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Abstract: Biomaterials with adequate properties to direct a biological response are essential for ortho-
pedic and dental implants. The surface properties are responsible for the biological response; thus,
coatings with biologically relevant properties such as osteoinduction are exciting options to tailor the
surface of different bulk materials. Metal oxide coatings such as TiO2, ZrO2, Nb2O5 and Ta2O5 have
been suggested as promising for orthopedic and dental implants. However, a comparative study
among them is still missing to select the most promising for bone-growth-related applications. In
this work, using magnetron sputtering, TiO2, ZrO2, Ta2O5, and Nb2O5 thin films were deposited
on Si (100) substrates. The coatings were characterized by Optical Profilometry, Scanning Electron
Microscopy, Energy-Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Diffrac-
tion, Water Contact Angle measurements, and Surface Free Energy calculations. The cell adhesion,
viability, proliferation, and differentiation toward the osteoblastic phenotype of mesenchymal stem
cells plated on the coatings were measured to define the biological response. Results confirmed that
all coatings were biocompatible. However, a more significant number of cells and proliferative cells
were observed on Nb2O5 and Ta2O5 compared to TiO2 and ZrO2. Nevertheless, Nb2O5 and Ta2O5

seemed to induce cell differentiation toward the osteoblastic phenotype in a longer cell culture time
than TiO2 and ZrO2.

Keywords: metal oxide coatings; magnetron sputtering; osteogenesis; mesenchymal stem cells

1. Introduction

In the orthopedic and dental fields, different efforts have been done to develop im-
proved biomaterials capable of fulfilling the different requirements for their use as temporal
osteosynthesis implants to treat bone fractures or critical bone defects [1,2], or as permanent
implants such as knee total replacement prosthesis or dental implants [3–6].

For bone-substituting implants, the standard requirements are mechanical resistance
and load-bearing capacity, which are associated with the material’s bulk properties [7–9].
However, the bone-implant junction (osseointegration), the osteosynthesis performance
(osteogenesis capability), the ability to prevent infections, and the corrosion resistance are
surface-related properties [4,10–13].
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An interesting strategy to tailor the surface properties is the development of biofunc-
tional coatings. In the last few years, increasing interest has been focused on developing
coatings to harness the surface properties of different bulk materials and their interaction
with the biological media [4,13–18]. Titanium oxide coatings with different morphologies,
crystalline structures, Ti:O ratios, etc., have been the most evaluated after demonstrating
that the native oxide of Ti-based implants is responsible for their biocompatibility (chemical
inertness) and excellent osseointegration observed in dental implants [19–26]. However,
the extensive use of Ti-based and TiO2 materials has raised concerns regarding their low
bioactivity, decreasing corrosion resistance in F− or Cl− containing media after long-term
use, and the consequent adverse effects of titanium accumulation and its effects on the hu-
man body [3,10,27–29]. Reports about Ti-associated allergic reactions and hypersensitivity
demand research on alternative materials [30–32].

Other biocompatible transition metal oxides have also shown promising biological
properties such as osseointegration, improved cell adhesion and proliferation, decreased
inflammatory response and antibacterial properties, along with exhibiting very good corrosion
and wear resistance [10,33–43]. However, a significantly smaller number of works have
studied the biological response of promising oxides, such as Nb2O5 and Ta2O5 [44–49].
Another possibility is zirconium oxide, ZrO2, which presents mechanical strength, appropriate
corrosion resistance and adequate biological response for intraosseous use [10,34,40,50–54].

A recent review shows that pure NbxOy and NbxOy-containing coatings deposited
using dry and/or wet techniques affect the overall characteristics of the underlying bulk
materials, where the deposited layers not only address the deficiencies of the biomateri-
als, such as corrosion resistance but also induce some new properties, e.g., antibacterial
activity [55]. For sputtered deposited NbxOy coatings, the improvement in the biological
properties is a function of surface topography, wettability, and atomic order [55]. The
amorphous atomic order showed superior human fibroblast cell adhesion and antibacterial
activity [56], similarly to our previous results for TiOx and ZrOx [57,58]. Moreover, an im-
portant finding was the anti-inflammatory properties observed for NbxOy-coated metallic
substrates, which decreased the toxicity [55].

Yin-Yu et al. [59] compared amorphous and crystalline tantalum oxide coatings
deposited by magnetron sputtering, finding that the hydrophilic crystalline β-Ta2O5
coating presents good biocompatibility for human skin fibroblast cells. In contrast, the
amorphous tantalum oxide coating possessed antibacterial properties, in agreement with
N. Donkov et al. [60]. Horandghadim et al. [48] showed that the higher the content of
Ta2O5 on hydroxyapatite-Ta2O5 coatings, the higher the osteoblast-like cell attachment and
the bone-like apatite growth. In agreement, F. Wang et al. [47] demonstrated higher cell ad-
hesion and viability, and enhanced calcium deposition and expression of osteogenic genes
on Ta2O5-coated titanium nanotubes compared to the bare nanotubes. In the same trend,
Almeida-Alves et al. [44] and H.-L. Huang et al. [61] reported higher MC3T3, human skin
fibroblasts, and human osteosarcoma MG-63 cells viability on Ta2O5 coatings compared to
bare Ti.

More research has been performed on ZrO2 as a bulk and coating material [10,34,50].
The use of zirconia in the medical field has expanded over the past twenty years, driven
by its advantageous physical, biological, esthetic, and corrosion properties [10,34]. For
orthopedic hip replacements, it has superior wear-resistance compared to metals, and the
esthetic factor has benefited its use in dentistry for all-ceramic crowns [50]. However, as a
bulk material, the risk of catastrophic fracture remains a concern [34]. Concerning ZrO2
coatings, M. Peron et al. showed enhanced cell viability for L929 fibroblasts in contact
with lixiviates from ZrO2-coated Mg alloys compared to TiO2-coated and bare Mg alloys’
lixiviates [53,54]. In the same trend, J. Maminskas et al. demonstrated more significant cell
adhesion and growth of HGF-1 cells on ZrO2 coatings than on bare Ti and Ti alloys [52].
On the other hand, S. Saleem et al. [51] demonstrated a lower friction coefficient and wear
rate for ZrO2-coated titanium substrates than for the bare substrates.
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These ceramic oxides could be applied as coatings with the advantage that they modify
the surface properties preserving the bulk properties because they can be deposited over
any substrate material that fulfills: (1) the mechanical requirements of the application, ei-
ther a rigid polymer or a metallic substrate, and (2) the micro roughness requirements for
osseointegration [14,18,62]. Coatings can be deposited using techniques such as Atomic Layer
Deposition, Electron Beam, sol-gel, etc. In particular, magnetron sputtering is a versatile, clean
deposition technique that allows the deposition of conformal and homogeneous coatings, with
controlled chemical composition and thickness, at an appropriate deposition rate, and it can be
industrially scalable to coat three-dimensional substrates [63–66]. In the industry, magnetron
sputtering has been successfully used to coat a variety of substrates for different applications,
e.g., architectural glass for energy efficiency buildings, electronics for the communication
industry, or cutting tools for the construction industry [64,67–69]. By controlling the deposition
parameters such as the power supply, the deposition time, the cathode-anode distance, the
magnetron sputtering discharge configuration (planar, cylindrical, rotating, single or multiple
blanks, etc.), the sample holder (rotating or static), etc. three dimensional structures of different
materials can be conformally and homogeneously coated [64,67,68,70,71].

Surface roughness in the micro range (1–100 µm; substrate roughness) modifies cell
proliferation and viability, and osseointegration [58,72–74]. Nevertheless, surface nano
roughness also modifies the cell response by controlling the protein layer adsorbed on
the material surface and, consequently, the extracellular matrix composition [58,75–77].
Thus, it is important to deposit the metal oxide coatings on nano-flat substrates such as
atomically flat Si (100) wafers for evaluating the biological response to the properties of the
oxide coating without interference by the substrate micro roughness.

Despite the different reports evaluating the application of metal oxide coatings for
potential application in the biomedical area, to the best of our knowledge, there is no report
comparing the biological and osteogenic response under the same experimental conditions.

In the present work, titanium oxide, zirconium oxide, niobium oxide and tantalum
oxide thin films were deposited by magnetron sputtering on Si (100) substrates to study
their potential as surface modifications (metal oxide coatings) for orthopedic and dental
implants. The physical–chemical properties of the coatings were characterized by optical
profilometry, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy
(EDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), water contact
angle measurements (wettability) and Surface Free Energy (SFE) calculations. The bio-
compatibility and osteogenic properties of the coatings were characterized by using bone
marrow-derived mesenchymal stem cells, and studying their adhesion, viability, prolifera-
tion, and differentiation toward the osteoblastic phenotype upon culture on the coatings.

2. Materials and Methods
2.1. Metal Oxide Coatings Deposition

Metal oxide thin films were deposited on Si N/PH (100) wafers (UniSil Corporation,
Sta. Clara, CA, USA) and cut into 1 cm2 substrates. Atomically flat Si wafers were used
as the substrates to examine the influence of the properties of the metal oxide thin films
deposited, mainly their roughness and wettability, on the biological response, with no
influence of the substrate roughness. Deposition of the metal oxide thin films, titanium
oxide (TiOx), tantalum oxide (TaOx), niobium oxide (NbOx), and zirconium oxide (ZrOx),
was carried out by magnetron sputtering using 4” in diameter, high purity, metallic targets
of either Ti, Ta, Nb or Zr (SCI Engineered Materials, Ohio, MA, USA). Deposition conditions
were the same for all coatings deposited; base pressure was below 2 × 10−6 Torr, a reactive
Ar:O2 (80:20) atmosphere was used to a working pressure of 22 mTorr, 200 W incident
RF power was applied, and deposition was carried out for 45 min. Figure 1 shows the
macroscopic appearance of the coated samples.
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Figure 1. Representative pictures of the macroscopic appearance of Si (100) wafers coated with metal 
oxide thin films by magnetron sputtering. Coated samples were named as TiOx, TaOx, NbOx, ZrOx, 
for titanium, tantalum, niobium and zirconium oxide coatings, while Si samples correspond to un-
coated Si (100) wafers. 

Si (100) samples with the middle section covered by permanent marker ink were 
coated in the same batches as the non-covered, bare Si (100) substrates. After the coating 
process, ink was removed, exposing the bare Si surface, and creating an appropriate step 
(bare Si surface- metal oxide-coated Si) to measure the thickness of the metal oxide coat-
ings by profilometry.  

2.2. Metal Oxide Coatings Characterization 
The morphology of the coated samples and their elemental composition were char-

acterized using a JEOL 7600F Field Emission-Scanning Electron Microscope (FE-SEM) 
(JEOL USA Inc., Peabody, MA, USA) coupled to EDS, using a voltage of 5.0 kV. For the 
characterization of the elemental composition by EDS, three different areas (≈10 µm2) on 
two independent samples for each coating group were analyzed, and the average ele-
mental composition (in at.% and wt.%) is presented along with the standard deviation. 
Elemental and chemical surface composition analyses were performed by X-ray Photoe-
lectron Spectroscopy in a Physical Electronics Versa ProbeTM II system with a scanning 
XPS microprobe (Physical Electronics Inc., Chanhassen, MN, USA), using an Al Kα X-ray 
source (1486.6 eV and 100 µm beam). To assure the homogeneity and reproducibility of 
the coatings, different zones on two independent samples per coating group were ana-
lyzed. Survey spectra were recorded at 117.4 eV pass energy and high-resolution spectra 
at 23 eV. Data were analyzed in the Multipack© version 9.6.0.15 software. 

Wettability and Surface Free Energy were characterized in an OCA 15EC equipment 
(DataPhysics Instruments, Filderstadt, Germany) using the Sessil drop contact angle 
method, and 4 µL drops of distilled water for wettability determinations and 4 µL drops 
of distilled water, glycerol, isopropanol and dimethyl sulfoxide (DMSO) for surface en-
ergy calculations. Contact angles were measured using the SCA_20® software, and the 
Owens, Wendt, Rabel & Kälble (OWRK) equation was applied to calculate the SFE. For 
wettability measurements, the stability of the water droplet size over time was measured 
using the same droplet volume and technique described above. Droplet size and shape 
were continuously monitored and recorded during the first 5 min immediately after drop-
let deposition on the coating surface. Images of the droplet at 0, 1, 2, 3, 4 and 5 min after 
droplet deposition were analyzed. All measurements were done in triplicate. 

Crystallinity was characterized by X-ray Diffraction in grazing incidence mode using 
an Ultima IV diffractometer (Rigaku, Corporation, Tokyo, Japan) with Cu Kα radiation 
(40 kV, 44 mA). To perform the measurements, the following experimental parameters 

Figure 1. Representative pictures of the macroscopic appearance of Si (100) wafers coated with
metal oxide thin films by magnetron sputtering. Coated samples were named as TiOx, TaOx, NbOx,
ZrOx, for titanium, tantalum, niobium and zirconium oxide coatings, while Si samples correspond to
uncoated Si (100) wafers.

Si (100) samples with the middle section covered by permanent marker ink were
coated in the same batches as the non-covered, bare Si (100) substrates. After the coating
process, ink was removed, exposing the bare Si surface, and creating an appropriate step
(bare Si surface- metal oxide-coated Si) to measure the thickness of the metal oxide coatings
by profilometry.

2.2. Metal Oxide Coatings Characterization

The morphology of the coated samples and their elemental composition were charac-
terized using a JEOL 7600F Field Emission-Scanning Electron Microscope (FE-SEM) (JEOL
USA Inc., Peabody, MA, USA) coupled to EDS, using a voltage of 5.0 kV. For the charac-
terization of the elemental composition by EDS, three different areas (≈10 µm2) on two
independent samples for each coating group were analyzed, and the average elemental
composition (in at.% and wt.%) is presented along with the standard deviation. Elemental
and chemical surface composition analyses were performed by X-ray Photoelectron Spec-
troscopy in a Physical Electronics Versa ProbeTM II system with a scanning XPS microprobe
(Physical Electronics Inc., Chanhassen, MN, USA), using an Al Kα X-ray source (1486.6 eV
and 100 µm beam). To assure the homogeneity and reproducibility of the coatings, different
zones on two independent samples per coating group were analyzed. Survey spectra were
recorded at 117.4 eV pass energy and high-resolution spectra at 23 eV. Data were analyzed
in the Multipack© version 9.6.0.15 software.

Wettability and Surface Free Energy were characterized in an OCA 15EC equip-
ment (DataPhysics Instruments, Filderstadt, Germany) using the Sessil drop contact angle
method, and 4 µL drops of distilled water for wettability determinations and 4 µL drops of
distilled water, glycerol, isopropanol and dimethyl sulfoxide (DMSO) for surface energy
calculations. Contact angles were measured using the SCA_20® software, and the Owens,
Wendt, Rabel & Kälble (OWRK) equation was applied to calculate the SFE. For wettabil-
ity measurements, the stability of the water droplet size over time was measured using
the same droplet volume and technique described above. Droplet size and shape were
continuously monitored and recorded during the first 5 min immediately after droplet
deposition on the coating surface. Images of the droplet at 0, 1, 2, 3, 4 and 5 min after
droplet deposition were analyzed. All measurements were done in triplicate.

Crystallinity was characterized by X-ray Diffraction in grazing incidence mode using
an Ultima IV diffractometer (Rigaku, Corporation, Tokyo, Japan) with Cu Kα radiation
(40 kV, 44 mA). To perform the measurements, the following experimental parameters
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were set: 0.5◦ incidence angle, 0.5◦/min scanning speed, acquisition step of 0.02◦, and 2θ
range from 20–70◦. TiO2 and ZrO2 crystalline phases in the TiOx and ZrOx coatings were
identified by comparing the X-ray diffraction patterns obtained with the 00-021-1276 and
00-021-1272, and 00-007-0343 PDF cards, correspondingly for TiOx and ZrOx. Crystalline
phase identification, average crystal grain size, and crystallinity analysis were performed
using the PDXL2® software. Crystal grain size for crystalline samples was calculated by
two different methods: the Scherer equation indexing the (1,1,1) and (1,1,−1) diffraction
peaks for ZrO2 (Baddeleyite), and the (1,1,0) and (2,1,1) diffraction peaks for Rutile and
(2,1,1) diffraction peak for Anatase for TiO2. The crystal grain size was also calculated by
the Williamson–Hall method. Average crystal grain sizes are presented.

Coatings thickness, surface topography imaging, and average roughness (Sa) were
measured in a Zygo NexviewTM optical profilometer (Zygo Corporation, Middlefield, CT,
USA) using the MxTM software (version 6.4.0.21, Zygo Corporation, Middlefield, CT, USA)
for data analysis.

2.3. Cells

Human Bone Marrow-derived Mesenchymal Stem Cells (BM-MSC; PCS-500-012,
ATCC®, Manassas, VA, USA) were used for all biological experiments. Cells were ex-
panded in a Mesenchymal Stem Cell Basal Medium (PCS-500-030; ATCC®, Manassas, VA
USA) supplemented with Mesenchymal Stem Cell Growth Kit (PCS-500-041; ATCC®, Man-
assas, VA, USA), Penicillin-Streptomycin-Amphotericin B solution (PCS-999-002; ATCC®,
Manassas, VA, USA) and phenol red (PCS-999-001; ATCC®, Manassas, VA, USA), in the
concentrations recommended by the cells’ supplier. Cells were used within a maximum of
9 passages, as indicated by the quality control certificate. Cells were incubated at 37 ◦C and
5% CO2, and the medium was changed every three days.

Even though BM-MSC in passage 1 were obtained with a quality control certificate
from ATCC®, their expression of positive and negative mesenchymal stem cells mark-
ers and their differentiation capacity towards chondrogenic, adipogenic and osteogenic
lineages were evaluated at passage 6 by flow cytometry and histological staining, respec-
tively. Expression of positive CD90, CD105, CD73, and negative CD45, CD34 and HLA
MSC surface markers from BM-MSC were measured in a flow cytometer FACSCaliburTM

(Beckton Dickinson, Franklin Lakes, NJ, USA) using the Cell Quest Pro software (V.5.2.1.,
Beckton Dickinson, Franklin Lakes, NJ, USA) for data acquisition and the FlowJoTM soft-
ware for data analysis (V.10.8.1., Beckton Dickinson, Franklin Lakes, NJ, USA). BM-MSC
cells were independently incubated in specific (osteogenic, adipogenic, and chondrogenic)
differentiation-inducing culture media, and cells differentiation toward the specific phe-
notype (depending on the specific differentiation-inducing media used) was corroborated
by histological staining; that is, alizarin red, alcian blue and oil red staining were used to
identify osteoblastic, chondrogenic and adipogenic differentiation, respectively. Details
of methods and results for BM-MSC characterization are presented in Supplementary
Materials: “Bone-marrow derived mesenchymal stem cells characterization”.

2.4. Cell Attachment and Viability of BM-MSC on the Metal Oxide Coatings

Cell adhesion and viability upon culture on the metal oxide coatings were qualitatively
and quantitatively evaluated. The coatings samples were sterilized with UV light on both
sides for 20 min each side. Then, samples were placed in 24-well tissue culture plates and
BM-MSC were drop-seeded on the samples at a density of 4 × 103 cells/cm2. To allow
the cells’ attachment to the sample’s surface, cells-drop-seeded samples were incubated at
37 ◦C and 5% CO2 for 90 min. Then, DMEM/F-12 supplemented with 10% v/v Fetal Bovine
Serum (FBS; Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and 1% v/v antibiotic-
antimycotic was added to the wells up to a 400 µL volume, and culture plates were placed
back into the incubator. Independent samples for each coating group were cultured for 3, 7
and 14 days, changing the culture medium every three days. Three different culture time
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points were chosen to evaluate cell adhesion, viability, and morphology over time up to the
cell culture time span when cell differentiation is expected to occur: 14 days.

To evaluate the adhesion and morphology of the BM-MSC at the specific culture
time points, independent cell-cultured samples were rinsed twice with PBS 1X and fixed
overnight with 2.5% glutaraldehyde (Sigma Aldrich, Waltham, MA, USA). Then, samples
were rinsed again with PBS 1X and progressively dehydrated in 20%, 40%, 60%, 80%
and 100% ethanol solutions (JT BakerTM, Radnor, PE, USA). Samples were allowed to
dry at room temperature (RT), and images were acquired in a Zygo NexviewTM optical
profilometer (Zygo Corporation, Middlefield, CT, USA) using the MxTM software (version
6.4.0.21, Zygo Corporation, Middlefield, CT, USA).

To evaluate the cells’ viability at the specific culture time points, the LIVE/DEADTM

Viability/Cytotoxicity Kit for mammalian cells (Invitrogen®, Massachusetts, USA) was
used on independent cell-cultured samples following the kit manufacturer’s instructions.
After incubation with the LIVE/DEADTM kit (Invitrogen®, Waltham, MA, USA), samples
were rinsed twice with PBS and immediately visualized by Fluorescence Microscopy in
an Axio Observer microscope (Carl Zeiss, Jena, Germany) using the AxioVision® software
(Version Rel 4.8.2, Carl Zeiss, Jena, Germany) to acquire the images. Cell viability was
also quantitatively evaluated on independent cells-cultured samples using the Alamar
BlueTM cell viability kit (Thermo Fisher Scientific, Waltham MA, USA, USA) according to
the kit’s manufacturer protocol. Briefly, at the specific culture time points established, the
culture medium was removed and replaced in the darkness by 10:1 DMEM/F-12:Alamar
BlueTM solution. Then, samples were placed back in the incubator for 2 h, and finally, 100 µL
aliquots of the supernatants were collected, and the absorbance was read at 570 nm in a
Synergy-HTX multi-mode reader spectrophotometer (Bio Tek Instruments, Winooski, VT,
USA). A calibration curve was obtained by seeding different known numbers of cells on
independent wells in standard tissue culture plates (TCP). After 24 h of cell culture, cell
viability was evaluated following the same procedure as described above for the Alamar Blue
assay. The calibration curve calculated the number of viable cells from absorbance readings.

For all techniques described, but Alamar Blue assay, BM-MSC were also cultured
on uncoated Si samples for comparison purposes. Cell viability positive controls (Ctrl+)
corresponded to cells cultured on TCP under standard culture conditions. All experiments
were carried out in triplicate.

2.5. Proliferation of BM-MSC on the Metal Oxide Coatings

Procedures used for cell seeding and culture on the coatings were the same as described
in Section 2.4, but cell seeding density was 3.5 × 103 cells/cm2 and two different culture
times were handled (3 and 5 days) in order to avoid reaching a high cell density on
the surface, and the consequent inhibition of cell proliferation due to cell–cell contact
phenomenon. After the culture time-points indicated, cell proliferation was evaluated
using the Cell Proliferation ELISA, BrdU (colorimetric) kit (Roche, Basilea, Switzerland),
following the kit’s manufacturer instructions and setting the incubation time for BrdU
labeling solution at 4 h. After removing the labeling medium, samples were dried using a
hair dryer for 15 min and stored at 4 ◦C to continue with the Cell Proliferation ELISA BrdU
kit protocol the next day. All experiments were carried out by triplicate.

2.6. Evaluation of the Osteogenic Properties of the Metal Oxide Coatings

An evaluation of cell differentiation toward the osteogenic lineage upon culture on
the metal oxide coatings was performed by Immunofluorescence (IF) and ELISA assays.

For IF assays, cells were seeded on the coated samples under the same procedure as
described in Section 2.5. Three different osteogenic markers were chosen to be evaluated:
RUNX2, osteopontin (OP), and osteocalcin (OC). For RUNX2, OP, and OC expression
characterization, independent cell-seeded samples were evaluated after 5, 7 and 14 days
of cell culture, respectively. Different days of culture were chosen for the evaluation
of the different markers due to their expression occurring at different stages of the cell
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differentiation process. The culture medium was DMEM/F-12 supplemented with 2%
v/v FBS and 1% v/v antibiotic-antimycotic, and incubation conditions were 37 ◦C and
5% CO2. Human osteoblasts and fibroblasts cells cultured in TCP were used as controls
of positive and negative markers expression, respectively; Supplementary information:
Immunofluorescence assays controls. BM-MSC cells culture in TCP under standard culture
conditions were used as comparative controls of the natural level of markers expression
from BM-MSC.

For RUNX2 and OP, the following IF protocol was followed: after corresponding
culture time, the culture medium was removed, samples were rinsed twice with a Phosphate
Buffer Saline solution (PBS; Gibco Thermo Fisher Scientific, Waltham, MA, USA), incubated
in methanol (Sigma–Aldrich, Michigan, USA) for 5 min at RT, rinsed three times with
PBS, incubated in Triton 100 × 0.2% (Sigma-Aldrich, St. Louis, MO, USA) in PBS for
30 min, rinsed three times with PBS, and incubated in a PBS-Tween-BSA-FBS-glycine
blocking solution (PBS, Tween 0.1% (USB Corporation, Cleveland, OH, USA), BSA 1%
(Sigma-Aldrich, St. Louis, MO, USA), FBS 10%, and glycine 0.3 M (MP Biomedicals,
Irvine, CA, USA)) for 1 h at RT in a humid chamber. Then, a primary antibody was
added, either anti-RUNX2 ab76956 (Abcam, Cambridge, UK) at 1:50 dilution in PBS-1% BSA
solution or Anti-Osteopontin ab8448 (Abcam, Cambridge, UK) at 1:100 dilution in PBS-1%
BSA solution and samples were incubated for 1 h at RT. After incubation, samples were
rinsed five times with the 0.2% PBST (PBS-Tween) solution and incubated for 1 h with the
corresponding secondary antibody, either Anti-Mouse ab150105, Alexa Fluor® 488 (Abcam,
Cambridge, UK) at 1:1000 dilution in PBS-1% BSA solution for RUNX2 or Donkey Anti-Rabbit
Alexa Fluor® 488 (Abcam, Cambridge, UK) at 1:2000 dilution in the PBS-1% BSA solution
(Abcam, Cambridge, UK) for OP. Finally, samples were rinsed five times with PBST 0.2%,
cells nuclei were counterstained with Hoechst 33342 (InvitrogenTM, Carlsbad, CA, USA) at
a 1:1000 dilution in PBS, and samples were placed on a slide with a mounting medium for
microscope observation. IF protocol for OC was as follows: after 14 days of cells culture on
the coating samples, the culture medium was removed, samples were rinsed twice with PBS,
fixed with PFA 4% for 10 min at RT, and rinsed three times with PBS 1X. Then, samples were
incubated in a blocking solution (PBST 0.2% and BSA 8%) for 30 min, rinsed three times with
PBS 1X, and incubated for 1 h with the primary antibody anti-Osteocalcin ab93876 (Abcam,
Cambridge, UK) at a 1:200 dilution in blocking solution at RT in a humid chamber. Then,
samples were rinsed five times with PBST 0.2%, and incubated for 1 h at RT with the secondary
antibody Donkey Anti-Rabbit Alexa Fluor® 488 (Abcam, Cambridge, UK) at a 1:2000 dilution
in PBS-1% BSA solution. Finally, samples were rinsed five times with PBST 0.2%, cell nuclei
were counterstained with Hoescht solution, and samples were placed on microscope slides
with mounting medium. Mounted samples were visualized by Fluorescence Microscopy
using an Axio.Observer microscope (Carl Zeiss, Jena, Germany) and the AxioVision® software,
using 100× magnification. Experiments were carried out in triplicate.

The expression of osteogenic markers was quantified using ELISA assays. BM-MSC
were seeded on coated samples and cultured for 14 days in DMEM-F/12 medium supple-
mented with 10% FBS and 1% antibiotic-antimycotic at 37 ◦C and 5% CO2. The culture
medium was replaced every three days. BM-MSC cultured on TCP with Mesenchymal
Stem Cells basal medium were used as controls of negative expression of osteogenic mark-
ers. After culture time, the culture medium was replaced by fresh DMEM-F/12 with no
FBS, and samples were further incubated for 24 h. Then, supernatants were collected and
used to quantify marker expression following the ELISA kits manufacturer’s instructions.
ELISA kits used were: Human Osteocalcin Simple Step ELISA® kit ab270202 (Abcam,
Cambridge, UK); Osteoprotegerin Human ELISA kit ab100617 (Abcam, Cambridge, UK);
and Osteopontin Human ELISA kit ab100618 (Abcam, Cambridge, UK). All assays were
normalized to the number of viable cells using the Alamar Blue assay for quantification
of the number of viable cells on the samples. Experiments were carried out in triplicate.
Alkaline Phosphatase Diethanolamine Detection kit AP0100 (Sigma–Aldrich, St. Louis,
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MO, USA) was also used according to the manufacturer’s instructions to quantify ALP
expression at 7 and 14 days for cell culture.

2.7. Statistical Analysis

All data are presented as the mean ± standard error using three independent experi-
ments per variable. Statistical significance was determined by a one-way ANOVA analysis
with a Dunnett’s post-hoc test, using the Graph Pad Prism 9.1.0 software (Graph Pad by
Dotmatics, Boston, MA, USA). Values of p < 0.05 were considered statistically significant.

3. Results
3.1. Metal Oxides Coatings Characterization

Representative SEM micrographs exhibiting the microscopic morphology of the sam-
ples are shown in Figure 2, along with their elemental composition spectra as obtained by
EDS. From micrographs in Figure 2, it is possible to observe a smooth morphology for all
metal oxide coatings studied, which was later corroborated by a profilometry roughness
analysis. Chemical elements identified for each coating are shown in the EDS spectra
(Figure 2), exhibiting the expected elements depending on the oxide coating and no signs
of trace contamination within the EDS detection limit. Table 1 shows the atomic and weight
percentage of the identified chemical elements as calculated from EDS.
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Table 1. Coatings elemental composition as obtained from EDS analysis.

Coating Element Weight % Atomic %

TiOx
O 57.8 ± 0.5 80.4 ± 0.3
Ti 42.2 ± 0.5 19.6 ± 0.3

TaOx
O 17.5 ± 0.3 70.5 ± 0.5
Ta 82.6 ± 0.3 29.5 ± 0.5

NbOx
O 31.7 ± 0.2 72.9 ± 0.2

Nb 68.3 ± 0.2 27.1 ± 0.2

ZrOx
O 26.2 ± 0.2 66.9 ± 0.2
Zr 73.8 ± 0.2 33.1 ± 0.2

Table 2 includes the results from the optical profilometry images (topography), arith-
metical average roughness (Sa), and thickness of the metal oxide coatings. Average rough-
ness is expressed as the average of the Sa measured on the whole surface of three different
coated samples per metal oxide group of study. As Table 2 shows, all Sa values were
smaller than 1 nm, indicating conformal deposition of metal oxide films on the atomically
flat substrates (Si (100) wafers) used. The coatings thickness values represent the average
of at least eight measurements performed on three independent samples per metal oxide
group of study. In all cases, the average thickness was larger than 50 nm. The thinnest
coating was TiOx (54.53 nm), while thickness increased, respectively, for NbOx, ZrOx,
and TaOx, which corresponded to the thickest coating (346.49 nm). The thickness is not
expected to influence the early biological response toward the metal oxide coatings, but
latter phenomena such as corrosion or biodegradation might be sensitive to the thickness
and homogeneity of the coatings.

Table 2. Roughness, representative images of the surface topography, and thickness of the metal
oxide coatings.

Coating
Property TiOx TaOx NbOx ZrOx

Sa * (nm)

0.5 ± 0.1
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Representative survey XPS spectra of the metal oxide coatings after Ar+ ion cleaning
are shown in Figure 3. In all cases, the spectra evidenced photoelectron peaks correspond-
ing only to O and to the metal in the oxide: Ti, Ta, Nb, or Zr, corroborating no trace
elements contamination in the coatings. A minor C component was observed for ZrOx
due to a shorter Ar+ ion cleaning performed on this coating to avoid sub-stoichiometric
oxides formation, which occurred upon longer Ar+ ion cleaning; deformation of the Zr
photoelectron peaks was clearly observed upon long-time Ar+ ion cleaning. There were
no signals of the Si substrate for any of the metal oxide coatings (different regions in at
least two different samples per oxide group were analyzed), indicating that the coatings
homogeneously and uniformly cover the substrate. Even the thinnest coating deposited,
TiOx, did not show any evidence of photoelectron peaks from the Si substrate. Average
metal:oxygen ratio for the coatings, as calculated from XPS spectra, were 0.48 ± 0.02 for
TiOx; 0.40 ± 0.01 for TaOx; 0.40 ± 0.03 for NbOx and 0.48 ± 0.08 for ZrOx. Evidencing the
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formation of nearly stoichiometric oxides for all coatings deposited; that is, TiO2 for TiOx,
Ta2O5 for TaOx, Nb2O5 for NbOx, and ZrO2 for ZrOx. Metal:oxygen ratios calculated by
XPS differed from those as calculated from the at.% elemental composition obtained by EDS.
Smaller metal:oxygen ratios (around 0.25) are obtained from EDS data. The differences
in the measurement techniques can address this. Firstly, the volume of analysis in EDS is
deeper, and some detected oxygen might be associated with the native SiO2 layer. Secondly,
during EDS measurements, samples are in vacuum but are not Ar+ ion cleaned before the
measurements; thus, traces of organic compounds (containing oxygen) and oxygen from
the atmosphere might remain adsorbed on the surface, increasing the amount of oxygen in
the coatings’ surface, and consequently decreasing the calculated metal:oxygen ratio from
EDS data, in comparison to that obtained from XPS measurements.
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Figure 3. Example low resolution XPS spectra of TiOX (TiO2), ZrOX (ZrO2), NbOX (Nb2O5) and
TaOX (Ta2O5).

The GI-XRD diffraction patterns shown in Figure 4 indicate that both TaOx and
NbOx coatings were amorphous. Two broad peaks were observed for these two coatings;
however, the average crystallite size calculated from these peaks would be smaller than
1 nm. Consequently, a significantly large number of crystal grains frontiers would exist
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within the material, causing significant disorder in it so that it can be confidently considered
as X-ray amorphous. On the other hand, TiOx and ZrOx showed a nanocrystalline structure
with an average crystallite size of 5 ± 1 and 7 ± 2 nm for TiOx and ZrOx, respectively. ZrOx
nanocrystalline structure corresponded to the monoclinic phase, baddeleyite, while the
TiOx XRD pattern indicated a mixture of the tetragonal crystalline phases, anatase (50.5%)
and rutile (49.5%). ZrOx can be considered crystalline with no amorphous part since there
was no observable amorphous contribution evidenced by the quite linear background
observed. On the other hand, a slight non-linearity can be observed in the background
of the XRD spectra for TiOx. Calculating the amorphous-crystalline contributions for this
coating, an 87% crystallinity was obtained.
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Figure 4. Representative grazing incidence XRD patterns of (a) TiOx, (b) ZrOx, (c) NbOx, and
(d) TaOx coatings. In Figure 3a, the A and R stand for the expected XRD pattern for Anatase and
Rutile crystalline phases of TiO2, respectively. In Figure 3b, the B stands for the expected XRD pattern
for the Baddeleyite crystalline phase of ZrO2.
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The wettability (WCA) and SFE of the coatings were evaluated by contact angle
measurements. The stability of the water droplets over time on the coating’s surface is
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and
at 1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size
with time can be observed for all coatings. Nevertheless, variations in droplet shape, and
consequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly
attributed to evaporation effects due to water angle measurements performed in an open
chamber. From results obtained from water droplet stability measurements over time, it
was established to measure WCA at 30 s after droplet deposition on the coating’s surface.
In the case of the liquids used for calculating SFE, the same time span was considered
except for isopropanol, where contact angles were calculated at 15 s after droplet deposition.
Isopropanol has a higher vapor pressure and, consequently, a higher evaporation rate [78],
drastically decreasing the droplet’s time to remain stable.

Table 3. Droplet size stability over time for water contact angle measurements.

Sample
Initial

Measurement
(0 min)

1 min 2 min 3 min 4 min 5 min

Si
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
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TiOx, which presented the smallest polar character.  

  

Materials 2022, 15, x FOR PEER REVIEW 13 of 30 
 

 

crystalline phases of TiO2, respectively. In Figure 3b, the B stands for the expected XRD pattern for 
the Baddeleyite crystalline phase of ZrO2. 

The wettability (WCA) and SFE of the coatings were evaluated by contact angle 
measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  

Table 3. Droplet size stability over time for water contact angle measurements. 

Sample 
Initial Measurement 

(0 min) 1 min 2 min 3 min 4 min 5 min 

Si 
      

TiOx 
      

TaOx 
      

NbOx 
      

ZrOx 
      

Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
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obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
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and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  

  

Materials 2022, 15, x FOR PEER REVIEW 13 of 30 
 

 

crystalline phases of TiO2, respectively. In Figure 3b, the B stands for the expected XRD pattern for 
the Baddeleyite crystalline phase of ZrO2. 

The wettability (WCA) and SFE of the coatings were evaluated by contact angle 
measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  

Table 3. Droplet size stability over time for water contact angle measurements. 

Sample 
Initial Measurement 

(0 min) 1 min 2 min 3 min 4 min 5 min 

Si 
      

TiOx 
      

TaOx 
      

NbOx 
      

ZrOx 
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ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
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ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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The wettability (WCA) and SFE of the coatings were evaluated by contact angle 
measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
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NbOx 
      

ZrOx 
      

Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  
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TiOx 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
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time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
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In the case of the liquids used for calculating SFE, the same time span was considered 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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The wettability (WCA) and SFE of the coatings were evaluated by contact angle 
measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  

Table 3. Droplet size stability over time for water contact angle measurements. 
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TaOx 
      

NbOx 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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crystalline phases of TiO2, respectively. In Figure 3b, the B stands for the expected XRD pattern for 
the Baddeleyite crystalline phase of ZrO2. 

The wettability (WCA) and SFE of the coatings were evaluated by contact angle 
measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  

Table 3. Droplet size stability over time for water contact angle measurements. 

Sample 
Initial Measurement 

(0 min) 1 min 2 min 3 min 4 min 5 min 
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TiOx 
      

TaOx 
      

NbOx 
      

ZrOx 
      

Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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measurements. The stability of the water droplets over time on the coating’s surface is 
shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  

Table 3. Droplet size stability over time for water contact angle measurements. 

Sample 
Initial Measurement 
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Si 
      

TiOx 
      

TaOx 
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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shown in Table 3, exhibiting the image footage at initial water droplet deposition, and at 
1, 2, 3, 4, and 5 min after droplet deposition. From Table 3, a decrease in droplet size with 
time can be observed for all coatings. Nevertheless, variations in droplet shape, and con-
sequently contact angle, were not relevant; thus, a decrease in droplet size can be mainly 
attributed to evaporation effects due to water angle measurements performed in an open 
chamber. From results obtained from water droplet stability measurements over time, it 
was established to measure WCA at 30 s after droplet deposition on the coating’s surface. 
In the case of the liquids used for calculating SFE, the same time span was considered 
except for isopropanol, where contact angles were calculated at 15 s after droplet deposi-
tion. Isopropanol has a higher vapor pressure and, consequently, a higher evaporation 
rate [78], drastically decreasing the droplet’s time to remain stable.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4 shows the average WCA values, as well as the total SFE (γd/p) and the analysis 
of the polar (γp) and dispersive (γd) components of the total SFE. According to the results 
obtained for WCA, all coatings can be conventionally considered as having a hydrophilic 
nature, exhibiting WCA < 90°, being ZrOx the one closest to the hydrophilic–hydrophobic 
limit. Total SFE was similar among all coatings, ≈24 mN/m with a larger dispersive com-
ponent compared to the polar component. Total SFE increased from TaOx and ZrOx, to 
TiOx and NbOx, presenting similar total SFE. γp/(γp +γd) is known as the polarity factor 
and indicates the polar fraction of the surface, where TaOx exhibited the highest polar 
character and decreased to NbOx and ZrOx that exhibited similar polar characters, and to 
TiOx, which presented the smallest polar character.  
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Table 4. Water Contact Angle (WCA) and Surface Free Energy (SFE) of uncoated and coated silicon
surfaces with metal oxides thin films.

Samples WCA (◦)
Surface Free Energy (mN/m)

γp/(γp +γd) (%)
γd/p γd γp

Si

79.8 ± 0.9
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3.2. BM-MSC Characterization

BM-MSC cells in passage 6 were characterized by evaluating their expression of the
main positive and negative mesenchymal stem cell surface markers, as well as evaluat-
ing their capacity to differentiate towards the chondrogenic, adipogenic, and osteogenic
lineages, upon incubation with specific differentiation-inducing media; according to the In-
ternational Society of Cell Therapy. BM-MSC cells exhibited more than 95% positive expres-
sion of surface mesenchymal stem markers CD90, CD105, and CD73, and less than 2% of
expression of the hematopoietic stem cells markers CD45, CD34, and HLA; Supplementary
Figure S1. BM-MSC cells exhibited a fibroblast-like cell morphology (passage 8) incubated
in supplemented mesenchymal stem cell basal medium (Supplementary Figure S2a). After
14 days of culture in a chondrogenic-inducing medium, BM-MSC cells were positively
stained with alcian blue, indicating synthesis of proteoglycans and corroborating chon-
drogenic differentiation (Supplementary Figure S2b). After 17 days of incubation in an
osteogenic-inducing differentiation medium, BM-MSC were positively stained with alizarin
red, exhibiting the formation of calcium deposits, indicative of osteogenic differentiation
(Supplementary Figure S2c). Finally, after 12 days of incubation in an adipogenic-inducing
differentiation medium, BM-MSC showed lipid vesicles positively stained with oil red
dye, demonstrating adipogenic differentiation (Supplementary Figure S2d). It was con-
firmed that BM-MSC cells used in the present study preserved the main characteristics of
mesenchymal stem cells up to passage 8.

3.3. Viability of BM-MSC Cultured on the Surface of the Coatings

Cell adhesion, morphology, and viability of BM-MSC cultured on uncoated Si surfaces
and the coatings were evaluated at 3, 7 and 14 days of culture. Figure 5 shows representative
micrographs of the cell cultures (after cells fixation) acquired in an optical profilometer. At
5× magnification, main micrographs, the entire sample surface can be observed, which
allows for visually evaluating the density and distribution of cells over the entire surface
of the samples, and with culture time. These images allow qualitative evaluation of
cell proliferation (increment of cell density on the surface) and adhesion over the whole
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sample surface. Higher magnification images, 50×, allow for precise observation of cells
morphology. In the case of BM-MSC cultured on the uncoated Si substrates (Figure 5a–c),
the cells initially adhered to the surface, displaying a similar morphology to those of the
cells cultured on the coatings. However, at 7 days of culture, fewer cells are observed on Si
compared to the coatings, and by day 14, cells detachment from Si was clearly observed. On
the coatings, at 3 days of culture (Figure 5d,g,j,m), cells were well-adhered to the surfaces
displaying the expected fibroblast-like morphology of well-adhered MSC. For the coatings,
as culture time increased, cell density raised to cover the entire surface at 14 days of culture,
indicating cell proliferation. At 7 days of culture (Figure 5e,h,k,n), cells exhibited similar
extended morphologies on all the coatings, signaling appropriate adhesion to the surface.
At 14 days of culture, cells cultured on ZrOx (Figure 5o) exhibited a slight cell detachment
phenomenon occurring in the center of the cell monolayer, probably due to a significantly
higher cell density in that area. Cells appeared to be well adhered to the ZrOx surface,
other than the center; however, cell morphology seemed to be more elongated and in a
more compact array compared to cells cultured on TiOx, TaOx, or NbOx.
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Figure 5. Representative micrographs, obtained by an optical profilometer, of BM-MSC cell cultured
on uncoated Si (a–c) and coated, TiOx (d–f), TaOx (g–i), NbOx (j–l), and ZrOx (m–o), samples. Three
incubation times were handled, 3, 7, and 14 days. Micrographs were acquired at two different
magnifications, 5× for main micrographs and 50× for insert magnifications.
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Figure 6 presents a qualitative evaluation of cell viability by the LIVE/DEAD® fluores-
cence assay. Viable cells are marked in green, and dead cells are marked in red. Upon cell
culture on uncoated Si samples, cells were viable; however, they presented a more rounded
morphology and became easily detached from the surface compared to the cells cultured
on the coatings. In addition, a smaller number of viable cells and a higher number of dead
cells were observed at all culture times on Si compared to the coatings. Upon culture on
the coatings, cells were viable at all culture times studied, showing just a few dead cells.
In concordance with what was observed by optical profilometry (Figure 5), LIVE/DEAD
assay showed that cell density increased on the coatings surfaces with culture time, and
corroborated that cells were not only well-adhered to the coatings and increasing their
population with culture time, but also were viable at all culture times on the coatings.
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Figure 6. Qualitative evaluation of BM-MSC viability at 3, 7, and 14 days of culture on uncoated Si
(d–f) and TiOx (g–i), TaOx (j–l), NbOx (m–o), and ZrOx (p–r) coated samples. Ctrl (a–c) corresponds
to BM-MSC culture on the surface of standard tissue culture plates. Micrographs were acquired at
two different magnifications, 5× and 20×. The fluorescent LIVE/DEADTM Viability/Cytotoxicity Kit
(Invitrogen®, Waltham, MA, USA) for mammalian cells was used to mark viable (green) and dead
(red nuclei) cells.
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Cell viability was also quantitatively assessed using the Alamar Blue reagent. For
this assay, BM-MSC cultured on uncoated Si were not considered due to the negative
results observed for this surface in the qualitative evaluations of cell adhesion and viability
(Figures 5 and 6). According to Figure 7a, the number of viable cells at 3 days of culture
was similar between all coatings and the Ctrl; no significant differences were found in the
statistical analysis. The Ctrl corresponded to BM-MSC cultured on the surface of standard
TCP. After 7 days of culture (Figure 7b), the number of viable cells increased for all coated
surfaces and the Ctrl; the number of viable cells was comparable for all coatings studied
and the Ctrl with no significant differences. An increase in the number of cells with culture
days indirectly indicates cell proliferation. At 14 days of culture (Figure 7c), the number of
viable cells increased on all coatings compared to 7 days of culture; however, the number
of viable cells on the coatings was significantly smaller than that on the Ctrl. It is essential
to mention that in no case the number of viable cells on the coatings was smaller than 50%
of the number of viable cells on the Ctrl. TaOx and NbOx showed the highest number
of viable cells (there were no significant differences between them) among the coatings
studied, followed by ZrOx, and finally TiOx, which showed the smallest number of viable
cells; the number of viable cells was not significantly different between TiOx and ZrOx.
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Figure 7. Quantitative evaluation of BM-MSC viability cultured on the coatings at (a) 3 days,
(b) 7 days, (c) 14 days of culture. Thermo Fisher Alamar BlueTM cell viability reagent kit was
used. Ctrl corresponds to BM-MSC cultured on the surface of standard tissue culture plates. Data are
presented as the mean ± standard error using three independent cultures per variable and analyzed
by one-way ANOVA using a Dunnett’s post hoc test. * p ≤ 0.05 vs. Ctrl; ** p ≤ 0.001 vs. Ctrl;
**** p ≤ 0.0001; & p ≤ 0.05 vs. TiOx; && p ≤ 0.01 vs. TiOx.

3.4. Proliferation of BM-MSC Cultured on the Coatings

Cell proliferation upon culture on the coatings was evaluated using the Cell Prolifera-
tion ELISA, BrdU (colorimetric) kit at 3 and 5 days of BM-MSC culture. Ctrl corresponds
to BM-MSC cultured on the surface of standard TCP. Figure 8a shows that at 3 days of
culture, a higher percentage of the viable cells on TaOx and NbOx were in a proliferative
state (BrdU assay absorbance read) since, according to Figure 7, the total number of cells
was similar to the Ctrl up to 7 days of culture. However, there was no significant differ-
ence in the percentage of viable cells in a proliferative state among the different coatings
studied. At 5 days of culture (Figure 8b), cells cultured on all the coatings exhibited a
significantly smaller percentage of viable cells in a proliferative state compared to the Ctrl.
The observed decrease in cell proliferation rate at 5 days compared to the control might be
that cells attached to the coating’s surface have already initiated the differentiation process,
as observed in the next section. Among the cells cultured on the coatings, NbOx showed
the largest percentage of viable cells in a proliferative state at 5 days of culture, and this
difference was significant against TiOx, TaOx, and ZrOx. After NbOx, the second-largest
percentage of viable cells in a proliferative state among the coatings was observed on ZrOx,
which exhibited a significantly larger percentage of viable cells in a proliferative state in
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comparison to TiOx and TaOx. There was no significant difference in the percentage of
viable cells in a proliferative state between TiOx and TaOx.
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Figure 8. Evaluation of cell proliferation for BM-MSC cultured on the coatings studied. (a) 3 days
and (b) 5 days of culture. The Roche Cell Proliferation ELISA, BrdU (colorimetric) kit was used.
Ctrl corresponds to BM-MSC cultured on standard TCP. Data are presented as the mean ± standard
error using three independent cultures per variable and analyzed by one-way ANOVA using a
Dunnett’s post hoc test. * p ≤ 0.05 vs. Ctrl; *** p ≤ 0.005 and **** p ≤ 0.0005; &&& p ≤ 0.001 vs. TiOx;
&&&& p ≤ 0.0001 vs. TiOx; $$ p ≤ 0.01 vs. TaOx; $$$$ p ≤ 0.001 vs. TaOx; % p ≤ 0.05 vs. NbOx.

3.5. Osteogenic Properties of the Coatings

Cell differentiation toward the osteogenic lineage was evaluated by qualitative IF and
quantitative ELISA assays. Figure 9 displays representative micrographs of the expression
of RUNX2, OP, and OC osteogenic markers from BM-MSC cultured on the coatings. RUNX2
is a transcription factor; thus, secondary antibody labeling is observed in and around the
cell nucleus (Figure 9b–e). OP (Figure 9g–j) and OC proteins are expressed mainly in the
cell cytoplasm (Figure 9l–o). Figure 9a,f,k correspond to BM-MSC cultured on TCP (Ctrl),
which allowed for the evaluation of the basal expression of the osteogenic markers studied
from BM-MSC. It has been described that FBS used in the culture medium might have
induced a certain level of osteogenic differentiation [79]. Then, for the present evaluation,
cells were incubated with DMEM/F-12 supplemented with 2% FBS; thus, the potential
of osteogenic differentiation observed can be mainly attributed to the external stimulus
studied, in this case, the contact with the coatings. According to the results observed
in Figure 9, there was a positive expression of RUNX2, OP and OC in all the coatings
studied. This positive expression of osteogenic differentiation markers can be confidently
correlated to the effect of the coatings since the Ctrl presented a minimal expression of OP
and OC, and no expression of RUNX2. Cellular controls for the IF assays are shown in the
Supplementary Information (Supplementary Figures S3 and S4).
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Figure 9. RUNX2 (a–e), OP (f–j) and OC (k–o) cellular expression characterized by IF assays in
BM-MSC cultured on the coatings. In green, positive expression of the corresponding osteogenic
marker is observed, while in blue, cell nuclei stained with Hoechst are observed. Ctrl corresponds to
cells cultured on standard tissue culture plates.

Osteogenic differentiation was also quantitatively evaluated. Figure 10 shows the quan-
tification of some proteins involved in the differentiation process of MSC toward the osteogenic
lineage. For protein quantification, supernatants were collected, and ELISA commercial kits
were used; a colorimetric assay kit was used for quantification of ALP activity. Two inde-
pendent comparison cell controls were set, consisting of BM-MSC cultured on TCP with a
supplemented Mesenchymal Stem Basal Medium (Ctrl-) and BM-MSC cultured on TCP with
DMEM/F-12 supplemented with 10% v/v FBS (Ctrl). So, it was possible to compare the
proteins intrinsically expressed by mesenchymal stem cells (Ctrl-) with the basal expression of
osteogenic markers expressed by mesenchymal stem cells incubated in FBS-supplemented
medium (Ctrl), which might per se induced a certain level of osteogenic differentiation.

Regarding the results for ALP activity at 7 days of cell culture (Figure 10a), there was
no ALP activity detected in the Ctrl-, and the largest ALP activity was observed on TiOx
and ZrOx, which presented similar ALP activity between them, but significantly larger
ALP activity compared to the Ctrl. ALP activity on NbOx was smaller than that TiOx and
ZrOx but still significantly larger than the Ctrl. ALP activity on TaOx was similar to that of
the Ctrl. At 14 days of cell culture (Figure 10b), there was no ALP activity detected in the
Ctrl-, while ALP activity was detected on all coatings, with TaOx, presenting the largest
value. The ALP activity decreased from TaOx to NbOx, TiOx and ZrOx; NbOx and TiOx
presented a higher ALP than the Ctrl, while ZrOx exhibited a similar ALP activity to that
of the Ctrl.

In the case of OP (Figure 10c), protein expression in the Ctrl- was significantly smaller
than that for the Ctrl and the coatings. TaOx and NbOx expressed the highest amount of
OP, exhibiting significantly larger OP expression than cells cultured on TiOx, ZrOx or the
Ctrl. Cells cultured on ZrOx and TiOx expressed a significantly smaller amount of OP than
the Ctrl. For OPG (Figure 10d), the most extensive protein expression was observed for
cells cultured on NbOx, where OPG expression was significantly larger compared to all the
other coatings studied and to the Ctrl. OPG expression from cells cultured on TaOx was
similar to that observed for the Ctrl. OPG expression on ZrOx and TiOX was significantly
smaller than that observed for the Ctrl and similar to the OPG expression observed for the
Ctrl-. Finally, for OC (Figure 10e), protein expression was similar between the Ctrl- and
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the Ctrl. OC expression was significantly larger on all the coatings studied in comparison
to the Ctrl. The most significant OC expression among the coatings corresponded to cells
cultured on NbOx and TiOx, which expressed similar levels of OC between them, followed
by OC expression from cells cultured on ZrOx and TaOx. Cells culture on TaOx expressed
the smallest amount of OC among the different coatings studied; however, OC expression
on TaOx was still significantly larger in comparison to the Ctrl.
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Figure 10. Quantification of proteins involved in osteogenic differentiation. Quantification of ALP
activity, at (a) 7 days, and (b) 14 days of cells culture. Quantification of (c) osteopontin (OP) expression,
(d) osteoprotegerin (OPG), and (e) osteocalcin (OC) expression after 14 days of cells culture. Ctrl-
and Ctrl correspond to BM-MSC cultured on TCP surfaces with supplemented Mesenchymal Stem
Basal Medium (Ctrl−), or DMEM/F-12 supplemented with 10% v/v FBS (Ctrl). Data are presented as
the mean ± standard error using three independent cultures per variable and analyzed by one-way
ANOVA using a Dunnett’s post hoc test. * p ≤ 0.05 vs. Ctrl; ** p ≤ 0.01 vs. Ctrl; *** p ≤ 0.001; and
**** p ≤ 0.0001 vs. Ctrl vs Ctrl.

4. Discussion

Several studies have searched for appropriate surfaces to promote the osseointegration
process in orthopedic implants. It is known that surface modifications allow harnessing of
the biological response that may significantly reduce implant failure or patient rejection.
Although appropriate biological responses being triggered by certain surface modifications
are known, there is still a long way to go in developing biomaterials with the optimal
surface features that ensure a successful osseointegration process [80]. Many techniques
have been described for obtaining positive surface modifications. Some of them add



Materials 2022, 15, 5240 20 of 27

structures on the substrate surface (coatings), while others modify the existing ones (acid
etching, sandblasting, etc.) [80]. In this work, surfaces coated with metal oxide thin films (Ti,
Ta, Nb and Zr oxides) were generated by magnetron sputtering. This technique allows the
deposition of coatings on various materials that meet the desirable mechanical properties
for orthopedic implants and allows tailored surface chemistry by varying the deposition
conditions [67–71]. Therefore, this technique represents a promising proposal for in vitro
and in vivo investigation, and for its application at an industrial level in the generation of
orthopedic implants.

To elucidate the correlations of the biological response observed toward the prop-
erties of the coating (TiO2, Ta2O5, Nb2O5, ZrO2), an appropriate physical and chemical
characterization of the oxide coatings is very important. The present work characterized
the coatings by SEM, EDS, XPS, XRD, wettability, and SFE calculations. The EDS and XPS
analysis (Figures 2 and 3) corroborated that the deposited oxide coatings only contained
the expected chemical elements, and no traces of other elements were observed. Thus, the
cellular response presented in this work can be precisely correlated to the corresponding
chemical and elemental composition of the metal oxide coatings and the physical properties
emerging from this.

The difficulty in modifying a particular property without altering others has caused
the heterogeneity observed in published results, making it challenging to reach a consensus
about the most significant surface properties a biomaterial must meet for developing
orthopedic implants [58]. In this sense, to evaluate the effect of the chemical composition
on the biocompatibility and differentiation of MSC cells, four metal oxide coatings were
deposited on atomically flat Si (100) substrates. Coatings deposition on Si (100) substrates
ruled out the influence of roughness and wettability in the biological response, as both
could directly affect cell adhesion and proliferation [58,81–83]. Wettability due to variations
in the surface roughness can directly affect cell adhesion and proliferation [58,81–83].
Meanwhile, it has been reported that roughness values between 0.1 and 100 µm favor
cell adhesion (specifically in the range of 10–30 µm) [84], while cell adhesion decreased
on rougher surfaces (≥100 µm) [58]. At the nanoscale (1–100 nm), roughness indirectly
affects cell adhesion by controlling the adsorbed protein layer on the surface [75–77,85].
Results in Figure 5 and SFE data suggested that the excellent adhesion and proliferation of
the BM-MSC on the coatings are related to the surface chemistry, the rougher surface, or
the more hydrophobic character (protein adsorption related) of the coatings since, on the
silicon surface (Figure 5b,c), cells did not remain adhered after 7 days of culture.

Regarding the coatings thickness values obtained (Table 2), all the coatings were
thicker than 50 nm, being TiO2 the thinnest coating (54.5 nm). Coatings thickness can be
correlated to corrosion rates and coating adhesion strength, which are desirable characteris-
tics in an in vivo system. Generally, the thinner the coating, the greater its adhesion strength
to the substrate, and the poorer its corrosion protection [86]. In addition, detachment of the
coatings might cause the accumulation of debris in the surrounding tissue and consequently
cause inflammation and exacerbate immunological responses [32]. Nevertheless, some
reports relate the thickness of the coatings with the enhancement of osteogenic proper-
ties [87], and the increasing bone attachment to the implant in an in vivo system [88] but
always related to another surface feature influenced by coatings thickness, such as surface
zeta-potential and porous surface structure. For the evaluations carried out in this work,
the thicknesses of the different coatings are not expected to directly affect the biological
response as long as the coatings homogeneously cover the substrate surface. Thus, it was
important to corroborate that covering of the substrate surface by the metal oxide coatings
was complete and homogeneous, a characteristic corroborated by the replicated XPS and
EDS measurements on different areas of different coated samples. According to our results,
the thickness of the coatings does not seem to have a direct relationship with osteogenic
differentiation, since both TiO2 and ZrO2 (Figure 10) presented a faster osteogenic induction
than the other coatings, with TiO2 being the thinnest coating and ZrO2 one of the thickest.
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Although the differences were not too significant, cell numbers after 14 days of incuba-
tion were larger on the amorphous Ta2O5 and Nb2O5 surfaces compared to the nanocrys-
talline TiO2 and ZrO2 (Figure 7) coatings. In some cases, it has been reported that crystalline
structures favor cell adhesion and proliferation; in the case of TiO2 it has been described
that the anatase phase increases cell adhesion [89,90]. However, the native TiO2 surface has
been reported as amorphous [91], and in previous works, we showed that cell adhesion
and proliferation were promoted on the amorphous TiO2 [58] and ZrO2 [50] coatings in
comparison with their crystalline counterpart.

Other properties also crucial in cellular adhesion are wettability and surface-free en-
ergy. It is known that cells preferentially adhere to hydrophilic surfaces, while proteins tend
to adsorb on hydrophobic surfaces efficiently [92]. Nevertheless, on hydrophilic surfaces,
protein adsorption depends on the electrostatic interactions, and thus, pH variations in
the physiological environment might improve protein adsorption by causing proteins to
easily undergo conformational changes that might change their positive/negative charge
facilitating their interaction with hydrophilic surfaces; depending on the surface charge [93].
According to the present wettability results (Table 4), hydrophilic oxide coatings seemed to
favor cell adhesion and proliferation. All the coatings studied presented a hydrophilic na-
ture, being ZrO2 the closest to the hydrophilic–hydrophobic limit. Of the coatings studied,
Nb2O5 presented the highest hydrophilic character, and on this metal oxide, cells covered
the largest surface area upon seeding (Figure 5j), and cells proliferation in the first days of
incubation (3 and 5 days) was favored (Figure 8). These results are consistent with those
reported in previous studies, where a higher cell proliferation was observed at 3 days of
incubation on Nb2O5 compared to TiO2 [94].

Surface-free energy is involved in protein adsorption and cell adhesion. Proteins are
known to more readily adhere to hydrophobic surfaces, but it has been described that on
hydrophilic surfaces, the polar component of the surface free energy is directly correlated
with the amount of protein adsorbed. In this way, even if the surface is hydrophilic, if its po-
lar component is considerable within the value of the total surface free energy, adsorption of
proteins will be favored. Cell adhesion and proliferation are enhanced with increasing SFE,
where the polar component has an important role. As the SFE polar component increases,
cell adhesion is favored due to easily established bonds between the carboxyl and hydroxyl
groups present on the hydrated surface and the lipids and ions in the cell membrane [95].
Table 4, shows the SFE values of the coatings and the polarity factor (γp/(γp +γd)). Ta2O5
and Nb2O5 presented the highest contribution of the polar component to the SFE. In the
viability assay at 3 days of incubation (Figure 7a), more viable cells were observed on Ta2O5
and Nb2O5, in comparison to the other oxides, which can be addressed to the fact that these
two oxides have the largest value of the polarity factor. At 7 days of incubation (Figure 7b),
a higher number of viable cells was observed on Ta2O5 compared to the other oxides. All
the coatings generated in the present study can be expected to favor cell adhesion and
proliferation, being hydrophilic. However, according to the coatings’ surface energy values
(dispersive and polar component), it can be hypothesized that, although Ta2O5 presented
a hydrophilic nature, its higher polar component of the surface free energy might have
favored appropriate adsorption of proteins, and the consequent appropriate biological
response observed [93].

When evaluating the viability of BM-MSC cultured on the coatings (Figures 6 and 7),
in all cases, cells remained viable up to 14 days of culture, with Ta2O5 being the coating
with the most significant number of viable cells at day 14, followed by Nb2O5. On the other
hand, Nb2O5, presented a larger number of proliferative cells at 14 days of cell culture,
which had also been previously reported [94]. It is essential to notice that cell proliferation
decreases as cell differentiation starts; thus, decreased cell number observed on TiO2, ZrO2
and on Nb2O5 at 14 days of cell culture might be also correlated with a faster differentiation
of BM-MSC cells occurring on TiO2, ZrO2, Ta2O5 and finally Nb2O5

It is not only desirable that a biomaterial intended to be used in orthopedic implants
allows cell adhesion and proliferation, but it is also desirable that it favors the whole
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osseointegration process, for example, by improving osteoinduction. Figure 9 shows
that all the coatings induced a positive expression of the evaluated osteogenic markers
(RUNX2, OP, OC, and ALP), which qualitatively demonstrated that on all the four coatings
studied, BM-MSC were differentiating towards the osteogenic lineage. Figure 10 shows
the quantification of some proteins that participate at different stages of the osteogenesis
(osteoinduction) process, which helps us to infer how the differentiation process took place
on each of the coatings studied. RUNX2 and ALP are early osteogenic differentiation
markers, while OP, OPG, and OC are considered late differentiation markers. RUNX2
is a transcription factor that regulates the differentiation of MSC toward preosteoblasts
and regulates the expression of latter osteogenic markers [96]. ALP is a glycoprotein
secreted by preosteoblasts and osteoblasts, and it is directly involved in mineralization, in
addition to the fact that during osteogenesis, the presence of this enzyme is indicative of
a differentiation process of MSC toward osteoblasts [79,97]. OP is an extracellular matrix
protein secreted by mature osteoblasts and is involved in various processes, including bone
mineralization [98,99]. It has been described that OP is directly involved in improving the
osteogenesis process during osseointegration in dental implants [100]. OPG is a protein
found in various organs, mainly bone and it is known to be released by osteoblasts, and
function as an antagonist of osteclastogenesis [101]. Finally, OC is the most abundant non-
collagenous protein in mature bone, and osteoblasts specifically synthesize it; although it
has been mainly related to bone formation, several processes in which it could be involved
have been also described [102]. According to the protein quantification results in the present
study (Figure 10), after 7 days of BM-MSC culture, ZrO2 and TiO2 exerted the highest
ALP activity, indicating that on these two coatings, the induction of osteogenesis might
have started earlier than on Ta2O5 and Nb2O5. However, by 14 days of culture Ta2O5 was
the one presenting the highest ALP activity, as on this coating the differentiation process
started later than in the other coatings. When comparing ZrO2 and TiO2, only TiO2 was the
one that presented the highest amount of OC at 14 days of cultures. Thus, probably ZrO2
stopped, or was in a later state of, differentiation by 14 days of culture; ALP activity on
ZrO2 at 7 days of culture was the largest. In Figure 10a, it is observed that Nb2O5 presented
a higher ALP activity with respect to Ta2O5, at 14 days of incubation, it presented one
of the highest expressions of OP, OPG and OC. Finally, Ta2O5 at 14 days of incubation
presented the highest activity of ALP and OP. For OPG it had a lower expression than
Nb2O5, while for OC, Ta2O5 was the coating with the lowest expression. In this way, it is
possible to propose that the induction of osteogenesis was faster in ZrO2, followed by TiO2,
then Nb2O5 and finally Ta2O5. This osteogenic differentiation process is also supported by
the viability assay, in which at 14 days of incubation (Figure 7c), a lower number of cells
on TiO2 and ZrO2, followed by Nb2O5 and Ta2O5 was observed. It has been reported that
after 9 days, cell line changes phenotype from proliferative to differentiative [103], process
in which a decrease in proliferation occurs to allow differentiation.

Although TiO2 continues to be one of the best options for manufacturing orthopedic
implants, reports warn about its toxicity [30]. In most cases, these problems are related to the
damage in the oxide layer due to corrosion, causing the release of particles that lead to peri-
implantitis [32]. According to the present results, ZrO2 represents a potential alternative
to TiO2, displaying ZrO2 a similar osteoinduction process to that of TiO2; nevertheless,
further studies on the mechanisms and timewise proceeding of the differentiation process
on these oxides are needed. Different studies have reported characteristics of ZrO2 that can
be comparable with those of TiO2. Among the most relevant features, it was reported a
higher adhesion of MG63 cells and higher ALP activity at 4 days cultured on ZrO2 films
compared to TiO2 films [104], in addition ZrO2has a higher corrosion resistance due to its
higher electrochemical stability and surface integrity, which significantly reduces toxicity
problems [54]. It has also been described that zirconia layers inhibit bacterial adhesion,
which is a very desirable characteristic [105].
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5. Conclusions

This study shows that cell adhesion, proliferation, and osteogenic differentiation can
be promoted by the four metal oxide coatings evaluated: TiO2, which can be considered
the goal standard to compare, ZrO2, Ta2O5, and Nb2O5. Small but statistically significant
differences were observed in their biological responses, suggesting ZrO2 as an alternative
substitute for TiO2, with the advantage of a faster differentiation process. ZrO2 presented
the larger water contact (close to 90◦) and nano crystalline structure, but intermediate SFE,
polarity factor, and thickness among the oxides. Thus, the first two parameters seem to be
more critical for osteogenic differentiation.

From our analysis, it can also be observed that the most polar surface (polarity factor
of 34%), Ta2O5, promoted a large number of attached cells, which might be relevant for cell
culture applications.

To date, few studies have studied various metal oxides under comparable experimental
conditions as possible candidates for potential orthopedic implant applications. Therefore,
the results presented in this work represent a starting point for knowing and improving
the surface properties of metal oxides for orthopedic applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15155240/s1, Figures S1 and S2: Bone-marrow derived mesenchymal
stem cells characterization and Figures S3 and S4: Immunofluorescence assays controls.

Author Contributions: Conceptualization, S.E.R. and P.S.-B.; Data curation, M.F.-L.; Formal analysis,
M.F.-L., J.G.-L., R.M.R.-A. and P.S.-B.; Funding acquisition, S.E.R., R.M.R.-A. and P.S.-B.; Investigation,
M.F.-L., S.E.R., R.M.R.-A. and P.S.-B.; Methodology, M.F.-L. and J.G.-L.; Resources, S.E.R., R.M.R.-A.
and P.S.-B.; Supervision, J.G.-L. and P.S.-B.; Writing—original draft, M.F.-L. and P.S.-B.; Writing—
review & editing, S.E.R., R.M.R.-A. and P.S.-B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by CONACyT-CB-288101 and partially funded by CONACYT-
Frontera-1740.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ongoing research.

Acknowledgments: This work was supported by CONACyT-CB-288101 and partially supported
by CONACYT-Frontera-1740, and DGAPA-PAPIIT-IN101419. R.M.R.-A. is recipient of Comisión
de Operación y Fomento de Actividades Académicas (COFAA-IPN) and Estímulo al Desempeño
Docente-IPN grants, and part of this work was supported by her SIP-IPN grants 20211631 and
20221624. We thank technical support from O. Novelo, L. Huerta and A. Tejeda from the IIM-UNAM,
and technical support from X. Guerrero-Alva from the INR-LGII. The author also acknowledges
the Laboratorio de Biotecnología in the INR-LGII for the facilities (Axi.Observer Microscope and
Synergy-HTX multi-mode reader spectrophotometer) to carry out some of the experimental parts
presented in this research. Advice on XRD data analysis from O. Deplablos-Rivera from the Chemistry
Faculty at UNAM is acknowledged. Technical support and advice for cytometry experiments from V.
Martínez-López from the INR-LGII is also acknowledged. Fernández-Lizárraga M. acknowledges
the support from the program Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología
Molecular, Escuela Nacional de Ciencias Biológicas at the Instituto Politécnico Nacional and the Ph.D.
scholarship from CONACyT (CVU 739515).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grün, N.G.; Holweg, P.L.; Donohue, N.; Klestil, T.; Weinberg, A.-M. Resorbable Implants in Pediatric Fracture Treatment. Innov.

Surg. Sci. 2018, 3, 119–125. [CrossRef] [PubMed]
2. Chandra, G.; Pandey, A. Design Approaches and Challenges for Biodegradable Bone Implants: A Review. Expert Rev. Med.

Devices 2021, 18, 629–647. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ma15155240/s1
https://www.mdpi.com/article/10.3390/ma15155240/s1
http://doi.org/10.1515/iss-2018-0006
http://www.ncbi.nlm.nih.gov/pubmed/31579775
http://doi.org/10.1080/17434440.2021.1935875
http://www.ncbi.nlm.nih.gov/pubmed/34041994


Materials 2022, 15, 5240 24 of 27

3. Siti Nur Hazwani, M.R.; Lim, L.X.; Lockman, Z.; Zuhailawati, H. Fabrication of Titanium-Based Alloys with Bioactive Surface
Oxide Layer as Biomedical Implants: Opportunity and Challenges. Trans. Nonferrous Met. Soc. China Engl. Ed. 2022, 32, 1–44.
[CrossRef]

4. Liu, Y.; Rath, B.; Tingart, M.; Eschweiler, J. Role of Implants Surface Modification in Osseointegration: A Systematic Review.
J. Biomed. Mater. Res. Part A 2020, 108, 470–484. [CrossRef]

5. Rizzo, P. A Review on the Latest Advancements in the Non-Invasive Evaluation/Monitoring of Dental and Trans-Femoral
Implants. Biomed. Eng. Lett. 2020, 10, 83–102. [CrossRef]

6. Silva, R.C.S.; Agrelli, A.; Andrade, A.N.; Mendes-Marques, C.L.; Arruda, I.R.S.; Santos, L.R.L.; Vasconcelos, N.F.; Machado, G.
Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections.
Materials 2022, 15, 3150. [CrossRef]

7. Yadav, R.; Meena, A.; Patnaik, A. Biomaterials for Dental Composite Applications: A Comprehensive Review of Physical,
Chemical, Mechanical, Thermal, Tribological, and Biological Properties. Polym. Adv. Technol. 2022, 33, 1762–1781. [CrossRef]

8. Wang, L.; Ding, X.; Feng, W.; Gao, Y.; Zhao, S.; Fan, Y. Biomechanical Study on Implantable and Interventional Medical Devices.
Acta Mech. Sin. Xuebao 2021, 37, 875–894. [CrossRef]

9. Tipan, N.; Pandey, A.; Mishra, P. Selection and Preparation Strategies of Mg-Alloys and Other Biodegradable Materials for
Orthopaedic Applications: A Review. Mater. Today Commun. 2022, 31, 103658. [CrossRef]

10. Yoshinari, M. Future Prospects of Zirconia for Oral Implants—A Review. Dent. Mater. J. 2020, 39, 37–45. [CrossRef]
11. Albrektsson, T.; Johansson, C. Osteoinduction, Osteoconduction and Osseointegration. Eur. Spine J. 2001, 10, S96–S101. [CrossRef]
12. Melo-Fonseca, F.; Gasik, M.; Madeira, S.; Silva, F.S.; Miranda, G. Surface Characterization of Titanium-Based Substrates for

Orthopaedic Applications. Mater. Charact. 2021, 177, 111161. [CrossRef]
13. Romanò, C.L.; Scarponi, S.; Gallazzi, E.; Romanò, D.; Drago, L. Antibacterial Coating of Implants in Orthopaedics and Trauma:

A Classification Proposal in an Evolving Panorama. J. Orthop. Surg. Res. 2015, 10, 1–11. [CrossRef]
14. Sultana, A.; Zare, M.; Luo, H.; Ramakrishna, S. Surface Engineering Strategies to Enhance the in Situ Performance of Medical

Devices Including Atomic Scale Engineering. Int. J. Mol. Sci. 2021, 22, 11788. [CrossRef]
15. Stepanovska, J.; Matejka, R.; Rosina, J.; Bacakova, L.; Kolarova, H. Treatments for Enhancing the Biocompatibility of Titanium

Implants. Biomed. Pap. 2020, 164, 23–33. [CrossRef]
16. Dehghanghadikolaei, A.; Fotovvati, B. Coating Techniques for Functional Enhancement of Metal Implants for Bone Replacement:

A Review. Materials 2019, 12, 1795. [CrossRef]
17. Kumar, M.; Kumar, R.; Kumar, S. Coatings on Orthopedic Implants to Overcome Present Problems and Challenges: A Focused

Review. Mater. Today Proc. 2021, 45, 5269–5276. [CrossRef]
18. Liu, Z.; Liu, X.; Ramakrishna, S. Surface Engineering of Biomaterials in Orthopedic and Dental Implants: Strategies to Improve

Osteointegration, Bacteriostatic and Bactericidal Activities. Biotechnol. J. 2021, 16, 2000116. [CrossRef]
19. Blendinger, F.; Seitz, D.; Ottenschläger, A.; Fleischer, M.; Bucher, V. Atomic Layer Deposition of Bioactive TiO2Thin Films on

Polyetheretherketone for Orthopedic Implants. ACS Appl. Mater. Interfaces 2021, 13, 3536–3546. [CrossRef]
20. Chen, C.S.; Chang, J.H.; Srimaneepong, V.; Wen, J.Y.; Tung, O.H.; Yang, C.H.; Lin, H.C.; Lee, T.H.; Han, Y.; Huang, H.H. Improving

the in Vitro Cell Differentiation and in Vivo Osseointegration of Titanium Dental Implant through Oxygen Plasma Immersion Ion
Implantation Treatment. Surf. Coatings Technol. 2020, 399, 126125. [CrossRef]

21. Chernozem, R.V.; Surmeneva, M.A.; Ignatov, V.P.; Peltek, O.O.; Goncharenko, A.A.; Muslimov, A.R.; Timin, A.S.; Tyurin, A.I.;
Ivanov, Y.F.; Grandini, C.R.; et al. Comprehensive Characterization of Titania Nanotubes Fabricated on Ti-Nb Alloys: Surface
Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assay. ACS Biomater. Sci. Eng. 2020, 6, 1487–1499.
[CrossRef]

22. Gomez Sanchez, A.; Katunar, M.R.; Pastore, J.I.; Tano de la Hoz, M.F.; Ceré, S. Evaluation of Annealed Titanium Oxide Nanotubes
on Titanium: From Surface Characterization to in Vivo Assays. J. Biomed. Mater. Res. Part A 2021, 109, 1088–1100. [CrossRef]
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