
entropy

Article

A Hybridization of Dragonfly Algorithm Optimization and
Angle Modulation Mechanism for 0-1 Knapsack Problems

Lin Wang , Ronghua Shi and Jian Dong *

����������
�������

Citation: Wang, L.; Shi, R.; Dong, J. A

Hybridization of Dragonfly

Algorithm Optimization and Angle

Modulation Mechanism for 0-1

Knapsack Problems. Entropy 2021, 23,

598. https://doi.org/10.3390/

e23050598

Academic Editor: Giulia De Masi

Received: 27 February 2021

Accepted: 10 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering Central South University, Changsha 410083, China;
csuwanglin@csu.edu.cn (L.W.); shirh@csu.edu.cn (R.S.)
* Correspondence: dongjian@csu.edu.cn

Abstract: The dragonfly algorithm (DA) is a new intelligent algorithm based on the theory of
dragonfly foraging and evading predators. DA exhibits excellent performance in solving multimodal
continuous functions and engineering problems. To make this algorithm work in the binary space,
this paper introduces an angle modulation mechanism on DA (called AMDA) to generate bit strings,
that is, to give alternative solutions to binary problems, and uses DA to optimize the coefficients of
the trigonometric function. Further, to improve the algorithm stability and convergence speed, an
improved AMDA, called IAMDA, is proposed by adding one more coefficient to adjust the vertical
displacement of the cosine part of the original generating function. To test the performance of
IAMDA and AMDA, 12 zero-one knapsack problems are considered along with 13 classic benchmark
functions. Experimental results prove that IAMDA has a superior convergence speed and solution
quality as compared to other algorithms.

Keywords: angle modulation mechanism; trigonometric generating function; dragonfly algorithm;
binary optimization; 0-1 knapsack problem

1. Introduction

Being some of the most important and widely used algorithms, gradient-based tradi-
tional optimization algorithms are relatively mature and have advantages like high compu-
tational efficiency and strong reliability. However, traditional optimization methods have
critical limitations when applied to complex and difficult optimization problems because
(i) they often require that the objective function is convex, continuous and differentiable
and the feasible region is a convex set, and (ii) their ability to process non-deterministic
information is poor.

Over the years, plenty of algorithms based on artificial intelligence, sociality of biolog-
ical swarms, or the laws of natural phenomena have emerged and been proved to be good
alternative tools for solving such complex problems. This type of optimization algorithms
can be roughly divided into the following five categories: (i) Evolutionary algorithms
(EAs); (ii) swarm intelligence; (iii) simulated annealing [1]; (iv) tabu search [2,3]; and (v)
neural networks. EAs include genetic algorithms (GA) [4,5], differential evolution [6], and
immune system [7]. Among these three algorithms, GA is based on the concept of survival
of the fittest mentioned in Darwin’s theory of evolution. GA and DE can be considered as
the most standard form of EAs. The swarm intelligence algorithms include classic particle
swarm optimization (PSO) [8], bat algorithm [9], artificial bee colony [10], ant colony algo-
rithm [11], firefly algorithm [12], artificial fish-swarm algorithm [13], fruit fly optimization
algorithm [14], and so on. These algorithms mentioned above are based on social activities
of birds, bats, honey bees, ants, fireflies, fish, and fruit flies, respectively. They are far less
perfect in theory than the traditional optimization algorithms at present, and often fail to
ensure the optimality of the solution. However, considering the perspective of practical
applications, this kind of budding algorithms generally do not require the continuity and

Entropy 2021, 23, 598. https://doi.org/10.3390/e23050598 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8832-1148
https://orcid.org/0000-0002-8220-8424
https://www.mdpi.com/article/10.3390/e23050598?type=check_update&version=1
https://doi.org/10.3390/e23050598
https://doi.org/10.3390/e23050598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050598
https://www.mdpi.com/journal/entropy

Entropy 2021, 23, 598 2 of 24

convexity of the objective function and constraints, and they also have excellent ability to
adapt to data uncertainty.

The dragonfly algorithm (DA) is a new swarm intelligence optimization algorithm that
was proposed by Mirjalili [15] in 2015. It is inspired by two unique clusters of dragonflies
found in nature: Foraging groups (also known as static groups) and migratory groups
(also known as dynamic groups). These two group behaviors of dragonflies are very
similar to the two terms of group intelligence (global search and local development). In
the static group, dragonflies will be divided into several sub-dragonfly groups to fly in
different areas, which is the main target of the global search. In the dynamic group,
dragonflies will gather into a large group and fly in one direction, which is advantageous
for the local development. Since the principle of DA is simple, easy to implement, and
possesses good optimization capabilities, it has shown promising results when applied
to multi-objective optimization [15], image segmentation problem [16], and parameter
optimization of support vector machines [17]. Moreover, DA has also been successfully
applied to the accurate prediction model of power load [18], power system voltage stability
evaluation [19], power flow management of smart grid system [20], economic dispatch [21],
synthesis of concentric circular antenna arrays [22], and traveling salesman problem [23].
Further, based on a large number of numerical tests, Mirjalili proved that DA performs
better than GA [4,5] and PSO [8].

It must be noted that DA was used to solve the continuous optimization problem,
while many optimization problems have existed in binary search spaces. This suggests that
the continuous version of the optimization algorithm can no longer meet the requirements
of the binary optimization problems. A binary version of DA(BDA) was proposed by
Mirjalili et al. [15] and successfully applied to the feature selection problems [24]. Like
binary PSO (BPSO) [25] and binary BA [26], BDA used a transfer function to map the
continuous search space into binary space. In [27], Hammouri et al. proposed three
improved versions of BDA, named Linear-BDA, Quadratic-BDA, and Sinusoidal-BDA,
for feature selection. By using different strategies to update main coefficients of the
dragonfly algorithm, the three algorithms outperform the original BDA. However, such
binary algorithms were still developed by using transfer functions, which may be limited
in some high-dimensional optimization problems owing to slow convergence speed and
poor algorithm stability.

To avoid such problems, intelligent optimization algorithms based on the angle modu-
lation technique, originated in signal processing [28], were proposed recently such as angle
modulated PSO [29], angle modulated DE [30], and angle modulated bat algorithm [31]. In-
spired by these algorithms, an angle modulated dragonfly algorithm (AMDA) is proposed
in this paper to make DA work more efficiently in binary-valued optimization spaces.
By using a trigonometric function with four coefficients to generate n-dimensional bit
strings, AMDA is observed from the experiments on benchmark functions and 0-1 knap-
sack problems to have better performance as compared to other optimization algorithms
such as BPSO and BDA. Further, by adding a control coefficient to adjust the vertical
displacement of the cosine part of the generating function, an improved angle modulated
dragonfly algorithm (IAMDA) is proposed to enhance convergence performance and
algorithm stability.

The rest of this paper is arranged as follows. The standard DA and the binary DA
(BDA) are elaborated in Section 2. In Section 3, the proposed AMDA and IAMDA are
explained. Further, Section 4 presents the analysis of the experimental results on 13
benchmark test functions and 12 0-1 knapsack problems. Finally, Section 5 discusses and
concludes the performance of IAMDA with respect to BPSO, BDA, and AMDA.

2. Background

The dragonfly algorithm (DA) is a budding algorithm inspired by the social behavior
of dragonflies, and this section gives a brief introduction about DA and its binary version.

Entropy 2021, 23, 598 3 of 24

2.1. The Dragonfly Algorithm

The dragonfly algorithm is an advanced swarm-based algorithm inspired by the static
and dynamic clustering behaviors of dragonflies in nature. By simulating the behaviors of
dragonflies looking for prey, mathematical modeling of the algorithm is done. During the
modeling, the life habits of dragonflies, such as finding food, avoiding natural enemies,
and choosing the flight routes are considered. The dragonfly population is divided into
two groups: migratory swarm (also known as a dynamic swarm) and feeding swarm (also
known as a static swarm). A large number of dragonfly clusters migrate in a common
orientation for long distances intending to seek a better living environment in the dynamic
swarm whereas, in a static swarm, each group is composed of a small group of dragonflies
that fly back and forth in a small area to find other flying prey. The migration and feeding
behaviors of dragonflies can be regarded as two main phases in meta-heuristics algorithm
optimization: exploitation and exploration. Dragonflies gather into a large group and fly
in one direction in a dynamic swarm, which is beneficial in the exploitation phase. In a
static swarm, however, to find other flying prey, small groups of dragonflies fly back and
forth in a small range, which is beneficial to the exploration of search agents. The dynamic
and static groups of dragonflies proposed by Mirjalili [15] are demonstrated in Figure 1.

Entropy 2021, 23, 598 3 of 26

2.1. The Dragonfly Algorithm
The dragonfly algorithm is an advanced swarm-based algorithm inspired by the

static and dynamic clustering behaviors of dragonflies in nature. By simulating the behav-
iors of dragonflies looking for prey, mathematical modeling of the algorithm is done. Dur-
ing the modeling, the life habits of dragonflies, such as finding food, avoiding natural
enemies, and choosing the flight routes are considered. The dragonfly population is di-
vided into two groups: migratory swarm (also known as a dynamic swarm) and feeding
swarm (also known as a static swarm). A large number of dragonfly clusters migrate in a
common orientation for long distances intending to seek a better living environment in
the dynamic swarm whereas, in a static swarm, each group is composed of a small group
of dragonflies that fly back and forth in a small area to find other flying prey. The migra-
tion and feeding behaviors of dragonflies can be regarded as two main phases in meta-
heuristics algorithm optimization: exploitation and exploration. Dragonflies gather into a
large group and fly in one direction in a dynamic swarm, which is beneficial in the exploi-
tation phase. In a static swarm, however, to find other flying prey, small groups of drag-
onflies fly back and forth in a small range, which is beneficial to the exploration of search
agents. The dynamic and static groups of dragonflies proposed by Mirjalili [15] are
demonstrated in Figure 1.

(a) (b)

Figure 1. Dynamic swarms (a) versus static swarms (b).

Separation, alignment, and cohesion are three main principles in the insect swarms
introduced by Reynolds [32] in 1987. The degree of separation refers to the static collision
avoidance of the individuals from other individuals in the neighborhood, the degree of
alignment indicates the velocity matching of individuals to that of other individuals in the
neighborhood, and the degree of cohesion reflects the tendency of individuals toward the
center of the mass of the neighborhood.

Every swarm in DA follows the principle of survival, and each dragonfly exhibits
two separate behaviors: looking for food and avoiding the enemies in the surrounding.
The positioning movement of dragonflies consists of the following five behaviors:

(1) Separation. The separation between two adjacent dragonflies is calculated as fol-
lows:

1
= - ()N

i i jj=
−S X X (1)

Figure 1. Dynamic swarms (a) versus static swarms (b).

Separation, alignment, and cohesion are three main principles in the insect swarms
introduced by Reynolds [32] in 1987. The degree of separation refers to the static collision
avoidance of the individuals from other individuals in the neighborhood, the degree of
alignment indicates the velocity matching of individuals to that of other individuals in the
neighborhood, and the degree of cohesion reflects the tendency of individuals toward the
center of the mass of the neighborhood.

Every swarm in DA follows the principle of survival, and each dragonfly exhibits two
separate behaviors: looking for food and avoiding the enemies in the surrounding. The
positioning movement of dragonflies consists of the following five behaviors:

(1) Separation. The separation between two adjacent dragonflies is calculated as follows:

Si= −
N

∑
j=1

(Xi −Xj) (1)

where Si is the separation of the i-th individual, Xi is the location of the i-th individual,
Xj indicates the location of the j-th neighboring individual, and N is the number of
neighborhoods.

Entropy 2021, 23, 598 4 of 24

(2) Alignment. The alignment of dragonflies is calculated as follows:

Ai =
∑N

j=1 Vj

N
(2)

where Ai indicates the alignment of i-th individual, Vj indicates the velocity of the j-th
neighboring individual, and N is the number of neighborhoods.

(3) Cohesion. The cohesion is derived as follows:

Ci =
∑N

j=1 Xj

N
−Xi (3)

where Ci indicates the cohesion of the i-th individual, Xi is the position of the i-th individual,
N represents the number of neighboring individuals, and Xj shows the location of the j-th
neighboring individual.

(4) Attraction. The attraction toward the source of food is calculated as follows:

Fi = X+ −Xi (4)

where Fi shows the food source of the i-th individual, Xi indicates the location of the i-th
individual, and X+ represents the location of the food source.

(5) Distraction. The distraction from an enemy is derived as follows:

Ei = X− + Xi (5)

where Ei represents the position of an enemy of the i-th individual, Xi is the location of the
i-th individual, and X− indicates the location of the natural enemy.

The above five swarming behaviors in the positioning movement of dragonflies are
pictorially demonstrated in Figure 2.

Entropy 2021, 23, 598 4 of 26

where iS is the separation of the i-th individual, iX is the location of the i-th individual,

jX indicates the location of the j-th neighboring individual, and N is the number of neigh-
borhoods.

(2) Alignment. The alignment of dragonflies is calculated as follows:

1

N
jj

i N
==

 V
A (2)

where iA indicates the alignment of i-th individual, jV indicates the velocity of the j-th
neighboring individual, and N is the number of neighborhoods.

(3) Cohesion. The cohesion is derived as follows:

1

N
jj

i iN
== −

 X
C X (3)

where iC indicates the cohesion of the i-th individual, iX is the position of the i-th indi-
vidual, N represents the number of neighboring individuals, and jX shows the location
of the j-th neighboring individual.

(4) Attraction. The attraction toward the source of food is calculated as follows:

i i
+= −F X X (4)

where iF shows the food source of the i-th individual, iX indicates the location of the i-
th individual, and +X represents the location of the food source.

(5) Distraction. The distraction from an enemy is derived as follows:

i i
−= +E X X (5)

where iE represents the position of an enemy of the i-th individual, iX is the location of
the i-th individual, and −X indicates the location of the natural enemy.

The above five swarming behaviors in the positioning movement of dragonflies are
pictorially demonstrated in Figure 2.

Seperation Alignment Cohesion

Attraction to food Distraction from enemy

Figure 2. The five main social behaviors of dragonfly swarms. Figure 2. The five main social behaviors of dragonfly swarms.

To update the location of dragonflies in a search space and to simulate their move-
ments, two vectors are considered: step vector (∆X) and position vector (X). The step
vector suggests the direction of the movement of dragonflies and can be formally defined
as follows:

∆Xt+1
i = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt

i (6)

Entropy 2021, 23, 598 5 of 24

where s is the separation weight, Si is the separation of the i-th individual, a shows the
alignment weight, Ai indicates the alignment of i-th individual, c is the cohesion weight,
Ci indicates the cohesion of the i-th individual, f represents the food factor, Fi shows the
food source of the i-th individual, e indicates the enemy factor, Ei represents the position
of an enemy of the i-th individual, w represents the inertia weight, and t represents the
iteration count.

According to the calculation of the above step vector, the position vector can be
updated by using Equation (7):

Xt+1
i = Xt

i + ∆Xt+1
i (7)

If there are no neighboring solutions, the positon vectors are calculated by using the
following equation:

Xt+1
i = Xt

i + Levy(dim)×Xt
i (8)

where dim is the dimension of the position vector. Levy function can be described as follows:

Levy(dim) = 0.01× r1 × σ

|r2|
1
β

(9)

where r1 and r2 are random numbers within [0,1], β is a constant, and:

σ =

{
Γ(1 + β)× sin(πβ

2)

Γ(1+β
2)× β× 2(β−1)/2

} 1
β

(10)

where Γ(z) = (z− 1)!
The basic steps of DA can be summarized as the pseudo-codes highlighted in Figure 3.

Entropy 2021, 23, 598 6 of 26

Pseudo-code of DA
Initialize the dragonflies’ population Xi (i = 1, 2, …, popsize)
Initialize the step vectors ΔXi (i = 1, 2, …, popsize)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Equations (1)–(5)
Update neighboring radius
if a dragonfly has at least one neighboring dragonfly

Update step vector using Equation (6)
Update position vector using Equation (7)

else
Update position vector using Equation (8)

end if
Check and correct the new positions based on the boundaries of variables

end while

Figure 3. Pseudo-codes of DA.

2.2. Binary Dragonfly Algorithm
In the traditional DA, a search agent can easily change its position by introducing a

step vector. However, in the discrete spaces, since a position vector can only be updated
to 0 or 1, it is impossible to update a position vector according to the original method.
Mirjalili et al. [15] first proposed the binary dragonfly algorithm (BDA) to solve the binary
optimization problems. BDA adopted the following transfer function to derive the prob-
ability of changing positions of all the search agents:

2
()

1
xT x

x
ΔΔ =

Δ +
 (11)

Further, the position vectors can be updated by the following formula:

1

1

1 , ()
, ()

t

t

t
t i
i t

i

r T x
r x

+

+

¬
+  ≤ Δ=  > Δ

X
X

X
 (12)

where r is a random number between [0,1].

3. Improved Angle Modulated Dragonfly Algorithm (IAMDA)
3.1. AMDA

In this paper, the angle modulation technique is used for the homomorphic mapping
of DA to convert the complex binary optimization problem into a simpler continuous
problem. Different from the traditional BDA, the angle modulated dragonfly algorithm
(AMDA) uses a trigonometric function to generate bit strings. The trigonometric function
can be expressed as:

(2 () cos(2 ()))g(x) sin x a b x a c dπ π= − × × − × + (13)

where x = 0, 1, …, nb − 1, denotes the regular intervals at which the generating function is
sampled, where nb is the length of the required binary solution; the four coefficients (a, b,
c, and d) are within [–1,1] at initialization. Then, the standard DA is used for evolving a

Figure 3. Pseudo-codes of DA.

2.2. Binary Dragonfly Algorithm

In the traditional DA, a search agent can easily change its position by introducing a
step vector. However, in the discrete spaces, since a position vector can only be updated
to 0 or 1, it is impossible to update a position vector according to the original method.

Entropy 2021, 23, 598 6 of 24

Mirjalili et al. [15] first proposed the binary dragonfly algorithm (BDA) to solve the bi-
nary optimization problems. BDA adopted the following transfer function to derive the
probability of changing positions of all the search agents:

T(∆x) =
∣∣∣∣ ∆x√

∆x2 + 1

∣∣∣∣ (11)

Further, the position vectors can be updated by the following formula:

Xt+1
i =

{ ¬Xt
i , r ≤ T(∆xt+1)

Xt
i , r > (∆xt+1)

(12)

where r is a random number between [0,1].

3. Improved Angle Modulated Dragonfly Algorithm (IAMDA)
3.1. AMDA

In this paper, the angle modulation technique is used for the homomorphic mapping
of DA to convert the complex binary optimization problem into a simpler continuous
problem. Different from the traditional BDA, the angle modulated dragonfly algorithm
(AMDA) uses a trigonometric function to generate bit strings. The trigonometric function
can be expressed as:

g(x) = sin(2π(x− a)× b× cos(2π(x− a)× c)) + d (13)

where x = 0, 1, . . . , nb − 1, denotes the regular intervals at which the generating function
is sampled, where nb is the length of the required binary solution; the four coefficients (a,
b, c, and d) are within [–1,1] at initialization. Then, the standard DA is used for evolving
a quadruple composed of (a, b, c, d), and this leads each dragonfly to generate a position
vector of the form Xi = (a, b, c, d). To evaluate a dragonfly, the coefficients from the
dragonfly’s current position are substituted into the generating function in Equation (13).
Each sampled value at x is then mapped to a binary digit as follows:

g(x) =
{

0, g(x) ≤ 0
1, g(x) > 0

(14)

The main steps of AMDA are simplified as the pseudo-code givens in Figure 4.

Entropy 2021, 23, 598 7 of 26

quadruple composed of (a, b, c, d), and this leads each dragonfly to generate a position
vector of the form Xi = (a, b, c, d). To evaluate a dragonfly, the coefficients from the drag-
onfly’s current position are substituted into the generating function in Equation (13). Each
sampled value at x is then mapped to a binary digit as follows:

0, () 0
()

1, () 0
g x

g x
g x

≤=  >
 (14)

The main steps of AMDA are simplified as the pseudo-code givens in Figure 4.

Pseudo-Code of AMDA
Initialize the continuous algorithm DA in [−1,1]4
Initialize the dragonflies’ population Xi (i = 1, 2, …, popsize)
Initialize the step vectors ΔXi (i = 1, 2, …, popsize)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Equations (1)–(5)
Calculate the output value g(x) using Equation (13) to generate bit strings
Update the position vectors using Equation (14)

end while
Return the best bit string as the solution;

Figure 4. Pseudo-codes of AMDA.

3.2. IAMDA
The prime advantage of AMDA is that it only needs four coefficients instead of the

original n-dimensional bit strings. Thus, the computational cost will be significantly re-
duced. AMDA’s generating function is a composite of a sine wave and a cosine wave. The
vertical displacement of the sine wave can be controlled by the coefficient d in Equation
(13) but the vertical displacement of the cosine wave cannot be corrected, which results in
a large variance of the entire generating function value. In addition, if the initialization
range of DA parameters is small, DA will encounter some difficulties while searching for
a binary solution.

To alleviate the problem of the inability and control the vertical displacement of the
cosine wave in the original generating function, this paper proposed an improved AMDA,
called IAMDA. IAMDA uses one more coefficient k to control the degree of disturbance
of the generating function in the mapping space:

(2 () cos(2 ()))g(x) sin x a b x a c k dπ π= − × × − × + + (15)

where the five coefficients (a, b, c, d, and k) are within [−1,1] at initialization. The standard
DA is used for evolving a quintuple composed of (a, b, c, d, k), and this led each dragonfly
to generate a position vector of the form Xi = (a, b, c, d, k). To evaluate a dragonfly, the
coefficients from the dragonfly’s current position are substituted into Equation (15) and
each sampled value is then mapped to a binary digit according to Equation (14).

In the original generating function, if the value of d is not large enough, the generat-
ing function will always be above or below 0, which will make the bit string only contain
bit 0 or 1. Hence, a coefficient k is added to generate a bit string containing both 0 and 1
bits. The coefficient k is introduced to compensate for the insufficient disturbance in trig-
onometric function as well as to adjust vertical displacement of the cosine function. The
comparison between the original and modified generating functions is presented in Fig-
ure 5. It can be observed from Figure 5 that the original generating function with the ver-
tical displacement d = 0.2 is almost above 0. In this manner, it is easier to generate solutions

Figure 4. Pseudo-codes of AMDA.

3.2. IAMDA

The prime advantage of AMDA is that it only needs four coefficients instead of
the original n-dimensional bit strings. Thus, the computational cost will be significantly

Entropy 2021, 23, 598 7 of 24

reduced. AMDA’s generating function is a composite of a sine wave and a cosine wave. The
vertical displacement of the sine wave can be controlled by the coefficient d in Equation (13)
but the vertical displacement of the cosine wave cannot be corrected, which results in
a large variance of the entire generating function value. In addition, if the initialization
range of DA parameters is small, DA will encounter some difficulties while searching for a
binary solution.

To alleviate the problem of the inability and control the vertical displacement of the
cosine wave in the original generating function, this paper proposed an improved AMDA,
called IAMDA. IAMDA uses one more coefficient k to control the degree of disturbance of
the generating function in the mapping space:

g(x) = sin(2π(x− a)× b× cos(2π(x− a)× c) + k) + d (15)

where the five coefficients (a, b, c, d, and k) are within [−1,1] at initialization. The standard
DA is used for evolving a quintuple composed of (a, b, c, d, k), and this led each dragonfly
to generate a position vector of the form Xi = (a, b, c, d, k). To evaluate a dragonfly, the
coefficients from the dragonfly’s current position are substituted into Equation (15) and
each sampled value is then mapped to a binary digit according to Equation (14).

In the original generating function, if the value of d is not large enough, the generating
function will always be above or below 0, which will make the bit string only contain bit 0
or 1. Hence, a coefficient k is added to generate a bit string containing both 0 and 1 bits. The
coefficient k is introduced to compensate for the insufficient disturbance in trigonometric
function as well as to adjust vertical displacement of the cosine function. The comparison
between the original and modified generating functions is presented in Figure 5. It can be
observed from Figure 5 that the original generating function with the vertical displacement
d = 0.2 is almost above 0. In this manner, it is easier to generate solutions that are mostly
0s or 1s. In the modified generating function, the displacement coefficient k increases the
diversity of the solutions so that IAMDA may achieve better solutions even if the vertical
displacement d is not large enough.

Entropy 2021, 23, x FOR PEER REVIEW 8 of 25

Figure 5. The original and modified generating functions. (a = 0, b = 0.5, c = 0.8, d = 0.2).

In order to demonstrate the mapping procedure, Figure 6 shows the procedure of

using the modified trigonometric function to map a continuous five-dimensional search

space into an n-dimensional binary search space. The main procedures of IAMDA are de-

scribed as the following pseudo-codes given in Figure 7.

i-th dragonfly

Step vector

ΔXa ΔXb ΔXc ΔXd ΔXk

Iteration=t

CONTINUOUS

SEARCH

SPACE

 Xa Xb Xc Xd Xk

 B1 B2 B3 ... Bnb

Position vector Bit-vector solution

 Equation (6) Equation (7)

 ΔXa' ΔXb' ΔXc' ΔXd' ΔXk'

 Xa' Xb' Xc' Xd' Xk' Equation (14)

Update (0 or 1)

Iteration=t+1

BINARY

SEARCH

SPACE

i-th dragonfly

Step vector Position vector Bit-vector solution

ΔXa ΔXb ΔXc ΔXd ΔXk

 Xa Xb Xc Xd Xk

 B1 B2 B3 ... Bnb

Figure 6. The process of mapping a continuous five-dimensional search space to an n-dimensional binary search space.

Pseudo-code of IAMDA

Initialize the continuous algorithm DA in [−1,1]5

Initialize the dragonflies’ population Xi (i = 1, 2, …, popsize)

Initialize the step vectors ΔXi (i = 1, 2, …, popsize)

while the end condition is not satisfied

Calculate the objective values of all dragonflies

Update the food source and enemy

Figure 5. The original and modified generating functions. (a = 0, b = 0.5, c = 0.8, d = 0.2).

In order to demonstrate the mapping procedure, Figure 6 shows the procedure of
using the modified trigonometric function to map a continuous five-dimensional search
space into an n-dimensional binary search space. The main procedures of IAMDA are
described as the following pseudo-codes given in Figure 7.

Entropy 2021, 23, 598 8 of 24

Entropy 2021, 23, x FOR PEER REVIEW 8 of 25

Figure 5. The original and modified generating functions. (a = 0, b = 0.5, c = 0.8, d = 0.2).

In order to demonstrate the mapping procedure, Figure 6 shows the procedure of

using the modified trigonometric function to map a continuous five-dimensional search

space into an n-dimensional binary search space. The main procedures of IAMDA are de-

scribed as the following pseudo-codes given in Figure 7.

i-th dragonfly

Step vector

ΔXa ΔXb ΔXc ΔXd ΔXk

Iteration=t

CONTINUOUS

SEARCH

SPACE

 Xa Xb Xc Xd Xk

 B1 B2 B3 ... Bnb

Position vector Bit-vector solution

 Equation (6) Equation (7)

 ΔXa' ΔXb' ΔXc' ΔXd' ΔXk'

 Xa' Xb' Xc' Xd' Xk' Equation (14)

Update (0 or 1)

Iteration=t+1

BINARY

SEARCH

SPACE

i-th dragonfly

Step vector Position vector Bit-vector solution

ΔXa ΔXb ΔXc ΔXd ΔXk

 Xa Xb Xc Xd Xk

 B1 B2 B3 ... Bnb

Figure 6. The process of mapping a continuous five-dimensional search space to an n-dimensional binary search space.

Pseudo-code of IAMDA

Initialize the continuous algorithm DA in [−1,1]5

Initialize the dragonflies’ population Xi (i = 1, 2, …, popsize)

Initialize the step vectors ΔXi (i = 1, 2, …, popsize)

while the end condition is not satisfied

Calculate the objective values of all dragonflies

Update the food source and enemy

Figure 6. The process of mapping a continuous five-dimensional search space to an n-dimensional binary search space.
Entropy 2021, 23, 598 9 of 26

Pseudo-code of IAMDA
Initialize the continuous algorithm DA in [−1,1]5
Initialize the dragonflies’ population Xi (i = 1, 2, …, popsize)
Initialize the step vectors ΔXi (i = 1, 2, …, popsize)
while the end condition is not satisfied

Calculate the objective values of all dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E using Equations (1)–(5)
Calculate the output value g(x) using Equation (13) to generate bit strings
Update the position vectors using Equation (14)

end while
Return the best bit string as the solution;

Figure 7. Pseudo-codes of IAMDA.

4. Experimental Results and Discussion
4.1. Test Functions and Parameter Settings

To verify the performance and stability of IAMDA, two sets of benchmark test func-
tions and 0-1 knapsack problems are selected. To efficiently compare the performance of
each algorithm, the original AMDA, the basic BDA [15], and the BPSO [25] were selected
to deal with the test problems. The average solution, median, and standard deviation are
taken into consideration to evaluate each algorithm.

In this paper, the population size of IAMDA, AMDA, BDA, and BPSO is set to be 30
[15,33,34] and the number of iterations is set to be 500. Other parameter settings are listed
in Table 1. To avoid the resulting bias caused by chance, the algorithms run independently
on each function 30 times. Moreover, in this paper, each continuous variable is repre-
sented by 15 bits in binary. It should be noted that in order to indicate the sign of each
functions’ variable, one bit should be reserved. Hence, the dimension of each dragonfly,
that is, the dimension of each generated bit string can be calculated as follows:

15dragonfly functionDim Dim= × (16)

where dragonflyDim and functionDim represent the dimension of each dragonfly in IAMDA and
the dimension of a specific benchmark function, respectively.

Table 1. Initial parameters of IAMDA, AMDA, BDA, and BPSO.

Algorithms Parameters Values
IAMDA Number of dragonflies 30

 （a, b, c, d, k） [−1,1]
 Max iteration 500
 Stopping criterion Max iteration

AMDA Number of dragonflies 30
 (a, b, c, d) [−1,1]
 Max iteration 500
 Stopping criterion Max iteration

BDA Number of dragonflies 30
 Max iteration 500
 Stopping criterion Max iteration

BPSO Number of particles 30
 C1，C2 2
 w Decreased linearly from 0.9 to 0.4

Figure 7. Pseudo-codes of IAMDA.

4. Experimental Results and Discussion
4.1. Test Functions and Parameter Settings

To verify the performance and stability of IAMDA, two sets of benchmark test func-
tions and 0-1 knapsack problems are selected. To efficiently compare the performance of
each algorithm, the original AMDA, the basic BDA [15], and the BPSO [25] were selected
to deal with the test problems. The average solution, median, and standard deviation are
taken into consideration to evaluate each algorithm.

In this paper, the population size of IAMDA, AMDA, BDA, and BPSO is set to be
30 [15,33,34] and the number of iterations is set to be 500. Other parameter settings are listed
in Table 1. To avoid the resulting bias caused by chance, the algorithms run independently
on each function 30 times. Moreover, in this paper, each continuous variable is represented
by 15 bits in binary. It should be noted that in order to indicate the sign of each functions’

Entropy 2021, 23, 598 9 of 24

variable, one bit should be reserved. Hence, the dimension of each dragonfly, that is, the
dimension of each generated bit string can be calculated as follows:

Dimdragon f ly = Dim f unction × 15 (16)

where Dimdragon f ly and Dim f unction represent the dimension of each dragonfly in IAMDA
and the dimension of a specific benchmark function, respectively.

Table 1. Initial parameters of IAMDA, AMDA, BDA, and BPSO.

Algorithms Parameters Values

IAMDA Number of dragonflies 30
(a, b, c, d, k) [−1,1]

Max iteration 500
Stopping criterion Max iteration

AMDA Number of dragonflies 30
(a, b, c, d) [−1,1]

Max iteration 500
Stopping criterion Max iteration

BDA Number of dragonflies 30
Max iteration 500

Stopping criterion Max iteration
BPSO Number of particles 30

C1, C2 2
w Decreased linearly from 0.9 to 0.4

Max velocity 0.6
Max iteration 500

Stopping criterion Max iteration

Simulation environment: The processor is an Intel(R) Core (TM) i5-6500 2.40GHz, with
4.0GB RAM, Windows10 operating system, and the simulation software is Matlab2016a.

4.2. IAMDA Performance on Unimodal and Multimodal Benchmark Functions

The test functions are categorized into two groups: unimodal functions (f 1~f 7) and
multimodal functions (f 8~f 13) [15,35,36]. To solve the optimal function, IAMDA is com-
pared with several other algorithms on the 13 standard test functions. Each unimodal
benchmark function has a single optimal value and it is easy to benchmark the conver-
gence speed and optimization capability of an algorithm. On the contrary, multimodal
benchmark functions have multiple optimal values, which makes them more complex as
compared to unimodal functions. There is only one global optimal value among many
optimal values, and an algorithm ought to avoid all local optimal approximations and
tend to find the global optimal value. Hence, the multimodal test function can efficiently
benchmark the exploration of the algorithm and the avoidance of local optima. The specific
conditions about unimodal functions as well as multimodal functions are highlighted in
Tables 2 and 3, respectively. Here, ‘Function’ indicates the test functions, ‘n’ represents the
number of variables in the test function, ‘Range’ demonstrates the search scope of the test
function, and ‘fmin’ indicates the global optimal value of the test function.

Figure 8 represents the convergence curves of the above four algorithms on different
unimodal functions and Figure 9 shows the convergence curves of the above algorithms
on various multimodal functions. Table 4 lists the average, median values, and standard
deviation of IAMDA, AMDA BDA, and BPSO while testing the benchmark functions.

Entropy 2021, 23, 598 10 of 24

Table 2. Unimodal benchmark functions.

Function Expression n Range fmin

Sphere f1(x) = ∑n
i=1 xi 5 [−100,100] 0

Schwefel 2.22 f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 5 [−10,10] 0

Schwefel 1.2 f3(x) = ∑n
i=1 (∑

i
j=1 xj)

2 5 [−100,100] 0

Schwefel 2.21 f4(x) = {|xi|, 1 ≤ i ≤ n} 5 [−100,100] 0

Rosenbrock f5(x) = ∑n−1
i=1 [100(xi+1 − xi

2) + (xi − 1)2] 5 [−30,30] 0

Step f6(x) = ∑n
i=1 ([xi + 0.5])2 5 [−100,100] 0

Quartic f7(x) = ixi
4 + random[0, 1) 5 [−1.28,1.28] 0

Table 3. Multimodal benchmark functions.

Function Expression n Range fmin

Schwefel f8(x) = ∑n
i=1−xi sin(

√
|xi|) 5 [−500,500] −418.9829 × 5

Rastrigrin f9(x) = ∑n
i=1 [xi

2 − 10 cos(2πxi) + 10] 5 [−5.12,5.12] 0

Ackley
f10(x) = −20 exp(−0.2

√
1
n ∑n

i=1 xi
2)

− exp(1
n ∑n

i=1 cos(2πxi)) + 20 + e
5 [−32.32] 0

Griewank
f11(x) = 1

4000 ∑n
i=1 xi

2

−∏n
i=1 cos(xi√

i
) + 1 5 [−600,600] 0

Penalty#

f12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1

+ sin(πyi + 1)] + (yn − 1)2
}

+∑n
i=1 u(xi, 10, 100, 4)

}
yi = 1 + xi+1

4

u(xi, a, k, m) =


k(xi − a)m, xi > a
0,−a < xi < a
k(−xi − a)m, xi < −a

5 [−50,50] 0

Penalized 1.2

f13(x) = 0.1
{

sin2(3πx1) + ∑n
i=1 (xi − 1)2[1

+ sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]
}

+∑n
i=1 u(xi, 5, 100, 4)

5 [−50,50] 0

Entropy 2021, 23, 598 11 of 26

Ackley

2

10 1

1

1() 20exp(0.2)

1exp(cos(2)) 20

n
ii

n
ii

f x x
n

x e
n

π

=

=

= − −

− + +




 5 [−32.32] 0

Griewank

2

11 1

1

1()
4000

cos() 1

n
ii

n i
i

f x x

x
i

=

=

=

− +



∏
 5 [−600,600] 0

Penalty#

21
12 1 1

2

1

() {10sin() (1) [1

sin(1)] (1) }

(,10,100, 4)}

11
4

() ,
(, , ,) 0,

() ,

n
ii

i n
n

ii

ii

m
i i

i i
m

i i

f x y y
n

y y

u x

xy

k x a x a
u x a k m a x a

k x a x a

π π

π

−

=

=

= + −

+ + + −

+

+= +

 − >
= − < <
 − − < −





5 [−50,50] 0

Penalized 1.2

2 2
13 1 1

2 2 2

1

() 0.1{sin (3) (1) [1

sin (3 1)] (1) [1 sin (2)]}

(,5,100, 4)

n
ii

i n n
n

ii

f x x x

x x x

u x

π

π π
=

=

= + −

+ + + − +

+





 5 [−50,50] 0

Figure 8 represents the convergence curves of the above four algorithms on different
unimodal functions and Figure 9 shows the convergence curves of the above algorithms
on various multimodal functions. Table 4 lists the average, median values, and standard
deviation of IAMDA, AMDA BDA, and BPSO while testing the benchmark functions.

(a)

Figure 8. Cont.

Entropy 2021, 23, 598 11 of 24
Entropy 2021, 23, 598 12 of 26

(b)

(c)

(d)

Figure 8. Cont.

Entropy 2021, 23, 598 12 of 24Entropy 2021, 23, 598 13 of 26

(e)

(f)

(g)

Figure 8. Convergence curve of IAMDA, AMDA, BDA, and BPSO on unimodal functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f)
f6. (g) f7.

Figure 8. Convergence curve of IAMDA, AMDA, BDA, and BPSO on unimodal functions. (a) f 1. (b) f 2. (c) f 3. (d) f 4. (e) f 5.
(f) f 6. (g) f 7.

Entropy 2021, 23, 598 13 of 24
Entropy 2021, 23, 598 14 of 26

(a)

(b)

(c)

Figure 9. Cont.

Entropy 2021, 23, 598 14 of 24Entropy 2021, 23, 598 15 of 26

(d)

(e)

(f)

Figure 9. Convergence curve of IAMDA, AMDA, BDA, and BPSO on multimodal functions. (a) f8. (b) f9. (c) f10. (d) f11. (e)
f12. (f) f13.

Table 4. Performance comparison among IAMDA, AMDA, BDA, and BPSO on unimodal benchmark functions and mul-
timodal benchmark functions.

f Metric IAMDA AMDA BDA BPSO
f1 Mean 0.2244 1.2797 1.8412 1.5942
 SD 0.1599 0.9732 1.6625 1.3609
 Med 0.1510 0.6655 1.6669 1.3278
 Rank 1 2 4 3

Figure 9. Convergence curve of IAMDA, AMDA, BDA, and BPSO on multimodal functions. (a) f 8. (b) f 9. (c) f 10. (d) f 11.
(e) f 12. (f) f 13.

Entropy 2021, 23, 598 15 of 24

Table 4. Performance comparison among IAMDA, AMDA, BDA, and BPSO on unimodal benchmark
functions and multimodal benchmark functions.

f Metric IAMDA AMDA BDA BPSO

f 1 Mean 0.2244 1.2797 1.8412 1.5942
SD 0.1599 0.9732 1.6625 1.3609

Med 0.1510 0.6655 1.6669 1.3278
Rank 1 2 4 3

f 2 Mean 0.0676 0.1751 0.1883 0.2137
SD 0.0216 0.0913 0.1004 0.0882

Med 0.0585 0.1423 0.2765 0.2702
Rank 1 2 3 4

f 3 Mean 3.4279 15.1108 19.8865 21.8408
SD 1.9467 14.1566 22.7839 11.6904

Med 2.4599 18.7306 19.1034 23.0999
Rank 1 2 3 4

f 4 Mean 0.3383 0.6840 0.8205 0.8701
SD 0.0988 0.4461 0.3266 0.3559

Med 0.3446 0.6906 0.9330 0.9568
Rank 1 2 3 4

f 5 Mean 22.6485 36.2572 82.5599 133.7547
SD 3.0791 10.9330 11.4133 9.5546

Med 20.4659 30.0536 71.9376 124.0569
Rank 1 2 3 4

f 6 Mean 1.0166 2.2309 3.0771 8.9318
SD 0.5524 11.0604 9.7121 13.7554

Med 1.7111 3.6660 3.1051 11.9169
Rank 1 2 3 4

f 7 Mean 0.0179 0.0186 0.0387 0.0309
SD 0.0119 0.0156 0.0235 0.0216

Med 0.0163 0.0182 0.0327 0.0335
Rank 1 2 4 3

f 8 Mean −2.0236e+03 −1.9898e+03 −1.7002e+03 −1.8200e+03
SD 53.4828 170.8601 147.8324 101.7015

Med −2.0207e+03 −1.8977e+03 −1.6972e+03 −1.8307e+03
Rank 1 2 4 3

f 9 Mean 0.6359 1.2144 3.0472 2.1303
SD 1.7575 5.5272 3.7159 5.0115

Med 0.7802 0.8932 3.5783 2.3890
Rank 1 2 4 3

f 10 Mean 1.6269 2.0406 7.0218 7.0607
SD 0.7271 2.4153 2.5491 2.4290

Med 1.4469 2.3801 6.7427 7.4276
Rank 1 2 3 4

f 11 Mean 0.2291 0.3381 0.8498 0.5594
SD 0.2448 1.2435 1.6054 1.1212

Med 0.2821 0.4894 0.7234 0.4527
Rank 1 2 4 3

f 12 Mean 0.3092 0.5014 0.8959 0.7153
SD 0.1880 0.3313 0.5359 0.4502

Med 0.3947 0.4381 0.8416 0.7652
Rank 1 2 4 3

f 13 Mean 0.1547 0.2057 0.5492 0.2908
SD 0.0675 0.7528 2.2227 1.2097

Med 0.1654 0.2089 0.5847 0.1755
Rank 1 2 4 3

Entropy 2021, 23, 598 16 of 24

Figures 8 and 9, respectively, represent the average convergence curves of the four
algorithms on 7 unimodal functions and 6 multimodal functions after performing 30 exper-
iments. The convergence curves in Figures 8 and 9 indicate that the convergence speed of
IAMDA is significantly faster than that of the other three algorithms. For example, from
Figure 8e, Figure 9a,e,f, it can be observed that the convergence of IAMDA can reach the
optimal value at about 100 iterations.

In order to test whether IAMDA is statistically significant compared to other algo-
rithms, statistical student’s t-test [37] has been performed. The t value can be calculated by
the following formula:

t =
X1 − X2√

(SD2
1/(n1 − 1)) + (SD2

2/(n2 − 1))
(17)

where X1, SD1, and n1 represent the mean value, standard deviation, and size of the
first sample (AMDA, or BDA, or BPSO), respectively; X2, SD2, and n2 indicate the mean
value, standard deviation, and size of the second sample (IAMDA), respectively. In this
work, n1 = n2 = Dimdragon f ly. The positive t value means that IAMDA has better solutions
compared to AMDA (or BDA or BPSO). The negative t value means that AMDA (or BDA
or BPSO) produced better solutions than IAMDA. In our study, the confidence interval
has been set at 95% which indicates t0.05 = 1.96. When t > 1.96, the difference between
two samples is significant and IAMDA is superior to AMDA (or BDA or BPSO). When
t < −1.96, AMDA (or BDA or BPSO) is superior to IAMDA.

The t values calculated by Equation (17) over the selected 13 benchmark functions
are presented in Tables 5 and 6. In the presented tables, ‘N.S.’ represents ‘Not Significant’,
which means that the compared algorithms do not differ from each other significantly.

Table 5. Results of t-test for IAMDA against other three algorithms on unimodal benchmark functions
with 30 independent runs.

f
AMDA and IAMDA BDA and IAMDA BPSO and IAMDA

t Sig. t Sig. t Sig.

f 1 9.2046 IAMDA 8.3274 IAMDA 8.5994 IAMDA
f 2 9.8566 IAMDA 10.1103 IAMDA 13.8404 IAMDA
f 3 7.0330 IAMDA 6.1916 IAMDA 13.3650 IAMDA
f 4 6.5086 IAMDA 12.1566 IAMDA 12.3855 IAMDA
f 5 10.3097 IAMDA 43.5972 IAMDA 95.2107 IAMDA
f 6 0.9433 N.S. 1.9721 IAMDA 4.9460 IAMDA
f 7 0.3069 N.S. 6.7927 IAMDA 4.5347 IAMDA

Table 6. Results of t-test for IAMDA against other three algorithms on multimodal benchmark
functions with 30 independent runs.

f
AMDA and IAMDA BDA and IAMDA BPSO and IAMDA

t Sig. t Sig. t Sig.

f 8 1.9640 IAMDA 17.6961 IAMDA 15.2422 IAMDA
f 9 0.8580 N.S. 5.0462 IAMDA 2.4206 IAMDA
f 10 1.4109 N.S. 17.5076 IAMDA 18.4356 IAMDA
f 11 0.7398 N.S. 3.2879 IAMDA 2.4759 IAMDA
f 12 4.3404 IAMDA 8.8868 IAMDA 7.1604 IAMDA
f 13 0.5805 N.S. 1.9661 IAMDA 2.9663 IAMDA

Note that all the data in Table 4 are average values over 30 experiments. From the
experimental results in Table 4, it can be analyzed that as compared to AMDA, BDA, and
BPSO, IAMDA has obvious advantages in the optimization results of the 13 standard test

Entropy 2021, 23, 598 17 of 24

functions. Judging from Table 5, IAMDA can find the optimal solutions in most cases of
unimodal functions, which means that IAMDA has better exploitation capability. Addi-
tionally, according to the t values calculated in Table 6, IAMDA and AMDA exhibit similar
exploration capability and have better performance than BDA and BPSO on multimodal
functions. In brief, IAMDA has better exploitation and exploration capability. This proves
that the introduction of the coefficient k in the angle modulation mechanism is beneficial
for improving the convergence accuracy of the algorithm. Hence, according to the average
convergence curves in Figures 8 and 9, and test data in Tables 4–6, it can be concluded that
IAMDA outperforms the AMDA, BDA, and BPSO.

4.3. Zero-One Knapsack Problems

The 0-1 knapsack problem is one of combinatorial optimization problems, which
means the time complexity of solving the knapsack problem grows very fast as the scale
of the problem grows. Because of its complexity, the 0-1 knapsack problem has extremely
crucial applications in number theory research, along with certain practical applications
like cryptography [38], project selection [39], and feature selection [40–42]. It is a procedure
of giving n items, and each item has two attributes, namely weight wi and profit pi. Capacity
C indicates the maximum weight of the knapsack, and xi represents whether the items i can
be included in the knapsack or not. The target of 0-1 knapsack problem is to maximize the
profit of the items in the knapsack and make the overall weights less than or equal to the
knapsack capacity. The zero-one problem can be mathematically modeled as follows [43]:

max f (p) =
N

∑
i=1

pixi (18)

s.t.
{

f (w) = ∑N
i=1 wixi ≤ C

xi = 0, 1(i = 1, 2, ..., N)
(19)

Since the procedure of the 0-1 knapsack problem is essentially a binary optimization
process, binary heuristic algorithms such as BPSO and BDA are required to solve the
0-1 knapsack problems. The following tables highlight 12 classic 0-1 knapsack problems,
including five classic 0-1 knapsack problems k1–k5 [44] listed in Table 7 and seven high-
dimensional 0-1 knapsack problems k6–k12 [45] listed in Table 8. The larger the problem
dimension, the greater the computational complexity and the longer the execution time.
In the tables, ’D’ indicates the dimension of a knapsack problem, ’w’ and ‘p’ represent
the weight and profit of each object, respectively. ‘C’ denotes the capacity of a knapsack,
‘Opt’ shows the optimal value and ‘Total values’ in Table 6 represents overall profits of all
items. Table 9 shows the best, worst, and average solutions for 0-1 knapsack problems.
Additionally, the average calculation time and the standard deviation (SD) are listed.
Table 10 lists the p values of the Wilcoxon ranksum test over the seven high-dimensional
knapsack problems, ‘N.S.’ represents ‘not significant’, which means that the compared
algorithms do not differ from each other significantly.

Table 7. Related parameters of five classic 0-1 knapsack problems.

No. D Parameter (w, p, C) Opt

k1 10
w = (95,4,60,32,23,72,80,62,65,46);

p = (55,10,47,5,4,50,8,61,85,87);
C = 269

295

k2 20
w = (92,4,43,83,84,68,92,82,6,44,32,18,56,83,25,96,70,48,14,58);
p = (44,46,90,72,91,40,75,35,8,54,78,40,77,15,61,17,75,29,75,63);

C = 878
1024

Entropy 2021, 23, 598 18 of 24

Table 7. Cont.

No. D Parameter (w, p, C) Opt

k3 50

w = (80,82,85,70,72,70,66,50,55,25,50,55,40,48,59,32,22,60,30,
32,40,38,35,32,25,28,30,22,50,30,45,30,60,50,20,65,20,25,30, 10,20,25,15,10,10,10,4,4,2,1);

p = (220,208,198,192,180,180,165,162,160,158,155,130,125,
122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,7,72,70,69,66,65,63,60,58,56,50,30,20,15,

0,8,5,3,1);
C = 1000

3103

k4 80

w = (40, 27,5,21,51, 16, 42, 18, 52, 28, 57, 34, 44, 43,52,55,53,42, 47, 56,57,44, 16,2, 12, 9, 40, 23, 56, 3,
39,16, 54, 36, 52,5,53, 48, 23, 47, 41, 49, 22, 42, 10, 16, 53, 58, 40, 1,43,56,40,32,44,35, 37, 45, 52, 56, 40,

2, 23,49, 50, 26, 11,35, 32, 34, 58, 6, 52,26,31, 23, 4, 52, 53, 19);
p = (199,194,193,191,189,178,174,169,164,164,161,158,157,

154,152,152,149,142,131,125,124,124,124,122,119,116,114,113,111,110,109,100,97,94,91,82,82,81,80,
80,80,79,77,76,74, 72, 71, 70, 69,68, 65, 65, 61, 56, 55, 54, 53, 47, 47, 46, 41, 36, 34, 32, 32,30, 29, 29, 26,

25, 23, 22, 20, 11, 10, 9,5,4,3, 1);
C = 1173

5183

k5 100

w = (54, 95, 36, 18,4, 71,83, 16, 27, 84, 88, 45, 94, 64, 14, 80, 4, 23, 75, 36, 90, 20, 77, 32, 58, 6, 14, 86,
84, 59,71, 21, 30, 22, 96, 49, 81, 48, 37, 28, 6,

84,19,55,88,38,51,52,79,55,70,53,64,99,61,86,1,64,32,60,42,45,34,22,49,37,33,1,78,43,85,24,96,32,99,57,
23,8,10,74,59,89,95,40,46,65,6,89,84,83,6,19,45, 59, 26, 13, 8, 26, 5, 9);

p = (297, 295, 293, 292, 291, 289, 284, 284, 283, 283, 281, 280, 279, 277, 276, 275, 273,264, 260, 257,
250, 236, 236, 235, 235, 233, 232, 232, 228, 218, 217, 214, 211, 208, 205, 204, 203, 201, 196, 194,193,
193, 192, 191, 190, 187, 187, 184, 184, 184, 181, 179, 176, 173, 172, 171, 160, 128, 123, 114, 113, 107,
105,101, 100, 100, 99, 98, 97, 94, 94, 93, 91, 80, 74, 73, 72, 63, 63, 62, 61, 60, 56, 53, 52, 50, 48, 46, 40,

40, 35, 28, 22,22, 18, 15, 12,11, 6,5);
C = 3818;

15,170

Table 8. Related parameters of seven randomly generated zero-one knapsack problems.

No. D C Total Values

k6 200 1948.5 15,132
k7 300 2793.5 22,498
k8 500 4863.5 37,519
k9 800 7440.5 59,791
k10 1000 9543.5 75,603
k11 1200 11,267 90,291
k12 1500 14,335 111,466

Table 9. Result comparisons among IAMDA, AMDA, BDA, and BPSO on 0-1 knapsack problems.

No. Alg. Best Worst Mean SD Time

k1 IAMDA 295 295 295 0 0.2175
AMDA 295 295 295 0 0.2112

BDA 295 295 295 0 0.9646
BPSO 295 295 295 0 0.0389

k2 IAMDA 1024 1018 1.0231e+03 2.1981 0.2858
AMDA 1024 1013 1.0226e+03 3.5452 0.2766

BDA 1024 1018 1.0225e+03 2.6656 1.0450
BPSO 1024 1024 1024 0 0.0618

k3 IAMDA 3076 2991 3.0308e+03 21.1636 0.2863
AMDA 3064 2969 3.0367e+03 29.6729 0.2782

BDA 3074 2970 3.0203e+03 30.0559 1.0461
BPSO 3074 2957 2.9978e+03 26.6114 0.1460

Entropy 2021, 23, 598 19 of 24

Table 9. Cont.

No. Alg. Best Worst Mean SD Time

k4 IAMDA 4991 4763 4.9131e+03 66.2322 0.3929
AMDA 5090 4678 4.8918e+03 115.7004 0.3796

BDA 5041 4705 4.8880e+03 105.7243 1.2035
BPSO 4695 4348 4.4823e+03 99.1591 0.2175

k5 IAMDA 14,965 14,261 1.4631e+04 166.4238 0.3979
AMDA 15,010 14,155 1.4626e+04 220.8765 0.3803

BDA 14,986 14,149 1.4611e+04 208.1295 1.2696
BPSO 13,986 13,324 1.3595e+04 188.0612 0.2488

k6 IAMDA 1.3075e+04 1.2300e+04 1.2632e+04 207.7428 0.4770
AMDA 1.2801e+04 1.1921e+04 1.2498e+04 211.4083 0.4631

BDA 1.2820e+04 1.1501e+04 1.2316e+04 315.2521 1.6793
BPSO 1.1640e+04 1.0951e+04 1.1174e+04 213.5035 0.6185

k7 IAMDA 1.8386e+04 1.6408e+04 1.7800e+04 413.3773 0.6500
AMDA 1.8220e+04 1.6107e+04 1.7595e+04 594.7544 0.6137

BDA 1.7979e+04 1.6227e+04 1.7554e+04 370.3743 2.8821
BPSO 1.6084e+04 1.5385e+04 1.5717e+04 181.8523 0.8482

k8 IAMDA 3.1266e+04 2.8010e+04 3.0387e+04 713.8203 0.9952
AMDA 3.0763e+04 2.7902e+04 3.0134e+04 816.0871 0.9457

BDA 2.9598e+04 2.6478e+04 2.8067e+04 848.2838 3.6978
BPSO 2.5404e+04 2.3997e+04 2.4656e+04 328.1345 1.3125

k9 IAMDA 4.7364e+04 4.1702e+04 4.5928e+04 1.4190e+03 1.7125
AMDA 4.7078e+04 4.0453e+04 4.5502e+04 1.6564e+03 1.7014

BDA 4.5734e+04 4.1055e+04 4.2988e+04 1.2721e+03 5.3235
BPSO 3.8119e+04 3.6775e+04 3.7448e+04 355.7410 2.0791

k10 IAMDA 5.9952e+04 5.5355e+04 5.8646e+04 1.3125e+03 2.5047
AMDA 5.9566e+04 5.3099e+04 5.7783e+04 1.8917e+03 2.5023

BDA 5.7356e+04 5.0011e+04 5.3727e+04 2.3538e+03 6.2211
BPSO 4.6572e+04 4.5209e+04 4.5749e+04 362.8049 2.6863

k11 IAMDA 7.1022e+04 6.3479e+04 6.8977e+04 1.9784e+03 3.2814
AMDA 7.0417e+04 5.9200e+04 6.7161e+04 3.0546e+03 3.0616

BDA 6.7241e+04 5.5492e+04 6.3396e+04 3.0978e+03 7.6517
BPSO 5.5506e+04 5.3168e+04 5.4227e+04 552.3881 3.0838

k12 IAMDA 8.8872e+04 8.1067e+04 8.7179e+04 2.1245e+03 3.5053
AMDA 8.8691e+04 7.8917e+04 8.6422e+04 2.5499e+03 3.3711

BDA 8.2644e+04 6.9772e+04 7.6970e+04 3.9042e+03 8.5147
BPSO 6.7097e+04 6.5470e+04 6.6496e+04 648.1773 3.7690

Table 10. p-values of the Wilcoxon ranksum test on large-scale knapsack problems.

f
AMDA and IAMDA BDA and IAMDA BPSO and IAMDA

t Sig. t Sig. t Sig.

k6 0.0709 N.S. 0.0937 IAMDA 6.7956e-08 IAMDA
k7 0.2085 N.S. 0.0066 IAMDA 6.7956e-08 IAMDA
k8 0.3793 N.S. 4.5390e-07 IAMDA 6.7956e-08 IAMDA
k9 0.2393 N.S. 5.8736e-07 IAMDA 6.7956e-08 IAMDA
k10 0.0409 IAMDA 3.4156e-07 IAMDA 6.7956e-08 IAMDA
k11 0.0155 IAMDA 2.6898e-06 IAMDA 6.7956e-08 IAMDA
k12 0.1636 N.S. 1.2346e-07 IAMDA 6.7956e-08 IAMDA

Table 9 presents the test results of the four algorithms after performing 30 experiments.
It can be observed that for k1 and k2, all the four algorithms can find the optimal solution.
Whereas for k3–k12, IAMDA and AMDA can always find better results in less computation
time, suggesting the strong global optimization capabilities and computational robustness

Entropy 2021, 23, 598 20 of 24

of IAMDA and AMDA in binary spaces. Additionally, it can be observed that the higher the
dimensionality of the 0-1 knapsack problem, the more obvious the advantages of IAMDA
and AMDA. Moreover, as compared to AMDA, the standard deviation of IAMDA is much
smaller, which suggests that IAMDA is more stable and effective than AMDA for solving
the 0-1 knapsack problems. Besides, the p values listed in Table 10 prove that IAMDA and
AMDA outperform BDA and BPSO in solving large-scale knapsack problems.

Figure 10 shows the average convergence curves of the four algorithms on the selected
large-scale problems in 30 independent runs. As denoted in the figure, (i) the purple curve
representing IAMDA is always on the top of the other curves and the effect becomes more
obvious with the increasing problem dimension; (ii) the red and blue curves representing
BDA and BPSO are slowly climbing, or even stagnating. In other words, IMADA has the
strongest convergence, while BDA and BPSO converge prematurely to solve large-scale
testing problems.

Entropy 2021, 23, 598 21 of 26

computation time, suggesting the strong global optimization capabilities and computa-
tional robustness of IAMDA and AMDA in binary spaces. Additionally, it can be observed
that the higher the dimensionality of the 0-1 knapsack problem, the more obvious the ad-
vantages of IAMDA and AMDA. Moreover, as compared to AMDA, the standard devia-
tion of IAMDA is much smaller, which suggests that IAMDA is more stable and effective
than AMDA for solving the 0-1 knapsack problems. Besides, the p values listed in Table
10 prove that IAMDA and AMDA outperform BDA and BPSO in solving large-scale knap-
sack problems.

Figure 10 shows the average convergence curves of the four algorithms on the se-
lected large-scale problems in 30 independent runs. As denoted in the figure, (i) the purple
curve representing IAMDA is always on the top of the other curves and the effect becomes
more obvious with the increasing problem dimension; (ii) the red and blue curves repre-
senting BDA and BPSO are slowly climbing, or even stagnating. In other words, IMADA
has the strongest convergence, while BDA and BPSO converge prematurely to solve large-
scale testing problems.

(a) k7

(b) k8

(c) k9

(d) k10

Figure 10. Cont.

Entropy 2021, 23, 598 21 of 24Entropy 2021, 23, 598 22 of 26

(e) k11

(f) k12

Figure 10. Average convergence curves of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems over
30 independent runs: (a) k7. (b) k8. (c) k9. (d) k10. (e) k11. (f) k12.

Figure 11 depicts the distribution of the results of the knapsack problem obtained by
the four algorithms. As shown in the figure, (i) the solution produced by IAMDA always
give better results, and the results vary within a confined range, thus producing a smaller
variance; (ii) diversity of the results produced by BDA is the best; and (iii) in the majority
of the problems, many of the results produced by IAMDA are as applicable as those pro-
duced by AMDA; however, IAMDA has a smaller variance than AMDA.

(a) k7

(b) k8

(c) k9

(d) k10

Figure 10. Average convergence curves of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems over 30 independent
runs: (a) k7. (b) k8. (c) k9. (d) k10. (e) k11. (f) k12.

Figure 11 depicts the distribution of the results of the knapsack problem obtained by
the four algorithms. As shown in the figure, (i) the solution produced by IAMDA always
give better results, and the results vary within a confined range, thus producing a smaller
variance; (ii) diversity of the results produced by BDA is the best; and (iii) in the majority of
the problems, many of the results produced by IAMDA are as applicable as those produced
by AMDA; however, IAMDA has a smaller variance than AMDA.

Entropy 2021, 23, 598 22 of 26

(e) k11

(f) k12

Figure 10. Average convergence curves of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems over
30 independent runs: (a) k7. (b) k8. (c) k9. (d) k10. (e) k11. (f) k12.

Figure 11 depicts the distribution of the results of the knapsack problem obtained by
the four algorithms. As shown in the figure, (i) the solution produced by IAMDA always
give better results, and the results vary within a confined range, thus producing a smaller
variance; (ii) diversity of the results produced by BDA is the best; and (iii) in the majority
of the problems, many of the results produced by IAMDA are as applicable as those pro-
duced by AMDA; however, IAMDA has a smaller variance than AMDA.

(a) k7

(b) k8

(c) k9

(d) k10

Figure 11. Cont.

Entropy 2021, 23, 598 22 of 24
Entropy 2021, 23, 598 23 of 26

(e) k11

(f) k12

Figure 11. The box plots of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems. (a) k7. (b) k8. (c) k9.
(d) k10. (e) k11. (f) k12.

Figure 12 indicates the average computational time of the above algorithms on the
selected k1-k12 knapsack problems. It can be noted from the bar diagram that (i) the average
computational time of AMDA is the least, and (ii) the computational time of IAMDA,
AMDA, and BPSO are similar, and all are significantly less than the calculation time of
BDA.

Figure 12. Average computational time of IAMDA, AMDA, BDA, and BPSO on some selected
large-scale problems k7-k12 over 30 independent runs.

It can be summarized from the above simulation results that when IAMDA solves
the 0-1 knapsack problems, it decreases the computational time while ensuring the accu-
racy of the solution. IAMDA performs well on both low-dimensional as well as high-di-
mensional problems. Moreover, it has a smaller variance than AMDA and the original
BDA, indicating better robustness of IAMDA.

5. Conclusions

0

0.5

1

1.5

2

2.5

3

3.5

4

Av
er

ag
e

tim
e\

se
co

nd

Algorithm

IAMDA AMDA BDA BPSO

Figure 11. The box plots of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems. (a) k7. (b) k8. (c) k9. (d) k10.
(e) k11. (f) k12.

Figure 12 indicates the average computational time of the above algorithms on the
selected k1–k12 knapsack problems. It can be noted from the bar diagram that (i) the
average computational time of AMDA is the least, and (ii) the computational time of
IAMDA, AMDA, and BPSO are similar, and all are significantly less than the calculation
time of BDA.

Entropy 2021, 23, 598 23 of 26

(e) k11

(f) k12

Figure 11. The box plots of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems. (a) k7. (b) k8. (c) k9.
(d) k10. (e) k11. (f) k12.

Figure 12 indicates the average computational time of the above algorithms on the
selected k1-k12 knapsack problems. It can be noted from the bar diagram that (i) the average
computational time of AMDA is the least, and (ii) the computational time of IAMDA,
AMDA, and BPSO are similar, and all are significantly less than the calculation time of
BDA.

Figure 12. Average computational time of IAMDA, AMDA, BDA, and BPSO on some selected
large-scale problems k7-k12 over 30 independent runs.

It can be summarized from the above simulation results that when IAMDA solves
the 0-1 knapsack problems, it decreases the computational time while ensuring the accu-
racy of the solution. IAMDA performs well on both low-dimensional as well as high-di-
mensional problems. Moreover, it has a smaller variance than AMDA and the original
BDA, indicating better robustness of IAMDA.

5. Conclusions

0

0.5

1

1.5

2

2.5

3

3.5

4

Av
er

ag
e

tim
e\

se
co

nd

Algorithm

IAMDA AMDA BDA BPSO

Figure 12. Average computational time of IAMDA, AMDA, BDA, and BPSO on some selected large-scale problems k7–k12

over 30 independent runs.

It can be summarized from the above simulation results that when IAMDA solves the
0-1 knapsack problems, it decreases the computational time while ensuring the accuracy of
the solution. IAMDA performs well on both low-dimensional as well as high-dimensional
problems. Moreover, it has a smaller variance than AMDA and the original BDA, indicating
better robustness of IAMDA.

5. Conclusions

To make the dragonfly algorithm work efficiently in the binary space, this paper
applies an angle modulation mechanism to the dragonfly algorithm. AMDA uses the
trigonometric function to generate bit strings corresponding to the binary problem solutions

Entropy 2021, 23, 598 23 of 24

instead of directly running on the high-dimensional binary spaces. Thus, AMDA can
significantly reduce the computational cost as compared to the traditional BDA using
transfer functions. However, AMDA also has some limitations such as poor algorithm
stability and slow convergence speed due to the lack of control on the vertical displacement
of the cosine part in the generating function.

To deal with the limitations, this paper proposes an improved angle modulated
dragonfly algorithm (IAMDA). Based on AMDA, one more coefficient is added to adjust
the vertical displacement of the cosine part in the original generating function. From the
test results of unimodal and multimodal benchmark functions and 12 low-dimensional
and high-dimensional zero-one knapsack problems, it can be concluded that IAMDA
outperforms AMDA, BDA, and BPSO in terms of stability, convergence rate, and quality
of the solution. Additionally, it significantly reduces the computational time as compared
to BDA. For future advancements, our studies may include multidimensional zero-one
knapsack problems, multi-objective optimization problems, and so on. Furthermore, our
research will be applied to practical applications such as feature selection and antenna
topology optimization.

Author Contributions: Conceptualization: L.W. and J.D.; methodology: L.W. and J.D.; software: L.W.
and R.S.; validation: L.W. and J.D.; investigation: L.W.; resources: J.D.; data curation: L.W. and J.D.;
writing—original draft preparation: L.W.; writing—review and editing: R.S. and J.D.; visualization:
L.W.; supervision: L.W. and J.D.; project administration: J.D.; funding acquisition: J.D. and R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China,
grant number 61801521 and 61971450, in part by the Natural Science Foundation of Hunan Province,
grant number 2018JJ2533, and in part by the Fundamental Research Funds for the Central Universities,
grant number 2018gczd014 and 20190038020050.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
2. Glover, F. Tabu search—part I. Orsa J. Comput. 1989, 1, 190–206. [CrossRef]
3. Glover, F. Tabu search—part II. Orsa J. Comput. 1990, 2, 4–32. [CrossRef]
4. Sampson, J.R. Adaptation in Natural and Artificial Systems (John H. Holland); Society for Industrial and Applied Mathematics:

Philadelphia, PA, USA, 1975.
5. Mitchell, M. An Introduction to Genetic Algorithm; MIT press: Cambridge, MA, USA, 1998.
6. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31.

[CrossRef]
7. Farmer, J.D.; Packard, N.H.; Perelson, A.S. The immune system, adaptation, and machine learning. Phys. D Nonlinear Phenom.

1986, 22, 187–204. [CrossRef]
8. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 6 August 2002; pp. 1942–1948.
9. Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer:

Berlin/Heidelberg, Germany, 2010; pp. 65–74.
10. Liu, X.-F.; Zhan, Z.-H.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J. An energy efficient ant colony system for virtual machine placement in

cloud computing. IEEE Trans. Evol. Comput. 2016, 22, 113–128. [CrossRef]
11. Chen, Z.-G.; Zhan, Z.-H.; Lin, Y.; Gong, Y.-J.; Gu, T.-L.; Zhao, F.; Yuan, H.-Q.; Chen, X.; Li, Q.; Zhang, J. Multiobjective cloud

workflow scheduling: A multiple populations ant colony system approach. IEEE Trans. Cybern. 2018, 49, 2912–2926. [CrossRef]
12. Yang, X.-S. Firefly Algorithms for Multimodal Optimization. International Symposium on Stochastic Algorithms; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 169–178.
13. Li, X. A New Intelligent Optimization-Artificial Fish Swarm Algorithm. Doctor Thesis, Zhejiang University, Zhejiang, China,

2003.
14. Pan, W.-T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26,

69–74. [CrossRef]
15. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]

http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1287/ijoc.1.3.190
http://doi.org/10.1287/ijoc.2.1.4
http://doi.org/10.1109/TEVC.2010.2059031
http://doi.org/10.1016/0167-2789(86)90240-X
http://doi.org/10.1109/TEVC.2016.2623803
http://doi.org/10.1109/TCYB.2018.2832640
http://doi.org/10.1016/j.knosys.2011.07.001
http://doi.org/10.1007/s00521-015-1920-1

Entropy 2021, 23, 598 24 of 24

16. Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A novel method for multilevel color image segmentation based on dragonfly algorithm
and differential evolution. IEEE Access 2019, 7, 19502–19538. [CrossRef]

17. Tharwat, A.; Gabel, T.; Hassanien, A.E. Parameter optimization of support vector machine using dragonfly algorithm. In
International Conference on Advanced Intelligent Systems and Informatics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 309–319.

18. Zhang, Z.; Hong, W.-C. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and
support vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn. 2019, 98, 1107–1136. [CrossRef]

19. Amroune, M.; Bouktir, T.; Musirin, I. Power system voltage stability assessment using a hybrid approach combining dragonfly
optimization algorithm and support vector regression. Arab. J. Sci. Eng. 2018, 43, 3023–3036. [CrossRef]

20. Sureshkumar, K.; Ponnusamy, V. Power flow management in micro grid through renewable energy sources using a hybrid
modified dragonfly algorithm with bat search algorithm. Energy 2019, 181, 1166–1178. [CrossRef]

21. Suresh, V.; Sreejith, S. Generation dispatch of combined solar thermal systems using dragonfly algorithm. Computing 2017, 99,
59–80. [CrossRef]

22. Babayigit, B. Synthesis of concentric circular antenna arrays using dragonfly algorithm. Int. J. Electron. 2018, 105, 784–793.
[CrossRef]

23. Hammouri, A.I.; Samra, E.T.A.; Al-Betar, M.A.; Khalil, R.M.; Alasmer, Z.; Kanan, M. A dragonfly algorithm for solving traveling
salesman problem. In Proceedings of the 2018 8th IEEE International Conference on Control System, Computing and Engineering
(ICCSCE), Penang, Malaysia, 23–25 November 2018; pp. 136–141.

24. Mafarja, M.M.; Eleyan, D.; Jaber, I.; Hammouri, A.; Mirjalili, S. Binary dragonfly algorithm for feature selection. In Proceedings of the
2017 International Conference on New Trends in Computing Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; pp. 12–17.

25. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October
1997; pp. 4104–4108.

26. Mirjalili, S.; Mirjalili, S.M.; Yang, X.-S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [CrossRef]
27. Hammouri, A.I.; Mafarja, M.; Al-Betar, M.A.; Awadallah, M.A.; Abu-Doush, I. An improved dragonfly algorithm for feature

selection. Knowl. Based Syst. 2020, 203, 106131. [CrossRef]
28. Proakis, J.G.; Salehi, M.; Zhou, N.; Li, X. Communication Systems Engineering; Prentice Hall New Jersey: Hoboken, NJ, USA, 1994;

Volume 2.
29. Pampara, G.; Franken, N.; Engelbrecht, A. Combining particle swarm optimization with angle modulation to solve binary

problems. IEEE Congr. Evol. Comput. 2005, 1, 89–96.
30. Pampara, G.; Engelbrecht, A.; Franken, N. Binary differential evolution. In Proceedings of the IEEE Congress on Evolutionary

Computation Vancouver, BC, Canada, 16–21 July 2006; pp. 1873–1879.
31. Dong, J.; Wang, Z.; Mo, J. A Phase Angle-Modulated Bat Algorithm with Application to Antenna Topology Optimization. Appl.

Sci. 2021, 11, 2243. [CrossRef]
32. Reynolds, C.W. Flocks, Herds, and Schools: A Distributed Behavioral Model. ACM SIGGRAPH Comput Gr. 1987, 21, 25–34. [CrossRef]
33. Too, J.; Abdullah, A.R.; Mohd Saad, N.; Mohd Ali, N.; Tee, W. A New Competitive Binary Grey Wolf Optimizer to Solve the

Feature Selection Problem in EMG Signals Classification. Computers 2018, 7, 58. [CrossRef]
34. Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput.

2019, 44, 148–175. [CrossRef]
35. Tsai, H.C.; Tyan, Y.Y.; Wu, Y.W.; Lin, Y.H. Isolated particle swarm optimization with particle migration and global best adoption.

Eng. Optim. 2012, 44, 1405–1424. [CrossRef]
36. Kashan, M.H.; Kashan, A.H.; Nahavandi, N. A novel differential evolution algorithm for binary optimization. Comput. Optim.

Appl. 2013, 55, 481–513.
37. Yılmaz, S.; Küçüksille, E.U. A new modification approach on bat algorithm for solving optimization problems. Appl. Soft Comput.

2015, 28, 259–275. [CrossRef]
38. Hu, T.; Kahng, A.B. Linear and Integer Programming Made Easy; Springer: Berlin/Heidelberg, Germany, 2016.
39. Mavrotas, G.; Diakoulaki, D.; Kourentzis, A. Selection among ranked projects under segmentation, policy and logical constraints.

Eur. J. Oper. Res. 2008, 187, 177–192. [CrossRef]
40. Zhang, Y.; Song, X.-F.; Gong, D.-W. A return-cost-based binary firefly algorithm for feature selection. Inf. Sci. 2017, 418, 561–574.

[CrossRef]
41. Zhang, L.; Shan, L.; Wang, J. Optimal feature selection using distance-based discrete firefly algorithm with mutual information

criterion. Neural Comput. Appl. 2017, 28, 2795–2808. [CrossRef]
42. Mafarja, M.M.; Mirjalili, S. Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection.

Soft Comput. 2019, 23, 6249–6265. [CrossRef]
43. Kulkarni, A.J.; Shabir, H. Solving 0–1 knapsack problem using cohort intelligence algorithm. Int. J. Mach. Learn. Cybern. 2016, 7,

427–441. [CrossRef]
44. Wu, H.; Zhang, F.-M.; Zhan, R.; Wang, S.; Zhang, C. A binary wolf pack algorithm for solving 0-1 knapsack problem. Syst. Eng.

Electron. 2014, 36, 1660–1667.
45. Zou, D.; Gao, L.; Li, S.; Wu, J. Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl. Soft Comput.

2011, 11, 1556–1564. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2896673
http://doi.org/10.1007/s11071-019-05252-7
http://doi.org/10.1007/s13369-017-3046-5
http://doi.org/10.1016/j.energy.2019.06.029
http://doi.org/10.1007/s00607-016-0514-9
http://doi.org/10.1080/00207217.2017.1407964
http://doi.org/10.1007/s00521-013-1525-5
http://doi.org/10.1016/j.knosys.2020.106131
http://doi.org/10.3390/app11052243
http://doi.org/10.1145/37402.37406
http://doi.org/10.3390/computers7040058
http://doi.org/10.1016/j.swevo.2018.02.013
http://doi.org/10.1080/0305215X.2012.654787
http://doi.org/10.1016/j.asoc.2014.11.029
http://doi.org/10.1016/j.ejor.2007.03.010
http://doi.org/10.1016/j.ins.2017.08.047
http://doi.org/10.1007/s00521-016-2204-0
http://doi.org/10.1007/s00500-018-3282-y
http://doi.org/10.1007/s13042-014-0272-y
http://doi.org/10.1016/j.asoc.2010.07.019

	Introduction
	Background
	The Dragonfly Algorithm
	Binary Dragonfly Algorithm

	Improved Angle Modulated Dragonfly Algorithm (IAMDA)
	AMDA
	IAMDA

	Experimental Results and Discussion
	Test Functions and Parameter Settings
	IAMDA Performance on Unimodal and Multimodal Benchmark Functions
	Zero-One Knapsack Problems

	Conclusions
	References

