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Abstract
Transmembrane (TM) proteins are major drug targets, but their structure determination, a prerequisite for rational drug 
design, remains challenging. Recently, the DeepMind’s AlphaFold2 machine learning method greatly expanded the structural 
coverage of sequences with high accuracy. Since the employed algorithm did not take specific properties of TM proteins 
into account, the reliability of the generated TM structures should be assessed. Therefore, we quantitatively investigated 
the quality of structures at genome scales, at the level of ABC protein superfamily folds and for specific membrane proteins 
(e.g. dimer modeling and stability in molecular dynamics simulations). We tested template-free structure prediction with a 
challenging TM CASP14 target and several TM protein structures published after AlphaFold2 training. Our results suggest 
that AlphaFold2 performs well in the case of TM proteins and its neural network is not overfitted. We conclude that cautious 
applications of AlphaFold2 structural models will advance TM protein-associated studies at an unexpected level.
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Introduction

Although enormous resources were devoted to predict pro-
tein structures for many decades, building a protein structure 
from its sequence remained a challenging task [1]. There 
was a change at the 13th Critical Assessment of Protein 
Structure Prediction (CASP13) competition [2] when the 
neural network-based approach, AlphaFold excelled. The 
improved version, AlphaFold2 (AF2) achieved an accuracy 
level much higher than other predictors at CASP14 [3, 4]. 
Importantly, DeepMind released their code with deep learn-
ing models and deposited AF2-predicted structures for the 

human [5] and 20 other proteomes in collaboration with EBI 
(https://​alpha​fold.​ebi.​ac.​uk). Moreover, to ease the running 
of predictions for researchers, DeepMind [6] and community 
Google Collaboration notebooks [7] have been generated, 
albeit applying some simplifications.

AlphaFold2 was trained using multiple sequence align-
ments (MSA) and experimental protein structures deposited 
before 2018-04-30. Five different models were trained (e.g. 
with different random seeds, with or without structural tem-
plates) to promote an increased diversity in structure predic-
tions [6]. The input for prediction is the sequence of a single 
protein chain, used for MSA generation and structural tem-
plate search. The quality of the resulted structural models is 
characterized by the mean of per residue pLDDT (predicted 
Local Distance Difference Test) score (which takes values 
between 0 and 100, the higher value is better) and the struc-
tures are ranked accordingly [3]. The pLDDT confidence 
measure predicts the accuracy of the Cα Local Distance Dif-
ference Test (lDDT-Cα) for the corresponding prediction. 
Although this means that the high accuracy and reliability 
of AF2 observed in CASP14 can be transferred to predicting 
the structure of any protein sequences (or whole proteomes) 
[3, 5], this has not been validated yet and scientists do not 
have a clear indication how well AF2-predicted structures 
can be trusted. Moreover, AlphaFold2 structural prediction 
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of transmembrane proteins is treated with skepticism, as it 
remain challenging by both experimental and computational 
methods, especially because AlphaFold2 was not tuned for 
TM proteins. It is also not known, whether the structural 
model with the highest pLDDT score always corresponds to 
the native structure. To tackle these issues, we investigated 
if AF2-predicted human α-helical TM protein structures 
exhibit correctly located TM regions. To demonstrate at a 
higher resolution that the predicted TM folds are native, we 
compared predicted structures of the ATP Binding Cassette 
(ABC) superfamily from the AF2-predicted 21 proteomes 
to existing experimental ABC folds.

ABC proteins play a role in important cellular processes 
in all types of organisms and most of them transport sub-
strates through the cell membrane in an ATP-dependent 
manner [8–10]. ABCC7/CFTR is a special member, which 
is an ATP-gated chloride channel and includes a long 
intrinsically disordered regulatory R domain [11, 12]. The 
functional form of ABC proteins is built from two highly 
conservative nucleotide-binding domains (NBDs) and two 
transmembrane domains (TMDs) which can be encoded in 
one or separate peptide chains. The low conservation of their 
TMDs are related to diverse functions and their currently 
known TM folds are also structurally divergent and can be 
classified into eight groups (Pgp-, ABCG2-, MalFG-, BtuC-, 
EcfT-, LptFG-, MacB-, and MlaE-like folds) [13, 14]. Our 
results suggest that AlphaFold2 provides protein structures 
for transmembrane proteins as reliable as for soluble proteins 
and can help to solve many issues associated with transmem-
brane protein structures.

Results

Transmembrane topology assignments 
in AlphaFold2 structures

First, pLDDT score distribution for soluble and transmem-
brane proteins were compared. We split the human AF2 
structures to these two groups using the HTP (Human 
Transmembrane Proteome) database [15], calculated the 
mean pLDDT score for each protein, and plotted their dis-
tribution (Fig. 1a and Fig. S1). Mean pLDDT values were 
also calculated separately for the TM and non-TM regions 
of transmembrane proteins. Intriguingly, soluble proteins 
exhibited a broader distribution and a significant area at 
lower pLDDT values compared to TM proteins. This was 
unexpected, since the majority of the AlphaFold2 learning 
set inherently included more soluble protein templates and 
the algorithm was not tuned for transmembrane proteins. 
However, correlation between low pLDDT values and dis-
ordered segments was observed [5], thus our observation 
suggested that more soluble proteins possess disordered 

regions than TM proteins. Interestingly, a very large por-
tion of TM regions (53%) were predicted with high pLDDT 
scores (> 90) (Fig. 1a) indicating that AF2 captured the rules 
governing protein structures within the hydrophobic region.

Next, we compared the spatial localization of TM heli-
ces in AF2 structures if helix orientation corresponds with 
rational and physiological orientation in a lipid bilayer 
slab using the Constrained Consensus Topology prediction 
(CCTOP) software [16], which includes information from 
both experimental and computational sources. We separated 
the start and end positions of predicted TM helices to two 
residue sets according to their localization relative to the 
opposite sides of the bilayer. The distance between the center 
of geometry of the two sets were calculated and its distribu-
tion is plotted (Fig. 1b). The majority of the membrane thick-
ness values were in the range between 20 and 35 Å, which is 
in the range of the hydrophobic region thickness. To support 
this finding with experimental data, the hydrophobic thick-
ness of experimentally determined human transmembrane 
protein structures was retrieved from the PDBTM database 
[17]. The AF2 and experimental distribution largely over-
lapped (Fig. 1b). These observations suggested that hydro-
phobic thickness values below 15 Å or above 35 Å may 
indicate an erroneous AF2 structure (725 out of 5,952, 12%, 
Table S1). An inaccurate TM topology prediction of CCTOP 
may provide an outlier hydrophobic thickness in the case of 
a correct AF2-predicted structure. The CCTOP reliability 
versus thickness plot (Fig. 1c) indicated that the topology 
of most proteins, whose AF2-predicted structure exhibited 
hydrophobic thickness within the 15–35 Å regime, was pre-
dicted with high reliability. Structures with lower hydro-
phobic thickness values and high CCTOP reliability were 
likely inaccurately predicted by AlphaFold2, while structure 
predictions with lower thickness and lower CCTOP scores 
were located in the twilight zone. Intriguingly, we observed 
that some of these entries may have low topology reliability 
because of their existence in protein–protein complexes, but 
AF2 predicted the monomeric form correctly (Fig. S2). This 
suggests that AF2 may also be used to identify and aid the 
correction of improper membrane topology predictions.

We also investigated the distribution of pLDDT scores 
versus hydrophobic thickness (Fig. 1d). This plot indicated 
that AF2 structures with non-physiological thickness values 
can process very high pLDDT scores, consequently, these 
scores alone may be insufficient to select correct TM struc-
tures in blind predictions.

Helix packing in AF2‑predicted ABC models overlaps 
with experimental folds

To assess AF2 TM protein predictions at a higher reso-
lution, we aimed to compare AF2-built ABC TM folds 
with experimentally determined folds. Structures of ABC 
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superfamily members are a reasonable choice to investi-
gate AlphaFold2 performance on TM proteins, since the 
currently available PDB entries, which include 675 chains 
with ABC transmembrane domains, are diverse and can 
be classified into 8 different structural folds (Fig. S3) [13, 
14]. We characterized the similarity of each ABC trans-
membrane domain to every ABC reference fold using the 
Template Modeling score (TM-score) [18, 19] (Fig. 2a). If 
comparison of two structures results in a TM-score below 
0.3 then they are structurally unrelated, while a TM-score 
above 0.5 indicates identical folds [19]. The range between 
0.3 and 0.5 is the twilight zone. Each target transmem-
brane domain was classified according to the best match to 
an ABC reference fold and the TM-scores were above 0.5 
in all cases. The observed variation of scores among these 

experimental ABC structures originated from differences 
in conformations (e.g. apo and ATP-bound structures).

In the next step, we selected ABC structures from the 
21 proteomes with AF2 predictions by a stringent PFAM 
search, which was performed with 28 PFAM Hidden Markov 
Models (Table S2) that resulted in 1137 hits. For assessing 
the similarity of structures to the eight selected reference 
folds, we calculated TM-scores between the AF2-predicted 
transmembrane ABC structures and the reference structures. 
The best out of eight scores were saved for each structure. 
We found that all TM-score values were above 0.5 (Fig. 2b). 
One outlier protein (Q2G2E2), which matched the YitT_
transmembrane PFAM entry, was somewhat similar to the 
aquaporin/GlpF fold (e.g. PDBID: 1fx8) suggesting that the 
YitT_transporter PFAM entry is wrongly classified. Indeed, 

Fig. 1   Quantitative analysis of human AF TM structures. (a) Mean 
pLDDT scores were calculated for human transmembrane (TMEM), 
soluble (SOLU), TM regions of TM proteins, and non-TM regions 
of the same proteins. The fraction of structures in reliability ranges, 
used in the human proteome AlphaFold2 paper [5], are shown. (b) 
The hydrophobic thickness was calculated for human TM proteins as 
the distance between the center of geometry of Cα atoms of side1 and 
side2 of transmembrane helices. TM helices of AF2-structures were 

selected based on CCTOP predictions. The hydrophobic thickness of 
experimental structures was collected from PDBTM. The inset dem-
onstrates how the distance calculation can be effected by a topology 
in the case of incorrectly built AF2 structures (purple; correct struc-
ture: green; s1 and s2: side1 and side2). (c) The hydrophobic thick-
ness of each protein and the corresponding CCTOP reliability scores 
are shown. (d) The hydrophobic thickness of each protein and the 
corresponding pLDDT scores were plotted
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this protein belongs to the non-ABC, Novobiocin Exporter 
(NbcE) Family based on the Transport Classification Data-
base [20].

Some of the predicted ABC structures included additional 
N-terminal TM-like helices, which were somewhat distant 
from the core TM domain and likely are membrane-asso-
ciated regions, such as the L0/Lasso motif of ABCC pro-
teins [21–23]. In many cases, membrane-associated regions, 
loops, and mobile segments not resolved in experimental 
structures have been rationally modeled by AF2, based on 
visual inspection (see below and Fig. S2), thus the AF2 
machine learning method may have grasped some knowl-
edge on a lipid bilayer around TM proteins. However, in 
other cases, long loops with low pLDDT scores, which are 
likely disordered regions, were unrealistically crossing the 
bilayer region. Those in our eyes are not negatively affect-
ing AF2 predictions and were thus not considered as an 
issue, since the localization of disordered regions also can-
not be trusted in the case of AF2-predicted soluble protein 
structures.

Prediction of challenging and novel transmembrane 
folds

Importantly, the above and any retrospective analysis of AF2 
predictions are limited by the fact that a significant portion 
of the AF2-predicted (transmembrane) protein structures 
deposited at EBI have corresponding experimental structures 
with either the same sequence or a homologous sequence, 
either included in the AF2 training set (up to 2018–04-30) 
or used as templates during prediction runs (up to mid of 
2020). Therefore, we selected the challenging TM target of 
CASP14 (T1024, LmrP, PDBID: 6t1z released on 2019–10-
07), which possessed homologous structures, and novel TM 
folds that were also released after 2018–04-30 for character-
izing AF2 performance.

The prediction of the T1024 target, ranked #43 with 
GDT_TS score and RMSD of 60.29 and 5.61 Å, respec-
tively (#1 by Arne Elofsson: 63.3 and 3.74 Å). However, 
LmrP has a hinge region that effects predictions and AF2 
likely produced a functional conformation different from 
that observed in the 6t1z structure, supported by distance 
restraints from double electron–electron resonance spectros-
copy [24]. Since the AF2 LmrP model submitted to CASP14 
was created with an earlier version of AlphaFold [25], we 
rerun the LmrP prediction with disabled template usage. 
The top model exhibited 82.82, 1.74 Å, and 0.92 GDT_TS, 
RMSD and TM-score, respectively, when compared to 6t1z 
(Fig. 3a). These observations suggest that AF2 prediction 
of flexible targets should be interpreted carefully and AF2 
may be utilized to discover novel conformations related to 
different functional states.

Fig. 2   All AF2-predicted ABC structures exhibit valid ABC TM 
folds. (a) The best TM-score for every experimental ABC TM struc-
ture and ABC reference fold comparisons are shown in the box-
plot, grouped into ABC fold families, sorted by the total number of 
included transmembrane chains. Numbers indicate the sum of chains 
in experimental structures matching an ABC reference fold. Only 
MlaE fold family does not contain experimental structures released 
before 2018-04-30. (b) The same plot was generated for ABC protein 
structures from the 21 proteomes predicted by AF2. The number of 
matched structures within a fold family is indicated in parenthesis. A 
TM-score above 0.5 indicates that the compared structure and the ref-
erence fold exhibits the same architecture
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In the next step, we performed extensive literature, 
SCOP, and PFAM searches to identify transmembrane 
protein structures or their homologous structures, which 
were not inserted into the AF2 training set. We found the 
ABC transmembrane MlaE-like fold (7cge, 7ch0, and 
7cgn were released on 2020-09-09; 7ch7 was released 
on 2021–05-19) [26], the ER membrane protein complex 
subunit sixfold (EMC6, PDBIDs: 6wb9, 6ww7, 6z3w, 
7ado, 7adp, 7kra, and 7ktx, with the earliest release date 
of 2020-05-27) [27], and the MprF structure (PDBIDs: 
6lvf and 7duw, released on 2021-02-03 and 2021-04-21, 
respectively) [28] as valid targets for blind AF2 TM pro-
tein predictions. AF2 runs without templates resulted in 
top models highly similar to the experimental structures 
of MlaE (PDBID: 7ch0, RMSD: 1.28 Å, TM-score: 0.95, 
Fig. 3b) or EMC6 (PDBID: 6ww7, RMSD: 0.96 Å, TM-
score: 0.93, Fig. 3c). In contrast, the top prediction of the 
multiple peptide resistance factor (MprF) transmembrane 
domain sequence did not match the experimental structure 
(Fig. 4a). Therefore, we performed this prediction several 
times (n = 6) with different random seeds and compared 
the output to the transmembrane domain of 7duw using 
TM-score. Plotting the pLDDT scores versus TM-scores 
(Fig. 4b) indicated that among the 30 predicted structures 
the one with the best pLDDT score exhibited the highest 
TM-score, thus was the most similar to the target structure 
(Fig. 4c). Importantly, the difference in MprF conforma-
tions involves the separation of two subdomains (flippase 
and synthase) [29] and AF2 may have captured a function-
ally relevant state as in the case of LmrP. 

AF2 can provide hints for investigating ABC 
structure‑associated questions

To demonstrate possible contributions of AF2-predicted 
structural models to studies targeting membrane proteins, 
we assessed AF2 ABC models in various test cases. At first 
place, we tested half transporter ABCG proteins, which 
consist of an NBD and a TMD in a polypeptide chain and 
function in homodimeric or heterodimeric complexes [14]. 
The first experimentally determined ABCG2-like fold was 
the X-ray structure of the ABCG5/ABCG8 heterodimer 
(PDBID: 5do7) published in 2016 [30]. Our first observation 
with the AF2-generated ABCG8 structure was regarding 
its soluble NBD. After the publication of the first ABCG2 
structure [31], structural alignment and sequence analysis 
indicated a registry shift in the first β-strand of ABCG8 
NBD (Fig. 5a) that happened because of the low resolution 
of this region. Although the 5do7 structure was in the AF2 
training set and was present in the pdb70 template database, 
the AF2-predicted ABCG8 structure deposited at EBI did 
not have this error (Fig. 5a). An ABCG5/ABCG8 structure 
with a correct registry was also released on 2021-04-07 
(PDBID: 7jr7 [32]), but AF2 template search for building 
models deposited at EBI used pdb70 downloaded on 2021-
02-10 [5]. 

To assess ABCG5/ABCG8 transmembrane domain 
(TMD) predictions, we ran AF2 without application of 
templates. First, the ABCG5 TMD predictions were of 
exceptionally good quality regarding the RMSD (root mean 
square deviation) and TM-score values of 0.61 Å and 0.94, 

Fig. 3   Blind transmembrane fold predictions. The AF2-predicted 
structures (blue to red: N- to C-termini) of the challenging CASP14 
TM target, LmrP (a), the MlaE (b), and the EMC6 (c) exhibit perfect 
alignments with their experimental structures (gray) 6t1z, 7ch0, and 

6ww7, respectively. None of these experimental structures were pub-
lished before 2018-04-30. Only structures with a sequence homolo-
gous to LmrP were in the AF2 training set
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respectively, when compared to the ABCG5 chain in the 7jr7 
structure. Second, we investigated ABCG5/ABCG8 heter-
odimer predictions. Since only single chains can be submit-
ted to AlphaFold2, we concatenated the two sequences with 
a part of the CFTR R domain sequence (a.a. 675-800). This 
disordered sequence was sufficiently long not to constrain 
the conformational space of the dimer and did not exhibit 
strong intramolecular interactions even in its native, AF2-
predicted structural environment (Fig. S4). The predicted 
TMD dimer exhibited 2.18 Å RMSD and its individual 
chains showed 0.98 and 0.96 TM-score values when com-
pared with the 7jr7 structure (Fig. 5b).

To investigate if AlphaFold2 can distinguish between 
intra- and intermolecular interactions in the case of homo-
meric complexes, we performed a prediction with ABCG2, 
which forms homodimers [33]. The complex of the two iden-
tical TMDs was also predicted exceptionally well (2.42 Å 
RMSD and 0.9 TM-score when compared to PDBID: 6vxf). 
Interestingly, cysteine residues forming intra- and intermo-
lecular disulfide bonds were close to each other (Fig. S5).

We also examined how AF2 structural models can sup-
plement or replace homology models in molecular dynamics 
(MD) simulations. The TM regions of distant ABC proteins 
exhibit low sequence conservation with good accordance 
of their dissimilar functions and substrates. However, their 
folds in a family are highly conserved, thus homology mod-
eling can provide high-quality models [34–37]. We chose 
AtABCG36/PEN3/PDR8 [38] from the model plant Arabi-
dopsis thaliana, which is a well-investigated full transporter 

of the ABCG subclass for that no structures yet exist. When 
the homology model exhibiting two ABCG2-like TMDs 
(Fig. 5c) was inserted into a membrane bilayer and sub-
jected to a 50 ns long MD simulation, one portion of an 
α-helix, which is part of the central drug binding pocket, 
exhibited fast unfolding (~ 10 ns) in an equilibrium MD 
simulation. Then, the AF2-predicted AtABCG36 structure 
under the same conditions remained stable in a 500 ns long 
MD simulation (Fig. S6). However, one should be careful 
with simulations using AI-based structural models, since 
their conformation may be kinetically trapped into a specific 
state, inhibiting the study of conformational changes [39].

The CFTR/ABCC7 chloride channel is also a member of 
the ABC superfamily with a Pgp-like fold. The functional 
mechanism of this protein is of interest, since some muta-
tions effect channel gating and cause cystic fibrosis [40]. 
One of its structures was determined using cryo-EM under 
activating condition, in the presence of ATP and phospho-
rylation, but the extracellular pore of the channel remained 
in a closed state, most likely due to a kink in TM8, cor-
responding to an unwound segment in the transmembrane 
region [41] (Fig. 5f). This kink is present in most CFTR 
structures (PDBIDs: 5uak, 5uar, 5o2p, 5w81, 6msm, and 
6o1v) [41–44]. However, the kink is absent from the chicken 
CFTR structure (PDBIDs: 6d3s and 6d3r) [45] and such 
a conformation has not been detected in other ABC struc-
tures. We performed equilibrium simulations with the 5w81 
structure [12] to detect channel opening, but appearance of 
tunnels with sufficient diameter to pass chloride ions were 

Fig. 4   AF2 predicts two conformations of a new transmembrane 
fold. (a) The top AF2-prediction of the novel MprF TM fold (blue 
to red: N- to C-termini) aligned to the experimental structure 7duw 
(gray). (b) pLDDT and TM-score values, calculated for every struc-
tural model from six runs, were plotted. Numbers (1–5) indicate the 

corresponding AF2 models. Red points were the top ranked hits from 
a given run. (c) Structural alignment of the prediction with the best 
pLDDT score (blue to red) and experimental structure (gray). 7duw 
and any other structure homologous to MprF were not included in the 
AF2 training set
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rare events and was observed only once out of 22 simula-
tions (6 × 100 ns + 16 × 35 ns, 427/116,000 frames, 0.36%). 
Intriguingly, many of the conformations provided a tunnel 
opened towards lipid molecules of the extracellular mem-
brane leaflet (Fig. 5g). After correcting the kink by homol-
ogy modelling based on the MRP1 structure (PDBID: 
5uj9) (Fig. 5f), opening of the extracellular pore could be 
observed in five out of six simulations at a higher probabil-
ity (6 × 100 ns, 2245/60,000 frames, 3.74%). Remarkably, 
modeling CFTR TMDs using AlphaFold2 without CFTR 
or any templates resulted in a conformation similar to that 
of MRP1 with a straight TM8 helix (Fig. 5f, h). Since TM8 
has been suggested to be flexible regarding to its membrane 
embedment [46], it is likely sensitive to its environment and 
based on the functional assays and the structure determina-
tion protocol [42], the detergent added in the last step (3 mM 
fluorinated Fos-Choline-8) likely biased the experimental 
structure.

Discussion and conclusions

We demonstrated that at least ~ 90% of the AF2-predicted 
TM structures of the human proteome represented mem-
brane-protein like structures, using the most available and 
reliable measure, the location of TM helices from consensus 
predictions and experimental structures, for assessing TM 
protein structure quality at a large scale. Since the pLDDT 
score distribution did not shift much to lower values com-
pared to soluble proteins (Fig. S1), it is likely valid to state 
that AF2 predicts TM proteins as well as soluble proteins. 
However, predicted TM structures with low hydrophobic 
thickness and high pLDDT score (Fig. 1d) suggest that 
evaluation depending solely on pLDDT score may not be 
sufficient to select the best AF2-predicted model, at least in 
the case of TM proteins. A similar conclusion was drawn 
comparing the AF2-predicted and cryo-EM structures of 
the pump-like channelrhodopsin with structural features 
never seen before [47]. In specific cases, resource intensive 
molecular dynamics simulations may be used to asses AF2 
models, since MD simulations were demonstrated to reveal 
erroneous structural models built using either homology 
modelling (Fig. S6) or experimental methods [48].

A very important issue is associated with retrospective 
studies, including ours, which assess AlphaFold2 perfor-
mance based on AF2 structures deposited at EBI. Most likely 
a significant portion of the predicted models can be related 
to experimental structures with homologous sequences, 
included in the AF2 training set or used as templates during 
model building or both. In these cases, AF2 may be consid-
ered as a highly advanced homology modelling tool, which 
performs an automatic but high-quality sequence alignment 
and provides high-quality results even in the case of target 

sequences with low sequence similarity to any known struc-
tures. This is a very important property of AF2 and will 
advance structural biology studies of TM proteins, since the 
hydrophobic regions are usually not highly conserved (e.g. 
sequence identity between ABC transmembrane domains 
is usually below 20–30%; ABCG2 exhibits 27% and 26% 
identities when compared to the closely related ABCG5 and 
ABCG8, respectively). For the correct interpretation of ret-
rospective studies and evaluation of AF2 performance, it is 
important to implement a versioning system for AF2 models. 
This objective seems to be more complicated than for experi-
mental structures, since the structure prediction depends on 
the version of the deep learning models, various sequence 
databases, and the pdb70 structure database.

Taken together, investigating AF2 performance in blind 
predictions requires an experimental structure, which or 
structures with homologous sequences were not included 
in the training set. In addition, the AF2 prediction of such 
targets should be performed without using templates. In 
this way, predictions for a high number of homologous 
sequences and their systematic comparison to correspond-
ing structures generated with templates could be informative 
regarding to blind predictions and to the effect of template 
usage. However, this type of large-scale studies using Alpha-
Fold2 requires high resources, likely unavailable for most 
academic institutes. Here, we identified three transmem-
brane structures qualified for fully blind AF2 predictions 
(Fig. 3 and Fig. 4). The outputs suggested that AlphaFold2 
can be reliably used for building TM structures in a blind 
setup. Intriguingly, both LmrP and MrpF predictions indi-
cated that running AF2 with different random seeds may 
be a valid approach to predict structures corresponding to 
different conformational states.

Furthermore, our results demonstrate that AlphaFold2 is 
a highly valuable tool in many areas of TM protein research. 
The correction of the register shift by AF2 in ABCG8 NBD 
(Fig. 5a), supports the application of AlphaFold2 in molec-
ular replacement protocols aiding experimental structure 
determination [49]. In addition, screening experimental 
structures with their corresponding AF2 structures may 
detect structural errors and contribute to improving PDB 
database quality. Similarly, the absence of the kink in CFTR 
TM8 in an AF2 model predicted with disabled template 
usage (Fig. 5f) raises novel questions that will lead us to 
a deeper understanding of CFTR channel function. Impor-
tantly, our runs resulting in the corrected registry shift in 
ABCG8 are indications against an overfitting in the neural 
network behind AlphaFold2 and for overcoming memory 
footprints originating from training. We also demonstrated 
that AF2 was capable of predicting transmembrane dimer 
structures independently of their homo- or heteromeric 
nature (Fig. 5b and Fig. S5), while AF2 was not trained for 
multimer predictions. Though, this success may be at least 
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partially caused by the footprint of these proteins themselves 
in the AF2 neural network, successful protein-peptide dock-
ing [50], when peptides were not involved in alignments, is 
an argument against this reasoning. Interestingly, the novel 
deep learning model, AlphaFold2-Multimer [51], trained 
for predicting protein complexes is reported to excel Alpha-
Fold2 in heteromeric but not in homomeric predictions.

In summary, our study underscores that AlphaFold2 can 
provide reliable protein structures also for transmembrane 
proteins and perform well in many areas associated with 
structural analysis of TM proteins. While the artificial intel-
ligence inside AlphaFold2 can predict valuable structural 
information and correct structure-related flaws (e.g. registry 
shift, alignments, TM topology prediction, etc.), the limited 
predictive power of structural models from blind predictions 
involving flexible regions retain experimental validation 
desirable.

Methods

Databases and associated software

AlphaFold2 structures predicted for 21 proteomes were 
downloaded from https://​alpha​fold.​ebi.​ac.​uk in July, 2021. 
Proteins and their structures are identified in the manuscript 
with their UniProt accession number. Human Transmem-
brane Protein database [15] (2021-06-02) was received as an 
XML file from http://​htp.​enzim.​hu. The data also contained 
CCTOP [16] (http://​cctop.​enzim.​ttk.​mta.​hu) predictions 

and their reliability values. The hydrophobic thickness of 
experimentally determined human TM protein structures 
was retrieved from the PDBTM database (http://​pdbtm.​
enzim.​hu, 2021-07-23) [17]. Python was used to parse their 
XML files.

ABC PFAM entries were identified at https://​pfam.​xfam.​
org (n = 28) and extracted from the Pfam-A.hmm file. The 
selected entries and their accession numbers are listed in 
Table S2. The sequence of every AF2 structure was searched 
using HMMER hmmsearch (http://​hmmer.​org) [52]. The 
E parameter was set to 0.001 and the match length was 
restricted to a minimum of 90% of the HMM profile length. 
The hmmsearch output was parsed using BioPython [53].

Novel structural folds for multi-pass α-helical transmem-
brane proteins were collected by extensive literature search 
(match: MprF) and by manual screening of the membrane 
protein selection of the SCOP database [54] (80 fold fami-
lies and their subfamilies; http://​scop.​mrc-​lmb.​cam.​ac.​uk/​
term/2) and corresponding entries in the PFAM database 
[55] (matches: MlaE and EMC6).

Data analysis and visualization

MDAnalysis [56] and NumPy [57] Python packages were 
used for calculation of mean pLDDT values and hydropho-
bic membrane thickness. The pLDDT value of each residue 
were extracted from the B-factor column of AF2 structure 
files. For TM thickness calculation end positions of TM heli-
ces were retrieved from HTP/CCTOP and divided into two 
groups representing the two sides of the membrane. Plotting 
was done with Matplotlib (https://​matpl​otlib.​org) [58].

TM-score was calculated with TMalign [59]. Reference 
ABC structures are listed and shown in Fig. S3. Their TM 
domains were selected manually.

Molecular visualization and RMSD calculation were 
performed using PyMOL (The PyMOL Molecular Graph-
ics System, Version 2.4.0 Schrödinger, LLC). RMSD of MD 
trajectories was calculated with the GROMACS rms tool.

Running AlphaFold2

AlphaFold2 was downloaded from github and installed as 
described (https://​github.​com/​deepm​ind/​alpha​fold) on a 
Debian 10 box with an AMD Ryzen Threadripper 2950X 
16-Core Processor. 96 GB RAM was installed and ~ 75 GB 
peak usage was observed during jackhmmer run. The cal-
culation was accelerated by an NVidia Quadro P6000 GPU 
with 24 GB RAM, which was almost fully utilized when the 
predicted sequence length was 1571. The required databases 
were located on two 2 TB HDD in a RAID0 setup. Typical 
run timings were: “features”: 25–60 min, “predict_and_com-
pile_model_*”: 3–50 min, “relax_model_*”: 1 min—6 h 
based on input sequences between 290 and 1571 a.a. length.

Fig. 5   AF2 predictions and ABC structure-associated issues. (a) 
ABCG2 and ABCG8 NBD β1 strand sequence alignments gener-
ated by structural alignment of 6hco (ABCG2) and 5do7 (ABCG5/
ABCG8), by ClustalW with manual adjustment of ABCG2 and 
ABCG8 sequences based on ABCG2 structures, and by structural 
alignment of ABCG2 and AF2-predicted ABCG8 NBDs. Structure: 
AF2 ABCG8 NBD, blue: β1 strand, red: the segment corresponding 
to the β1 strand in the registry shifted 5do7 NBD, cyan: gating loop 
or regulatory insertion. (b) Structural alignment of 7jr7 (gray) and 
AF2-predicted (blue) ABCG5/ABCG8 TM domains (top view). Non-
conserved loops with low-quality predictions are red. (c) Aligned 
homology (orange: TMD1, red: TMD2) and AF2 (blue: TMD1, cyan: 
TMD2) models of AtABCG36. Blue and orange spheres label F589 
and F592 in TM2 facing the substrate binding pocket. (d) The magni-
fied view of AtABCG36 TM1 and TM2 indicates that the alignments 
are not shifted but that spatial localization and side chain packing 
differ. (e) TM2 in the homology model unwinds in MD simulations. 
(f) zfCFTR TM8 is kinked in PDBID:5w81 (red) along with other 
structures and it is straight in both MRP1-based model (orange) and 
AF2-predicted structure (blue). The helices are extracted from a full 
TM domain alignment for visualization. (g) Surface representation 
of zfCFTR (PDBID:5w81). Red: TM8, green: TMD1, cyan: TMD2, 
pale green: NBD1, pale cyan: NBD2, black spheres: CAVER spheres 
indicating channel opening towards the extracellular space and the 
extracellular boundary of the lipid bilayer. (h) Surface representation 
of zfCFTR with MRP1-modelled, straight TM8. No lateral opening to 
the extracellular membrane leaflet can be observed

◂
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To exclude CFTR structures as templates from predic-
tions, we modified run_alphafold.py, docker/run_docker.
py, and alphafold/data/templates.py scripts to implement 
a -skip function. The modified scripts can be downloaded 
from http://​alpha​fold.​hegel​ab.​org. Template usage was disa-
bled by setting –max_template_date option to 1900-01-01. 
Dimer predictions were run by concatenating sequences with 
a part of the intrinsically disordered CFTR R domain, a.a. 
675–800. pLDDT scores and ranking of predicted structures 
were extracted from the ranking_debug.json file.

Homology modelling

AtABCG36 (UniProt ACC: Q9XIE2) was homology mod-
eled based on an ABCG2 homodimer structure (PDBID: 
6hzm) using Modeller [60]. Sequence alignment was gener-
ated using ClustalW [61] and adjusted manually. One hun-
dred structures were generated and the one with the best 
DOPE score was selected for MD simulations.

zfCFTR TM7 and TM8 was homology modeled similarly. 
The two helices were set for modelling based on the corre-
sponding regions of MRP1 (PDBID: 5uj9 [23]) and the rest 
was kept static and based on the 5w81 zfCFTR structure.

Molecular dynamics simulations

MD simulations with AtABCG36 were performed using 
GROMACS 2019 with the CHARMM36m force field [62, 
63]. Simulation systems were prepared using CHARMM-
GUI [64, 65]. Structural models were oriented according 
to the OPM (Orientations of Proteins in Membranes) data-
base [66] and all N- and C-termini were patched with ACE 
(acetyl) and CT3 (N-Methylamide) groups, respectively. The 
proteins were inserted in a bilayer with 1:1 POPC:PLPC 
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine: 1-pal-
mitoyl-2-linoleoyl-sn-glycero-3-phosphocholine) in the 
extracellular leaflet and 45:40:10:5 POPC:PLPC:POPS:PIP2 
(POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-
serine, PIP2: phosphatidylinositol 4,5-bisphosphate) in 
the intracellular leaflet. Both systems with the homology 
model or the AF2 structure were energy minimized using 
the steepest descent integrator (values for max. steps 50,000 
and max. force 500 kJ/mol/nm were set). Six equilibration 
steps, according to the standard CHARMM-GUI protocol, 
were applied with decreasing position restraints. In the 50 ns 
(homology model) and 500 ns (AF2 model) long produc-
tion runs, Nosé-Hoover thermostat and Parrinello-Rahman 
barostat with semiisotropic coupling were employed. Time 
constants for the thermostat and the barostat were set to 1 
picosecond and 5 picosecond, respectively. The fast smooth 
PME algorithm [67] and LINCS algorithm [68] were used 
to calculate electrostatic interactions and to constrain bonds, 

respectively. GROMACS rmsf tools were used to calculate 
RMSF (root mean square fluctuation).

Simulations with the zfCFTR structure containing the 
kinked TM8 have been published and the protocol and 
parameters were described there [12]. The structure with 
the straightened, MRP1-based TM8 was subjected to MD 
simulations using the same protocol, including the same 
version of GROMACS, force field, and lipid composition. 
Channel pathways were determined using CAVER [69] as 
described in [12].
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