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Abstract: This study aimed to identify potential inhibitors and investigate the mechanism of action
on SARS-CoV-2 ACE2 receptors using a molecular modeling study and theoretical determination of
biological activity. Hydroxychloroquine was used as a pivot structure and antimalarial analogues
of 1,2,4,5 tetraoxanes were used for the construction and evaluation of pharmacophoric models.
The pharmacophore-based virtual screening was performed on the Molport® database (~7.9 million
compounds) and obtained 313 structures. Additionally, a pharmacokinetic study was developed,
obtaining 174 structures with 99% confidence for human intestinal absorption and penetration into the
blood–brain barrier (BBB); posteriorly, a study of toxicological properties was realized. Toxicological
predictions showed that the selected molecules do not present a risk of hepatotoxicity, carcinogenicity,
mutagenicity, and skin irritation. Only 54 structures were selected for molecular docking studies, and
five structures showed binding affinity (∆G) values satisfactory for ACE2 receptors (PDB 6M0J), in
which the molecule MolPort-007-913-111 had the best ∆G value of −8.540 Kcal/mol, followed by
MolPort-002-693-933 with ∆G = −8.440 Kcal/mol. Theoretical determination of biological activity
was realized for 54 structures, and five molecules showed potential protease inhibitors. Additionally,
we investigated the Mpro receptor (6M0K) for the five structures via molecular docking, and we
confirmed the possible interaction with the target. In parallel, we selected the TopsHits 9 with
antiviral potential that evaluated synthetic accessibility for future synthesis studies and in vivo and
in vitro tests.

Keywords: COVID-19; antiviral; receptor-binding domain

1. Introduction

An epidemic began in December 2019 in Wuhan, China, in which infected people suf-
fered from pneumonia-like symptoms, which later spread throughout the world. The main
cause of the infection was found to be a new virus that has structural similarities with coro-
naviruses related to severe acute respiratory syndrome, therefore called SARS-CoV-2 [1,2].

According to WHO data (https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports) (accessed on 28 January 2022) globally, the number of new COVID-
19 cases increased in the past week (17–23 January 2022) by 5%, while the number of
new deaths remained similar to those reported during the previous week. Across the six
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WHO regions, over 21 million new cases were reported this week, representing the highest
number of weekly cases recorded since the beginning of the pandemic. Nearly 50,000 new
deaths were also reported. As of 23 January 2022, over 346 million confirmed cases and
over 5.5 million deaths were reported worldwide. The current global epidemiology of
SARS-CoV-2 is characterized by the dominance of the Omicron variant on a global scale,
continued decline in the prevalence of the Delta variant, and very low-level circulation of
Alpha, Beta, and Gamma variants. The Omicron variant includes Pango lineages B.1.1.529,
BA.1, BA.2 and BA.3. BA.1, although several countries have reported recent increases in the
proportion of BA.2 sequences. Preliminary evidence suggests there may be an increased
risk of reinfection with Omicron, as compared to other variants of concern, but information
is limited [3].

Due to the urgency of effective treatment strategies, the use of viral drugs is reported
in the literature because they have great advantages, as the pharmacokinetics, pharma-
codynamics, and safety profiles of these drugs are already well established [4–6]. Drug
repositioning and ligand-based virtual screening have gained significant importance, as
faster results and less investment are expected to identify a potent antiviral agent.

Preliminary studies have revealed lopinavir/ritonavir combination therapy as a po-
tential inhibitor of the virus. Along with these two drugs, many other antiviral drugs have
also been tested [7,8]. Recently, it was reported that the antimalarial drugs chloroquine and
hydroxychloroquine have a certain curative effect on COVID-19; however, the drugs are
alert to hepatotoxicity [9].

SARS-CoV-2 is a positive-sense, single-stranded RNA virus that relies on its Spike
(S) protein to bind and enter target cells [10,11]. Virus protein S binds to the host cell’s
Angiotensin-Converting Enzyme 2 (ACE2) receptor, allowing virus particles to enter cells.
Thus, blocking the ACE2 receptor reveals a potential therapeutic target for drug discovery
to prevent the transmissibility of SARS-CoV-2 [12]. Considering that the receptor-binding
domain (RBD) is the important region for receptor interaction, antibodies that target
conserved epitopes in the RBD also have great potential for the development of highly
potent cross-reactive therapeutic agents against the SARS-CoV-2 [13].

The genomic RNA of coronaviruses is approximately 30,000 nucleotides long with a
5’cap structure and a 3’poly(A) tail and contains at least six open reading frames [14]. These
polyproteins are processed by a major protease, Mpro (also known as a 3C-like protease
(3CLpro)), and by one or two papain-like proteases, into 16 nonstructural proteins [15].
Therefore, these proteases, especially Mpro, play a vital role in the life cycle of coronaviruses.
Mpro is a three-domain cysteine protease involved in most maturation cleavage events
within the precursor polyprotein [16].

The modeling of bioactive molecules is widely used in the identification of new
prototypes with biological activity, and this search consists of pre-selecting compounds
with the help of a computer from virtual databases [17]. A computer-aided drug de-
sign project saves costs and labor to test all compounds in the laboratory and helps to
screen for potent ligands/inhibitors that can target most strains [18]. Therefore, this
study aims to identify potential inhibitors and investigate the mechanism of action on
the SARS-CoV-2 ACE2 receptor and main protease (Mpro), using the study of molecular
docking from 1,2,4,5-tetraoxanes analogues. Figure 1 show the schematic flowchart of
the methodological steps that were carried out in the research, joining efforts and dif-
ferent expertise in bioinformatics, and allowing the association necessary to achieve the
proposed objectives.
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2. Results and Discussion
2.1. Molecular Docking for Obtaining and Evaluating the Pose of Selected Structures and the
Pharmacophoric Model

Hydroxychloroquine (HCQ) was used as a pivot molecule, according to Wang et al.
(2020). HCQ bind to ACE2 with KD = (7.31 ± 0.62) × 10−7 M and exhibit equivalent sup-
pression effect for the entrance of 2019-nCoV spike pseudotyped virus into ACE2 cells [19].
In vitro studies reported that HCQ was effective against SARS-CoV-2 at a Multiplicity of
Infection (MOI) of 0.01 with a 50% effective concentration (EC50) of 4.51 µM in Vero E6 cells.
All MOIs (0.01, 0.02, 0.2, and 0.8) and EC50 for HCQ (4.51, 4.06, 17.31, and 12.96 µM) was
satisfactory [20]. Thus, a molecule set of antimalarial analogs of 1,2,4,5 tetraoxanes and
hydroxychloroquine as a pivot was preliminarily evaluated in the molecular docking study
for the ACE2 target to evaluate the binding affinity and subsequent obtainment of the
pharmacophoric model. The predicted inhibitory constant (pKi) was calculated using the
following Equation (1) [21]:

pKi = 10 (∆G/1.366) (1)

Table 1 show the binding affinity values of the selected structures (see Supplementary
Material—Figure S1) as well as the pharmacophoric characteristics that were obtained via
the PharmaGist web server to obtain the pharmacophoric model, in which 14 selected
molecules were used as an input file and hydroxychloroquine was added as a pivot
structure with an alignment score of 65.383. Subsequently, a matrix was constructed (Table 1)
with the following pharmacophoric descriptors: atoms (ATM), spatial features (FEA),
hydrogen bond donor (DON), hydrogen bond acceptor (ACC) and binding affinity (BA).

Descriptors were analyzed using the Minitab® v. 16 software, in which the most
relevant ones were used to predict the potential antiviral activity as a function of the
BA value to reduce statistical inconsistencies. The ACC showed a correlation of −0.870
(strong) compared to the other descriptors, which allows us to infer that the number
of hydrogen donor groups significantly interferes in the BA responses of the selected
molecules. However, the contribution of each descriptor in the process of potential antiviral
activity is noteworthy, as is the case of ATM with a correlation value of −0.719, FEA of
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−0.769, HYD of −0.763, DON of 0.849, and ACC of −0.870, which also contributes to
binding affinity.

Table 1. Pharmacophoric model descriptors, binding affinity (BA), and results of the Pearson correla-
tion matrix.

Molecules ATM FEA HYD DON ACC BA pKi (µM)

1 * 49 10 3 2 3 −7.755 2.103
2 48 9 4 1 2 −7.709 2.273
3 96 34 24 0 10 −9.413 0.128
4 99 35 25 0 10 −9.230 0.175
5 105 37 27 0 10 −9.216 0.179
6 114 43 33 0 10 −9.214 0.180
7 102 37 27 0 10 −9.031 0.245
8 98 37 26 0 10 −9.009 0.254
9 101 38 27 0 10 −8.681 0.442
10 106 36 26 1 9 −8.655 0.461
11 103 37 27 1 9 −8.600 0.506
12 103 36 26 1 9 −8.589 0.516
13 106 36 26 1 9 −8.533 0.567
14 109 37 27 1 9 −8.533 0.570
15 103 37 27 1 9 −8.529 0.573
16 106 37 27 1 9 −8.526 0.607

ATM 1.000 - - - - - -
FEA 0.988 1.000 - - - - -
HYD 0.989 0.998 1.000 - - - -
DON −0.477 −0.563 −0.563 1.000 - - -
ACC 0.939 0.967 0.955 −0.671 1.000 - -
BA −0.719 −0.769 −0.763 0.849 −0.870 1.000 -

* Pivot Molecule; Atoms (ATM), Features (FEA), Aromatic (ARO), Hydrophobic (HYD), Acceptors (ACC) Donors
(DON).

The descriptors with the strongest correlations (positive and negative) were selected
for evaluation by chemometric study. Dendrograms were obtained from the HCA using
Minitab® software, see Figure 2. Confirmation of the data obtained by the Pearson correla-
tion was facilitated by generating the pharmacophoric hypotheses of the HCA in which a
correlation of binding affinity (BA) as an independent variable and the structural similarity
cursor was performed in the categories: higher affinity (a) and lower affinity (b), from five
molecular descriptors, atoms (ATM), Spatial Features (FEA), Hydrophobic (HYD), donor
(DON), and hydrogen bond acceptor (ACC).

The statistical analysis used in this study grouped structures of similar molecules
into categories (Cluster). Categories are represented by a two-dimensional (2D) diagram
known as a dendrogram. Molecules are represented by the branches at the bottom of the
dendrogram. The similarity between clusters is given by the length of their branches so that
compounds with low similarity have long branches while compounds with high similarity
have short branches. The HCA method classified the molecules into two classes (high
and low binding affinity) and was based on the Euclidean distance and the incremental
method with full linkage [22]. HCA technique presented a similarity dendrogram in which
the molecules were classified into two classes (with higher and lower binding affinity),
according to their similarities, as shown in Figure 3.
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Figure 2. Dendrogram of hierarchical cluster analysis of pharmacophoric descriptors and binding
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Figure 3. Dendrogram of HCA classifying structures with higher affinity (blue) and lower affin-
ity(red).

The classification in the clusters considered the structural similarity in relation to the
descriptors with the highest correlations. The binding affinity property stands out, which
allows us to evaluate the possible interaction in the binding site, as significant values of
higher BA (blue) of the structures were observed at 3–9. The cluster (blue) presents the
molecules with the highest binding affinity values, consisting of molecules 3, 4, 5, 6, 7, 8,
and 9. The cluster (red) classified the molecules with the lowest binding affinity value for
structures 10, 11, 13, 14, 15, and 16.

Pharmacophore characteristics are essential when compared to the central molecule of the
process, which has three HYD groups and three ACC groups, allowing the tracking of molecules
with physical and chemical characteristics closer to those of hydroxychloroquine (Table 2).
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Table 2. Characteristics obtained in the pharmacophoric model.

Pharmacophoric Characteristics
Coordinates

X Y Z Radius (Å)
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Hydrophobic
(HYD 1) 32.525 −13.999 −1.149 1.0

Hydrophobic
(HYD 2) 28.372 −15.871 −0.992 1.0

Hydrophobic
(HYD 3) 28.789 −18.153 −2.161 1.0

Tophit 313 molecules were selected using the physicochemical descriptors tracking
filter on the Pharmit web server (Table 3). The web server, in addition to the pharmacophore
model, enables the special tracking filter when the stereochemical and electronic charac-
teristics are simple and common, which allows for a more precise search with structural
diversity for the construction of a small database of chemical structures.

Table 3. Application filter of the physicochemical descriptors of the selected molecules.

Molecules MW RotBonds LogP TPSA ARO HBA HBD

1 * 335.88 9 4.00 48.38 2 4 2
2 319.87 8 5.00 28.16 2 2 1
3 620.36 9 7.45 115.85 0 10 0
4 634.37 9 7.69 115.85 0 10 0
5 662.40 9 7.93 115,85 0 10 0
6 704.45 8 7.38 126.84 0 10 0
7 648.39 9 7.63 126.84 0 10 0
8 633.36 9 6.91 126.84 0 10 0
9 647.38 8 6.63 132.64 0 9 1
10 661.42 10 7.88 118.64 0 9 1
11 647.40 8 6.77 118.64 0 9 1
12 647.40 9 7.15 118.64 0 9 1
13 661.42 10 7.65 118.64 0 9 1
14 675.44 8 6.40 132.64 0 9 1
15 647.40 8 6.77 118.64 0 9 1
16 661.42 9 7.15 118.64 0 9 1

Min. 319.872 8 4.00 28.16 0 2 0

Max. 704.450 10 7.93 132.64 2 10 2

* Pivot Molecule; MW: Molecular Weight; RotBond: rotative bonds; TPSA: Topological Polar Surface Area; Aro:
Aromatic; HBA: Hydrogen Bond Acceptor; HBD: Hydrogen Bond Donnor.

The success of molecule virtual screening shows that potential biological activity
depends on the precision and specificity of the activated pharmacophore [22]. Virtual
screening through a database consisting of commercial molecules from Molport and internal
molecules (real/virtual files extended from the real scaffold) as an internal 3D database
prepared for the virtual tracking of any model [23]. Thus, a molecular fit was applied to
the molecules selected from the virtual screening based on the pharmacophore model.

The 313 molecules obtained from the rapid tracking of pharmacophoric characteristics
and the application of reduction filters were subjected to the prediction of pharmacokinetic
properties. The plot of polar surface area and ALogP of the molecules is shown in Figure 4.
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The screening of the molecule’s results in the DS-ADME model showed that of the
313 molecules subjected to pharmacokinetic prediction, only 182 have 99% confidence
levels for human intestinal absorption and penetration into the blood–brain barrier (BBB).
The other molecules are outside the ellipse filter of the ADME model, which indicates their
lower intestinal absorption and low BBB penetration capacity. These ellipses define regions
where well-absorbed molecules are expected to be found.

The compounds’ good absorption or permeation through the blood–brain barrier is
measured by its LogP that must be less than five [23]. Results of pharmacokinetic screening
revealed that 174 molecules followed Lipinski’s rule of five for oral bioavailability. Eight (8)
molecule structures are out of the ellipse models because they show lipophilic nature due
to the high LogP value, and of these, only one structure showed high lipophilicity and low
membrane permeability due to the high LogP and molecular weight.

ADME descriptors of the molecules were calculated for drug similarity studies. In-
testinal absorption and blood–brain barrier penetration were predicted by developing
an ADME model using the 2D PSA and AlogP98 descriptors that include 95% and 99%
confidence ellipses [24,25].

Considering the established absorption, distribution, metabolism, and excretion ref-
erence parameters [26] and the pivot, the molecules selected in the previous step were
evaluated within these criteria, and 182 were selected, in which they satisfy the condi-
tions [27–29]. Chemical structures with less, or preferably without, violations of these rules
are more likely to be administered/available orally. The results of the pharmacokinetic pre-
diction revealed that the most active structures followed Lipinski’s rule of five (R5) for oral
bioavailability. The established reference ADME and pivot molecule parameters can be seen
in Tables 4 and 5; see Tables S1–S3 in Supplementary Material for extended information.
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Table 4. Prediction of pharmacokinetic properties for the molecules TopHits9.

Molecules Oral
Bioavailability MW AlogP HBD HBA R5

Normal range (<140 A◦2) (<500) (≤5) (≤5) (≤10) Max 4

Hydroxychloroquine 48.239 335.872 3.457 2 4 0
MolPort-009-219-532 30.142 355.471 4.755 0 4 0
MolPort-004-996-519 51.323 414.513 4.588 1 4 0
MolPort-005-060-605 45.027 398.538 4.677 0 4 0
MolPort-005-028-274 69.152 416.461 3.347 2 3 0
MolPort-004-042-669 66.740 417.518 3.416 0 6 0
MolPort-007-913-111 54.676 419.581 4.826 1 5 0
MolPort-002-693-933 50.364 324.417 4.586 1 3 0
MolPort-005-083-430 40.152 426.618 4.778 0 5 0
MolPort-009-499-144 80.327 398.376 3.166 2 4 0

Abbreviations: AlogP, the logarithm of the partition coefficient between n-octanol and water; MW: Molecular
Weight; HBD: Hydrogen Bond Donnor; HBA: Hydrogen Bond Acceptor; R5: Lipinski Violations.

Table 5. Computational pharmacokinetic parameters (ADME) of TopHits9 structures.

Molecules PPB Hepatotoxic CYP2D6 Solubility BBB IA

Hydroxychloroquine false true true 3 1 0
MolPort-009-219-532 true false true 2 0 0
MolPort-004-996-519 true false false 2 1 0
MolPort-005-060-605 true false false 2 1 0
MolPort-005-028-274 true false false 2 2 0
MolPort-004-042-669 true false false 2 2 0
MolPort-007-913-111 false false false 2 1 0
MolPort-002-693-933 true false false 2 1 0
MolPort-005-083-430 true false true 2 1 0
MolPort-009-499-144 true false false 2 2 0

BBB, blood–brain barrier (0 (Very high penetrant); 1 (High); 2 (Medium); 3 (Low); 4 (very low) [30]; Absorption,
human intestinal absorption (acceptable range: range is 0–2, where 0 is a good absorption) [28]; Aqueous solubility,
(acceptable range: range is 0–3, where 3 is a good solubility) [31]; Cytochrome P450 (CYP450) 2D6 inhibition
(false—non-inhibitor, true—inhibitor) [28]; PPB, plasma–protein binding (false—does not bind to plasma proteins,
true—binds to plasma proteins) [32,33]; Intestinal absorption (IA).

All molecules tested in the present study exhibit hydrogen bonding and hydrophobic
interactions with corresponding amino acids, according to molecular docking simulations.
The pivot structure did not present violation within the reference parameters (Lipinski’s
rule), and this same condition was observed for all molecules, which can be exemplified by
the great similarity between the tested molecules, thus corroborating the studies carried
out. The USFDA (Food and Drug Administration) standard toxicity risk predictor software
TOPKAT (Discovery Studio, Accelrys) locates fragments within the molecule structure that
indicates a potential threat to toxicity risk [30]. Toxicological predictions results for the
TopHits 9 molecules can be seen in Tables 6 and 7; see Table S4 in Supplementary Material
for extended information.

TOPKAT toxicity screening results for the selected compounds showed that the studied
compounds do not present a risk of carcinogenicity, mutagenicity, and skin irritation, nor
of skin sensitization capacity.

Similarly, the results of the USFDA rodent carcinogenicity toxicity screening, Ames
mutagenicity, were negative; the test is used globally as an initial screening method to
determine the mutagenic potential of new chemicals and drugs. In all parameters, ADMET
and toxicological, the selected compounds (8) indicate values and characteristics supe-
rior to those of the pivot compound. Only the molecule Molport-009-499-144 showed a
similar alert to hydroxychloroquine for the Ames mutagenicity test, requiring an inves-
tigation and in silico evaluation of the prediction of tolerated dose in an animal model.
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Molecules Molport-005-028-274, Mol-port-009-913-111, and Molport-002-693-933 present a
mild prediction for skin irritation.

Table 6. Molecules to the computational parameters of USFDA rodent carcinogenicity, Ames muta-
genicity and skin irritancy.

Molecules Mouse Female Rat Female Ames Mutagenicity Skin Irritancy

Hydroxychloroquine Non-Carcinogen Non-Carcinogen Mutagen None
MolPort-009-219-532 Multi-Carcinogen Non-Carcinogen Non-Mutagen None
MolPort-004-996-519 Non-Carcinogen Single-Carcinogen Non-Mutagen None
MolPort-005-060-605 Non-Carcinogen Non-Carcinogen Non-Mutagen None
MolPort-005-028-274 Non-Carcinogen Multi-Carcinogen Non-Mutagen Mild
MolPort-004-042-669 Non-Carcinogen Non-Carcinogen Non-Mutagen None
MolPort-007-913-111 Multi-Carcinogen Single-Carcinogen Non-Mutagen Mild
MolPort-002-693-933 Multi-Carcinogen Single-Carcinogen Non-Mutagen Mild
MolPort-005-083-430 Non-Carcinogen Non-Carcinogen Non-Mutagen None
MolPort-009-499-144 Non-Carcinogen Non-Carcinogen Mutagen None

Table 7. Compliance of molecules with computational toxicity risk parameters.

Molecules Rate Oral LD50
(g/kg Body Weight)

Daphnia EC50
(mg/L) *

Rat Chronic LOAEL
(g/kg Body Weight)

Fathead Minnow
LC50 (g/L)

Hydroxychloroquine 0.207 34.619 0.033 0.0240
MolPort-009-219-532 0.520 0.011 0.014 0.0006
MolPort-004-996-519 0.867 0.394 0.005 0.0010
MolPort-005-060-605 4.923 0.104 0.005 0.0004
MolPort-005-028-274 5.528 0.370 0.021 0.0010
MolPort-004-042-669 0.819 1.157 0.024 0.0004
MolPort-007-913-111 1.803 0.022 0.051 0.0003
MolPort-002-693-933 1.560 0.442 0.066 0.0002
MolPort-005-083-430 0.063 0.720 0.014 0.0001
MolPort-009-499-144 1.065 2.801 0.016 0.0020

* Daphnia EC50—the effect concentration of a substance that causes adverse effects on 50% of the test population
Daphnia magna; Rat chronic —Lowest observed adverse effect level (LOAEL); Fathead minnow—Short-term
toxicity to fish.

TOPKAT toxicity screening results for the TopHits 9 showed that the molecules stud-
ied do not present a risk of carcinogenicity, mutagenicity, and skin irritation; however, the
warning can generate complications when compared to commercial compounds (Hydrox-
ychloroquine) in development and reproduction if ingested at high doses or long-term
therapeutic use in humans (see Table 7).

The carcinogenic potency data show that the molecules and pivot were within the
maximum tolerated dose for rats which caused the mortality of 50% of the investigated
population (TD50). The Molport-005-083-430 molecule, possessed a higher value of TD50;
however, in a mouse model, had values within the tolerated dose (see Table 8).

Table 8. Carcinogenic potency—tolerated dose (TD50, mg/kg body weight/day).

Molecules Mouse Rat RMTD *

Hydroxychloroquine 13.868 1.305 357
MolPort-009-219-532 147.089 51.500 90
MolPort-004-996-519 43.816 1.234 83
MolPort-005-060-605 3.365 0.445 26
MolPort-005-028-274 329.611 25.088 89
MolPort-004-042-669 178.986 9.745 26
MolPort-007-913-111 116.065 11.490 76
MolPort-002-693-933 80.973 10.346 91
MolPort-005-083-430 8.858 56.407 44
MolPort-009-499-144 496.259 15.599 42

* Rat Maximum Tolerated Dose (mg/kg body weight).
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2.2. Molecular Docking for ACE2 Receptor

The cryo-electron microscopy structure of the SARS-CoV-2 Spike trimer was recently
reported in two independent studies. However, an inspection of the available spike protein
structure revealed incomplete modeling of the RBD, particularly for the Receptor Binding
Motif (RBM) that directly interacts with ACE2 [34,35]. The general structure of SARS-CoV-2
RBD together with its subunits and constituent parts, can be seen in Figure 5.
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SARS-CoV-2 RBD has five antiparallel β-sheet twisted strands (β1, β2, β3, β4, and β7)
with short connecting helices and loops that form the nucleus [35]. Between the β4 and β7
strands in the core, there is an extended insert containing the short β5 and β6 strands, α4
and α5 helices, and loops (see Figure 5).

Given the large contact surface between Spike’s RDB domain and ACE2, to carry out
docking studies at this binding site, the grid configuration was centered on the Cα of the
Gln493 residue located at the interface of the interaction between Spike and ACE-2, as
shown in Figure 6.

According to Lan et al. (2020) [26], in vitro binding measurements showed that SARS-
CoV-2 RBD binds to ACE2 in a low-affinity range (nanomolar), indicating that RBD is a key
functional component within the subunit S1 which is responsible for binding SARS-CoV-2
on ACE2. In comparison, in alignment and mapping studies in their respective sequences,
the residues interact with ACE2 in the RBDs SARS-CoV-2 and SARS-CoV.
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It is worth highlighting that there are 14 shared amino acid positions used by both
RBMs for the interaction with ACE2 and 8 have identical residues between the two RBDs,
including Tyr449/Tyr436, Tyr453/Tyr440, Asn487/Asn473, Tyr489/Tyr475, Gly496/Gly482,
Thr500/Thr486, Gly502/Gly488, and Tyr505/Tyr491 from SARS-CoV-2/SARS-CoV, re-
spectively. Five positions have residues that have similar biochemical properties despite
having different side chains, including Leu455/Tyr442, Phe456/Leu443, Phe486/Leu472,
Gln493/Asn479, and Asn501/Thr487 of SARS-CoV-2/SARS-CoV, respectively.

This extended insert is the RBM, which contains most of the SARS-CoV-2 contact
residues that bind to ACE2 [36,37]. The N-terminal peptidase domain of ACE2 has two
lobes, forming the peptide substrate binding site between them.

The docking poses of all the main molecules show that they interact in a conformation
that fits them into the binding pocket of the RBM. The docking poses, along with their
respective interactions, are shown in Figure 7.

The generated docking poses made it possible to observe that the ligands interact with
the amino acid residues of the active site of Spike RBD (PDB ID 6M0J) around the α-helix
between the Tyr449-Tyr505 amino acid residues and comprised in the β-sheet between the
residues of Glu35-Asp39 amino acids. In ligands, it is possible to observe hydrophobic
interactions with many residues in Leu39, Tyr449, Leu452, Phe490, and Leu492; these
results agree with studies in the literature [38].

In the study of molecular docking, the interactions of potential inhibitors with the
amino acid residues Tyr449, Gln493, Ser494, and Tyr505 in Spike RBD are similar to
those reported in the literature [39–41]. The best-evaluated inhibitors in terms of binding
affinity were (B) MolPort-007-913-111 (−8.540 kcal/mol) and (C) MolPort-002-693-933
(−8.440 kcal/mol), in the which interactions were like those observed in the control for
residues Glu35 and Ser494, contributing to the increase in binding affinity. The unusual
interactions between the inhibitors were Leu39, Tyr351, Tyr 449, Phe490, Glu494, and
Tyr505, and these contributions help to stabilize the active site for Spike inactivation in the
RBM domain, see Figure 7.

A heatmap of the hierarchical cluster analysis of molecules can be seen in Figure 8. The
analysis was performed to select the molecule with the highest representation from each
group based on structural dissimilarity. It is known that similar molecules have a similar
mechanism of action [42], as there is still no known drug for the treatment of SARS-CoV-2
(ACE2 target).
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Figure 7. Interactions of the ligands (A) Hydroxychloroquine, (B) MolPort-007-913-111, (C) MolPort-
002-693-933, (D) MolPort-004-042-669, (E) MolPort-005 -131-430, and (F) MolPort-005-060-605 in the
Spike RBD active site. Ligands are shown as green rods, Spike RBD residues are shown as atom-like
colored rods, hydrogen bonds formed between the ligands and the receptor are represented as
green dotted lines, π–π type interaction as lines yellow dotted lines and π–cation interaction as red
dotted lines.
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Figure 8. Heatmap of hierarchical cluster analysis based on the Tanimoto index of selected molecules
for ACE2.

In the heatmap of the molecules selected in the ACE2 target, cluster 1, the molecule
that presents a chemical structure profile with greater dissimilarity from the others is
MolPort-005-131-430, with a Tanimoto index (IT) of 0.23 for the 1-methoxy -4methylbenzene
fragment. The interaction of the Tyr449 residue (hydrogen bonding) with the fragment
stands out in the binding affinity value (molecular docking study) for the molecules of the
group. In cluster 2, the molecule MolPort-002-693-933 is observed, which presents IT of
0.31 for the 1-methoxy-3methylbenzene fragment and stands out in the binding affinity
value compared to the others belonging to the group, see Figure 8.

The N-[(2Z)-but-2-en-1-yl]pentan-1-amine fragment with IT of 0.27 is found in the
molecule MolPort-005-060-605 in cluster 3, the interactions (Glu35 hydrogen bonding,
Asp38 and Ser494, hydrophobic Tyr449, Leu452 and related electrostatic Asp38) enable the
expressive value of binding affinity. In cluster 4, a IT of 0.51 was seen for the 6,7-diethoxy-
3-propyl-2-thioxo-2,3-dihydroquinazolin-4(1H)-one fragment of the MolPort-007-913-111
molecule with Pi-alkyl interactions and alkyl. In cluster 5, the benzene fragment with an
IT of 0.33 from MolPort-004-042-669 has expressive Pi–anion interactions with the residue
Glu35 and Pi-alkyl with Leu39.

2.3. In Silico Determination of Biological Activity and Molecular Docking Simulations (Mpro)

In a study by Refaey et al. (2021) [43] regarding repositioning renin inhibitors as
SARS-CoV-2 main protease inhibitors, five pharmacophoric characteristics were found in
the pharmacophoric model, constituting two hydrogen acceptor and three hydrophobic
groups, thus, these results corroborate the data obtained in this research.

Therefore, in this study, we realize the theoretical determination of biological activity for
54 structures, and only five molecules showed the potential of protease inhibitors, see Table 9
(Tophits 5 and control). The control compound (11b, ~{N}-[(2~{S})-3-(3-fluorophenyl)-1-
oxidanylidene-1-[[(2~{S})-1-oxidanylidene-3-[(3~{S})-2-oxidanylidenepyrrolidin-3-yl]propan-
2-yl]amino]propan-2-yl]-1~{H}-indole-2-carboxamide) showed SARS-CoV-2 Mpro inhibitory
potential, validating the results predicted in this study. The exploration of biological activi-
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ties of the selected compounds through PASS analysis resulted in similar kinds of biological
activities.

Table 9. Prediction of biological activity of promising molecules.

Molecule
Molinspiration PASS

Score Bioactivity Pa [a] Pi [b] Biological
Activity

11b 0.65
0.28

Protease inhibitor
Enzyme inhibitor 0.265 0.016 Protease

inhibitor

MolPort-009-219-532
0.11
0.04

Protease inhibitor
Enzyme inhibitor - - -

MolPort-004-996-519
−0.08
−0.17

Protease inhibitor
Enzyme inhibitor - - -

MolPort-005-060-605
−0.48
−0.35

Protease inhibitor
Enzyme inhibitor - - -

MolPort-005-028-274
−0.36
−0.47

Protease inhibitor
Enzyme inhibitor 0.134 0.059 Protease

inhibitor

MolPort-009-499-144
−0.52
−0.47

Protease inhibitor
Enzyme inhibitor - - -

[a] Pa (probability to be active); [b] Pi (probability to be inactive).

Compound MolPort-009-219-532 presented predictions to be considered both a pro-
tease and enzymatic inhibitor, see Table 9. MolPort-005 -028-274 has shown prediction
protease inhibitors with a 0.134 probability to be active (Pa).

The molecular docking validation results were considered satisfactory, in which the rel-
ative positions of the crystallographic ligand and the coupled ligand were similar (Figure 9).
The RMSD between the atoms of the crystallographic ligand (Mpro) and the coupled ligand
was calculated to be 1.519 Å.
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Figure 9. Validation of the molecular docking protocols for the crystal structure of the main protease
(Mpro) COVID-19 in complex with 11b inhibitor *.

According to Gowtham et al. (2008) [44] and Hevener et al. (2009) [45], the pre-
dicted binding mode using molecular docking indicates that when the RMSD is less than
2.0 Å in relation to the crystallographic pose of a respective ligand, the validation is
considered satisfactory [46,47].

The 3CLpro/MPro activity site is found in the gap between domains I and II, con-
sisting of a Cys-His catalytic dyad (Cys145 and His41) [48]. The active pocket consists of
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hydrophobic amino acids such as Tyr54, Met49, Met165, Phe140, Leu141, Cys145, Leu27,
Pro168, Leu167, Cys145, Ala191, Cys44, Leu50, and Met40, which provide a relatively
hydrophobic environment to contain the compound and stabilize its conformation.

In control 11b (A) the interactions observed in the docking study were also similar in
molecules (B) MolPort-009-219-532 and (D) MolPort-005-060-605 in relation to the active site,
and others not common in molecules (C) MolPort-004-996-519, (E) MolPort-005-028-274,
and (F) MolPort-009-499-144. The interactions are located around the α-helix between the
amino acid residues Met49-Glu47 and in the β-sheet at residues His163-164 and Glu166, as
shown in Figure 10.
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The selected molecules were docking with binding affinity energies to the Mpro target,
and thus, a range of −8.587 to −9.012 kcal/mol was observed. The values found for the bind-
ing affinity in the docking study of all molecules are shown in the Supplementary Material,
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see Table S5. In the selected chemical structures, only molecule (B), MolPort-009-219-532,
showed superior and/or similar results for binding affinity (−9.012 kcal/mol) compared
to the values of the controls used in the study of molecular docking (11b: −8.587 kcal/mol;
Lopinavir: −9.680 kcal/mol and Ritonavir: −9.594 kcal/mol). In (B), MolPort-009-219-
532 interactions with hydrogen bonds and amino acid residues His163 and Gln189 were
observed, suggesting the stabilization of the formed complex and the contribution of hy-
drophobic interactions with residues Met165-Pro168; Pi-sulfur Met49 and electrostatic
interactions withthe Glu166 residue were also seen. The other molecules used in the molec-
ular docking study, despite showing a lower binding affinity value, showed interactions
similar to those observed for control groups and were not common among residues Gln189,
Gln192, Asp187 and His164.

Around the α-helix (Glu47-Leu50) of the crystallographic structure, Mpro has a con-
formation that allows interaction with the Met49 residue, while those located in the β-sheet
bind to the His163-Glu166 amino acids on the active sites of the receptor (PDB 6M0K). The
major interactions involved were of the conventional hydrogen bond type observed in
residues His163 and Glu166, located in the β-sheet, and Gly143 in the loop of the macro-
molecule. In the α-helix, Met49, Met165, and Pro168 residues appear in processes involved
in hydrophobic electronic interactions, respectively. Therefore, this study showed that the
results agree with studies in the literature [49,50].

In the heatmap (Figure 11) of selected molecules in the Mpro target in cluster 1, the
4-acetyl-3,5-dimethyl-1H-pyrrole-2-carbaldehyde fragment with an IT of 0.26 (MolPort-009-
499-144) has an expressive hydrophobic interaction with the Cys145 residue. In cluster 2,
the N-[(5-methyl-2-phenyl-1,3-oxazol-4-yl)methyl]-N-(tetrahydrofuran-2-ylmethyl)propan-
1-amine fragment of the MolPort-005-060-605 molecule with an IT of 0.54 has hydrophobic
interactions with His41, Met49, and Met165 residues and hydrogen bonding with His164.
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In cluster 3, the N,4-dimethyl heptanamide fragment of the MolPort-005-028-274
molecule with an IT of 0.32 has conventional hydrogen bond interactions with the Glu 166
residue. In cluster 4, the 1-benzylpiperidine fragment from MolPort-004-996-519 with an IT
of 0.486289 has electrostatic interactions with Glu166; and C-H binding with Gln189. At 5,
the 1-benzylpiperidine fragment from MolPort-009-219-532 with an IT of 0.486289 shows
electrostatic interactions with the Glu166 residue. The dissimilarity analysis allowed us to
observe the contribution of each fragment to the possible interactions at the site of activity
in the molecular targets of the study.

2.4. Synthetic Accessibility (SA) Prediction

The molecules selected in the molecular docking study were subjected to synthetic ac-
cessibility (SA) prediction and presented chemical accessibility predicted as easy, obtaining
a score above 60 for both ACE2 and Mpro; that is, the molecules are easily synthesized, as
shown in Table 10, see Table S6 in the Supplementary Material for extended information.

Table 10. Prediction of Synthetic Accessibility (SA) of selected molecules.

Molecules SA Target

MolPort-007-913-111 65.579

ACE2
MolPort-002-693-933 79.254
MolPort-004-042-669 67.940
MolPort-005-131-430 61.351
MolPort-005-060-605 67.338

MolPort-009-219-532 81.768

MproMolPort-004-996-519 68.009
MolPort-005-028-274 67.051
MolPort-009-499-144 76.392

Synthetic accessibility was obtained by the AMBIT web server (ambit.sourceforge.net/
reactor.html) (accessed on 31 May 2021) [51]. AMBIT calculates the complexity parameters
of a molecule and issues a score ranging from 0 to 100, where 100 is the accessibility
value synthetic maximum (easy synthesis) and 0 is the minimum (greater difficulty of
synthesis) [52]. At the end of the virtual screening stages, nine molecules presented a better
profile for SARS-CoV-2 inhibitory potential, according to Figure 12.

2.5. Prediction of Lipophilicity and Water Solubility for Promising Compounds

A parameter, commonly logP, is used to express the liposolubility of drugs, and it
becomes the key point for drug planning [53]. This property affects the ability of a molecule
to decompose and to decompose in non-polar environments versus aqueous environments.
The nine promising compounds showed consensus logP values spanning from 3.54 to 4.26,
see Table 11.

In fact, in this study, only positive logP values in the range of 1.56 to 5.71 were found.
It is worth mentioning that such positive values indicate that all molecules that are highly
lipophilic meet an essential criterion for a drug candidate [54].

The promising compounds showed consensus regarding logS values in the range of
−4.64 to −6.26, as shown in Table 12. In this study, only negative logS values in the range
−3.91 to −8.57 were found. A logS reference value for moderate solubility is between
−4 and −6, −2 to −4 indicates good solubility and values greater than −6 indicate poor
solubility. Solubility in water is an important requirement for any drug candidate molecule,
considering its oral or parental administration, as there are many active pharmaceutical
ingredients that must be administered in small volumes [55]. Therefore, we can conclude
that the pivot molecule and nine promising compounds are moderately soluble in water,
and the compound MolPort-005-028-274 is poorly soluble in water.
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Table 11. Prediction of lipophilicity through the free web tool SwissADME *.

Moleclues iLOGP XLOGP WLOGP MLOGP SILICOS-IT Consensus
LogP

Pivot 3.58 3.58 3.59 2.35 3.73 3.37
MolPort-007-913-111 4.50 4.10 4.13 2.71 5.60 4.21
MolPort-002-693-933 3.33 4.12 3.79 3.46 5.20 3.98
MolPort-004-042-669 3.99 3.55 4.05 2.03 4.62 3.65
MolPort-005-131-430 4.17 4.02 3.23 2.78 4.48 3.74
MolPort-005-060-605 4.61 4.67 4.90 2.76 5.71 4.53
MolPort-009-219-532 4.58 4.51 4.37 2.98 4.78 4.24
MolPort-004-996-519 4.47 4.07 4.48 3.28 4.99 4.26
MolPort-005-028-274 3.46 3.18 3.76 3.23 5.62 3.85
MolPort-009-499-144 2.95 3.04 5.09 1.56 5.05 3.54

* iLOGP: physics-based method relying on free energies of solvation in n-octanol and water calculated by the
Generalized-Born and solvent accessible surface area model; XLOGP: an atomistic method including corrective
factors and knowledge-based library; WLOGP, implementation of a purely atomistic method based on the
fragmental system of Wildman and Crippen; MLOGP: an archetype of a topological method relying on a linear
relationship with 13 molecular descriptors; SILICOS-IT: a hybrid method relying on 27 fragments and 7 topological
descriptors.
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Table 12. Prediction of solubility through the free web tool SwissADME.

Moleclues ESOL Ali SILICOS-IT Consensus LogS

Pivot −3.91 −4.28 −6.35 −5.81
MolPort-007-913-111 −4.69 −5.73 −5.99 −5.95
MolPort-002-693-933 −4.29 −4.89 −7.10 −5.35
MolPort-004-042-669 −4.35 −5.17 −5.67 −6.33
MolPort-005-131-430 −4.63 −4.66 −7.43 −6.03
MolPort-005-060-605 −5.01 −5.40 −7.02 −5.42
MolPort-009-219-532 −4.57 −4.88 −6.97 −5.27
MolPort-004-996-519 −4.68 −4.84 −7.45 −5.94
MolPort-005-028-274 −4.06 −4.27 −8.57 −6.58
MolPort-009-499-144 −3.92 −4.39 −6.72 −6.57

3. Materials and Methods
3.1. Obtaining, Optimizing, and Molecular Docking for Selected Structures

Initially, hydroxicloquine, chloroquine, and 14 structures of 1,2,4,5 tetraoxane ana-
logues were selected from the literature with proven in vitro testing against malaria caused
by Plasmodium falciparum—Sierra Leone clone D-6 to form the training set (Figure S1, see
Supplementary Materials), followed by chemometric analysis studies [56]. The molecules
were optimized by the computational method DFT B3LYP 6-31G** to obtain bioactive
conformation and later used as input files (in .mol and .sdf formats). Hydroxychloro-
quine was used as a control molecule because it has selective antimalarial activity, and the
molecules were subjected to a molecular docking study in order to evaluate the binding
affinity at the binding site in the receptor–binding domain in the Spike of SARS-CoV-2
linked to ACE2 with PDB ID 6M0J using the DockThor program in order to select the best
bioactive pose (conformation + orientation) at the binding site for future analyses to obtain
the pharmacophoric model. The methodological step can be consulted in more detail in
Sections 2.2 and 3.5.

3.2. Generation and Evaluation of the Pharmacophoric Model

The input file with the pivot and molecules with the best binding affinity values
were submitted to the PharmaGist web server (https://bioinfo3d.cs.tau.ac.il/PharmaGist/)
(accessed on 6 March 2021) to determine the pharmacophoric characteristics: Atoms (ATM),
Spatial Features (SF), Features (F), Aromatic (ARO), Hydrophobic (HYD), Acceptors (ACC)
Donors (DON) [57]. An alignment score was used to choose the model and was later
evaluated by the incremental method via Hierarchical Cluster Analysis (HCA) and Pearson
correlation (pharmacophoric characteristics with binding affinity of studied molecules).

3.3. Selection of Molecules in the Database

The pharmacophoric model with the best alignment score was submitted to the Phar-
mit web server (http://pharmit.csb.pitt.edu/search.html) (accessed on 6 March 2021) for
selection of the Top2000 molecules in the MolPort® database (~7.9 million compounds)
(Riga, NY, USA), based on pharmacophoric characteristics and filter (maximum and
minimum) values of molecular descriptors, to increase the structural diversity in the
virtual strategy [58].

3.4. Prediction of Pharmacokinetic and Toxicological Properties

Calculations of predictions of absorption, distribution, metabolism, excretion, and
toxicity (ADMET) were performed using Discovery Studio v16, San Diego, CA, USA (2013)
software [59,60]. These properties are important in determining the compound’s success for
human therapeutic use. Some important chemical descriptors correlate well with ADMET
properties, such as Polar Surface Area (PSA) as a primary determinant of fraction absorption
and low Molecular Weight (MW) for oral absorption. The distribution of compounds in the
human body depends on factors such as the blood–brain barrier (Log BB), permeability

https://bioinfo3d.cs.tau.ac.il/PharmaGist/
http://pharmit.csb.pitt.edu/search.html
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such as Caco-2 apparent permeability, MDCK cell apparent permeability, Log Kp for skin
permeability, the volume of distribution, and binding to plasma proteins (Log Khsa for
protein binding).

Toxicity prediction tests were performed using Discovery Studio v.16 software via
the Toxicity Prediction function by Komputer Assisted Technology (TOPKAT). Toxicity
parameters included carcinogenicity in rodents, mutagenicity, the Ames test, skin irritation,
eye irritation, aerobic biodegradability (AB), oral toxicity in rats (LD50 in g/kg body weight),
and whether the molecule was non-carcinogenic, non-mutagenic or non-degradable.

3.5. Molecular Docking for ACE2 Receptor with DockThor

Correct assignment of protein and ligand protonation/tautomeric states is crucial to
the binding mode and its affinity predictions, requiring careful inspection of the structures.
In this research, the complexes were prepared using the PDB2QR web server (https://
server.poisonboltzmann.org/pdb2pqr) (accessed on 6 March 2021) [61,62]. The assignment
of protonation and tautomeric states of the ligands was performed with the Discovery
Studio program, while the hydrogen atoms of the protein were added with PROPKA
using pH 7.

The crystal structure of the Spike receptor binding domain of SARS-CoV-2 linked to
ACE2 (Homo sapiens organism) with PDB ID 6M0J [63], resolution of 2.45 Å, and elucidated
by the X-ray diffraction method.

The DockThor program uses a topology file for the ligand and cofactors (.top) and
a protein-specific input file (.in) that contains the atom and partial charge types of the
MMFF94 force field, both of which are generated using the built-in tools MMFFLigand
and PdbThorBox. The PdbThorBox program is used to define the protein atom types and
the partial charges of the MMFF94 force field. Thus, in the DockThor program, protein
and ligands (including cofactor molecules) are treated with the same force field in the
docking experiment [64].

The grid box configuration of each complex was automatically determined according
to the reference binder when available: (1) The center of the coordinates was defined as the
center of the coordinates of the ligand. (2) The grid size was defined as the largest value
of the ligand axis but with a tolerance of 6 Å in each dimension. (3) Discretization (i.e.,
spacing between grid box points) was set to the default value of 0.25 Å.

The default parameters of the algorithm were defined as follows: (1) 24 docking runs,
(2) 1,000,000 evaluations per docking run, and (3) population of 1000 individuals [65]. The
quality of the protein–ligand docking score was evaluated based on the Root Mean Square
Deviation (RMSD) between the best score of the docking pose and the experimental binding
mode of the crystal ligand. The literature describes the common limit used to consider a
highly flexible ligand coupling pose as an active type of conformation when the backbone
RMSD value is ≤2.0 Å [46].

3.6. In Silico Determination of Biological Activity and Molecular Docking Simulations (Mpro)

Predictions of biological activity were performed using the online PASS web server,
available at http://www.pharmaexpert.ru/passonline (accessed on 3 June 2021) [66]. Using
PASS, it was possible to discover the effects of a compound based entirely on the molecular
formula using MNA (multilevel neighbors of atoms) descriptors, suggesting that the
biological activity is in the function of its chemical structure [67]. The drug-likeness
calculations were carried out in Molinspiration analyses. Only molecules with protease
inhibitors and enzyme inhibitors were selected at this stage.

Molecular Docking for Mpro Receptor

The crystal structure of the main protease (Mpro) of COVID-19 in a complex with the
inhibitor 11b, PDB ID 6M0K [68] and a resolution of 1.50 Å were downloaded in the Protein
Data Bank (PDB) in the format (.pdb) to perform an interaction study and receptor–ligand

https://server.poisonboltzmann.org/pdb2pqr
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binding mode in the study of molecular docking. The hydroxychloroquine and 11b ligands
were used as positive controls, and all water molecules and cofactors were deleted.

3.7. Structural Similarity and Synthetic Accessibility (SA) Prediction

Hierarchical clustering methods were used to select the molecules with the ChemMine
Tools server, in which the measures of structural similarity of the clusters were calculated
from atomic descriptors between each molecular pair, which generated a similarity ma-
trix based on unique and common characteristics observed between molecules using the
Tanimoto Index (0 = less similar and 1 = greater similarity). In the subsequent grouping
steps, the similarity matrix was converted to a distance matrix by subtracting the similarity
values from 1. The similarity search by ChemMine Tools allowed the structural comparison
of ligands and their grouping according to similarity based on the Tanimoto Index [69].

The prediction of the synthetic accessibility (SA) of the molecules was performed using
the AMBIT program (http://ambit.sourceforge.net/reactor.html) (accessed on 3 June 2021).
The model for SA uses four weighted molecular descriptors, which represent different
structural and topological features combined in an additive scheme [51,70]. In each target
molecule or set of molecules, the algorithm calculates the molecular complexity; the stereo-
chemical complexity is the complexity due to the presence of fused and bridged systems.
The SA is issued as a score ranging from 0 to 100, where the value 100 is the maximum
synthetic accessibility; that is, the molecule is more easily synthesized.

3.8. Prediction of Lipophilicity and Water Solubility for Promising Compounds

Promising molecules were evaluated with SwissADME software [53,55,56] for the pre-
diction of lipophilicity and water solubility expressed by means of values of logP and logS,
respectively. SwissADME provides five methods to predict logP values: iLOGP, xLOGP3,
WLOGP, MLOGP, and Silicos-IT. iLOGP is an internal physical method of SwissADME,
based on free solvation energies in 1-octanol and water calculated by the Generalized-Born
model and access to surface area solvent (GB/SA). It has a performance equal to or greater
than six well-established predictors.

4. Conclusions

The COVID-19 related pandemic is a fight that still needs to be fought by humanity,
and beyond prevention by vaccination, the only way out is through the discovery of new
drugs. Our study identified some potential candidates that can be used for the inhibition of
Spike protein and Mpro in COVID-19.

ADMET studies have revealed that most molecules have good absorption properties
and low acute toxicity values. Molecular docking studies confirmed the binding of molecules
at the ACE2 active site, in which the molecule MolPort-007-913-111 had the best binding
affinity value of −8.540 Kcal/mol, followed by MolPort-009-219-532 −9.012 Kcal/mol to
Mpro. The similarity analysis was developed to guide future studies of molecular dynamics
(MD) in the selection of these compounds. Promising compounds present binding affinity
values with non-significant differences, and it may happen that when submitted to MD
simulations, the behavior within the system is equivalent because they present great
structural similarity. In this way, the structures of the compounds were evaluated based on
the differences evident in each comparison cluster, both for the set of compounds selected
in ACE2 and in Mpro. Additional experimental studies (in vitro and in vivo) need to be
carried out to test possible candidates since they are easy to be synthesized, and thus better
clarify the mechanism of action of the virus in the human organism.
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