generated using ROC Curve Explorer and Tester (ROCCET, http://
www.roccet.ca/ROCCET/), using the same set of data for whichMonte Carlo Cross Validation
(MCCV) was applied via balanced subsampling. In each MCCV analysis, two thirds of the
samples were used to evaluate the feature importance. The 23 differentially expressed COPD
serum metabolites were then used to build classification models that were validated based on

Table 4. Correlation of serummetabolites with clinical lung parameters (Pearson correlation).

Metabolite %FEV1/FVC DLCO TLC COHb

Pearson R P value Pearson R P value Pearson R P value Pearson R P value

N-Methylnicotinate -0.3934 1.05E-05 -0.185 0.045 0.3571 7.20E-05 0.3293 0.0003

Myoinositol -0.4385 9.51E-07 -0.2495 0.0071 0.3552 9.81E-05 0.338 0.0002

Dimethylurate -0.3164 0.0006 -0.2609 0.0049 0.2054 0.028 0.2448 0.0087

2-Methylhippurate -0.3524 0.0001 -0.3738 3.87E-05 0.2417 0.0093 0.2684 0.0039

5-Acetylamino-6-amino-3-methyluracil -0.3601 7.72E-05 -0.3279 0.0003 0.2534 0.0063 0.3144 0.0007

863.40@8.7 -0.3636 7.00E-05 -0.2891 0.0018 0.0004137 NS 0.1252 NS

627.55@1.85 -0.2415 0.0084 -0.2297 0.012 -0.004 NS 0.211 0.02

592.47@1.67 0.2821 0.0023 -0.1535 NS 0.009827 NS 0.02193 NS

284.061@8.88 0.239 0.0091 0.2421 0.0083 -0.05 NS -0.11 NS

234.085@9.61 0.2473 0.0069 0.1205 NS -0.05 NS -0.06 NS

Fibrinogen peptide B -0.3016 0.0009 -0.3659 4.61E-05 -0.00968 NS 0.2393 0.0094

Peptide 1464.65@10.44 -0.326 0.0003 -0.5185 1.81E-09 0.1385 NS 0.2422 0.0085

Peptide 859.371@8.68 -0.3763 4.00E-05 -0.3096 0.0003 0.003102 NS 0.1267 NS

Peptide 1308.547@9.51 -0.3794 2.89E-05 -0.433 1.34E-06 0.07092 NS 0.1768 0.0558

Peptide 1049.464@9.38 -0.4115 7.23E-06 -0.3942 1.86E-05 0.04195 NS 0.1725 0.075

doi:10.1371/journal.pone.0143937.t004
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Fig 4. Characterization of a PLS-DA predictionmodel for identification COPD smokers, based on 23
serummetabolites. (A) Three-dimensional score plot of PLS-DA classification model showing the partial
separation of COPD smokers from healthy smokers. (B) Diagnostic statistics for the presented PLS-DA
model, as area under the receiver operator characteristics curve (AUC). The AUC was 0.87 with a 95%
confidence interval of 0.761–0.957 for the constructed model. (C) The location of original between-sum
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1/3 of the samples left out. The procedure was repeated multiple times to calculate the perfor-
mance and confidence interval for the model.

PLS-DA is prone to data over-fitting, and therefore the generated models need to be vali-
dated by assessing whether the observed separation is indeed statistically significant, or due to
random noise. To eliminate the random chance that the constructed model has discriminating
power for COPD smokers vs. healthy smokers, a permutation test was performed using non-
proprietary MetaboAnalyst 3.0 software, involving 2,000 permutated class labels–this tested
the assumption that there is no difference between COPD smokers and healthy smoker groups.
In each permutation, a PLS-DA model was built between the data (X) and the permuted class
labels (Y), using the optimal number of components determined by cross-validation of the
model based on the original class assignment. The ratio of between-sum squares and the
within-sum squares (B/W-ratio) for the prediction of each model was calculated. Fig 4C shows
the location of original B/W ratio, relative to the distribution histogram of 2,000 permuted B/
W ratios. The B/W ratio of the original classification assignment (COPD smokers vs. healthy
smokers) was further away from the right of the distribution with a permutation P value of less
than 5.0 x e-4, indicating that the PLS-DA model of COPD- and healthy- smoker classification
is statistically significant.

Validation of the COPD classification model
We sought to test the efficacy of the 23 metabolite signature for prediction of early-stage
COPD in an independent group of subjects. As shown in S1 Table, applying the 23 serum
metabolite model to an independent group of 10 early-stage COPD patients correctly classified
these subjects as having COPD in 80% of cases. Further, in a cohort of 19 COPD patients who
quit smoking for� 3 months, this classification algorithm recognized the COPD metabotype
in 14/19 subjects in accord with their active COPD.

Discussion
In attempt to uncover biomarkers that identify early-stage (GOLD I/II) COPD, we performed
untargeted LC/MS profiling in a cohort of 118 healthy smokers, COPD smokers and non-
smokers with well-characterized clinical lung function parameters. We report here the identity
of circulating serum metabolites as potential COPD biomarkers. To our knowledge, this is the
first comprehensive untargeted metabolite profiling for serum markers of COPD, comparing
non-smokers, healthy smokers and early-stage COPD smokers. This analysis identified a
group of 23 non-peptide and peptide metabolites, some of which were not directly correlated
with any lung function parameters, potentially providing pathophysiological information over
and above that obtained from clinical testing. Efficacy of this putative signature for early-stage
COPD was provided by an independent validation cohort in which COPD was predicted with
80% success.

One biomarker identified in serum distinguishing COPD smokers from smokers was a
modified form of the fibrinogen-derived peptide, FPB. Fibrinogen is an acute phase plasma
protein that has emerged as a promising biomarker in COPD [8, 9, 62, 63]. Elevated levels of
plasma fibrinogen have been associated with pulmonary dysfunction, coronary heart disease
[63] and hospitalization of COPD patients [9]. In blood, thrombin converts fibrinogen to fibrin

squares and the within-sum squares (B/W-ratio), relative to the distribution histogram of 2000 permuted B/W
ratios. The B/W ratio of the original classification assignment (COPD smokers vs. healthy smoker.) was
further to the right of the distribution, with a permutation P value less than 5.0 x e-4, affirming the statistical
significance and validity of the PLS-DAmodel.

doi:10.1371/journal.pone.0143937.g004
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in two sequential steps [64], ultimately resulting in equimolar quantities of FPB and fibrin II.
Fibrin II is a mediator of thrombosis, polymerizing together with platelets it forms a hemostatic
plug or clot over wound sites [65]. The 14-amino acid FPB is susceptible to cleavage by car-
boxypeptidase in blood, where removal of the C-terminal arginine yields des-arginine FPB.
Therefore, measurement of des-arginine FPB indirectly signifies in vivo fibrin II production.
Fibrin clot propensity was previously found to be altered in patients with COPD [66]. In accord
with this prior finding [66]; our untargeted metabolite profiling revealed that N-terminally
modified des-arginine FPB metabolite (pyroEGVNDNEEGFFSA) was elevated in the circulat-
ing blood of early-stage COPD subjects, as compared to healthy smokers with a similar smok-
ing history and extent of cigarette exposure. Further, we demonstrated a significant positive
correlation between the level of mFBP and the lung function parameters FEV1/FVC% and
DLCO in all study subjects. This elevation in mFBP levels suggests that coagulation and throm-
bogenesis may play a role in COPD smokers. Indeed, quantitative exposure to passive smoke
has been shown to positively correlate with blood coagulation activity [67]. The association
between acute inflammation, endothelial activation and clotting initiation has been demon-
strated in COPD exacerbations [68]. In addition to mFBP, three other unknown peptides were
increased in COPD smokers only. Based on the significant correlation with each other and
with mFBP, we postulate that these peptides may also belong to the fibrinogen family and /or
the thrombotic cascade.

Despite a significantly increased level of circulating mFBP and other peptides in COPD
patient serum, the presence of peptides alone did not possess predictive power to accurately
identify early stage COPD smokers (AUC� 0.75, not shown). Interestingly, the 4 observed
peptide biomarkers shared a negative correlation with the lung function parameters FEV1/
FVC% and DLCO, but not with the lung parameters TLC and COHb. In contrast, non-peptide
small molecule serum metabolites, including myoinositol, dimethylurate, N-methylnicotinate,
and 5-acetylamino-6-amino-3-methyluracil were all significantly correlated with each of the 4
lung function parameters obtained in our patient cohort. Among the non-peptide metabolites,
myoinositol evidenced the most significant correlation with clinical parameters. Myoinositol is
a cyclic sugar alcohol that functions in glycerophospholipid metabolism and inositol phosphate
metabolism, also serving as an osmolyte. Moreover, inositol phosphoglycans comprise a major
family of intracellular signaling molecules, including the mediation of insulin action [69]. Fur-
thermore, myoinositol has been used as chemoprevention drug in clinical trials, acting to
inhibit Akt and extracellular signal-regulated kinase (ERK) in bronchial lesions from heavy
smokers [70]. In vitro studies have shown that myoinositol decreases endogenous and tobacco
carcinogen-induced activation of Akt and ERK in immortalized human bronchial epithelial
cells [70]. In COPD patient’s sera, we observed that both myoinositol and the inositol-derived
plasma membrane phospholipid, glycerophosphoinositol [PI (40:7)] was increased compared
to healthy smokers and healthy non-smokers, and elevated levels of glycerophosphoinositol
lipids were found in healthy smokers compared to healthy non-smokers. These results suggest
an altered pattern of phosphatidylinositol metabolism in smokers. Consistent with this obser-
vation, smoking-derived toxins have been related to the activation of PI3K signaling pathway
[71–73], altering cell growth, proliferation, survival, and motility in COPD smokers. Thus,
increased myoinositol in COPD smokers may be the consequence of feedback regulation of
activated PI3K. Notably, high serum myoinositol in COPD can suppress the synthesis of phos-
phatidylglycerol an important surfactant in the alveolar wall which has been show to decrease
in COPD and patients with cystic fibrosis [74].

Elevated levels of serum metabolite N-methylnicotinate, 1,7dimethylurate and 5-acetyla-
mino-6-amino-3-methyluracil (AAMU) in COPD subjects were unexpected, but intriguing.
These three metabolites are all related to caffeine metabolism. N-methylnicotinate (aka
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trigonelline) is a pyridine alkaloid and metabolite of caffeine, as well as a phytoestrogen, in cof-
fee beans [75, 76]. 1,7 dimetylureate is a metabolic product of caffeine, whose synthesis is pri-
marily catalyzed by CYP2A6. AAMU is also a major caffeine metabolite, synthesized by N-
acetyltransferase 2. Notably, these urinary caffeine metabolites have been used to assess the
enzymatic activities of xanthine oxidase (XO) [77–79] and N-acetyltransferase 2 (NAT2) and
cigarette smoking has been shown to induce cytochrome P450-mediated alkaloid metabolism
[80]. Taken together, these findings suggest an acceleration of caffeine metabolism in COPD
smokers, especially for the downstream caffeine metabolites resulting from activated CYP2A6.
This is the first untargeted serum profiling finding that points to a potential upregulation of
caffeine metabolism in COPD smokers.

In summary, our untargeted serum metabolite profiling revealed metabolite biomarkers of
early-stage COPD that are indicative of thrombosis, altered cell signaling and metabolic
changes. Based on 23 serum metabolites, the prediction of COPD amongst a mixed group of
both healthy and COPD smokers had an overall 87% accuracy and was found to be 80% correct
when predicting COPD in an independent population of COPD smokers. Combined with clin-
ical parameters, the identified serum markers offer the potential to improve sensitivity and
specificity for predicting and monitoring COPD prognosis in cigarette smokers.

Supporting Information
S1 Table. Prediction of COPD in subjects with COPD who are either active smokers (COP-
Dact) and who have quit smoking for� 3 months (COPDquit).
(DOCX)
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