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Single-cell network biology for resolving cellular
heterogeneity in human diseases
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Abstract

Understanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes
show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate
the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a
cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional
methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore,
reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data.
Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every
individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology
using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review,
we provide an overview of single-cell network biology and summarize recent progress in method development for
network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene
networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states.
Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also
introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm

shift toward single-cell network analysis for systems biology in the near future.

Introduction

The adult human body is composed of ~37 trillion
cells’, which are the functional units of organismal sys-
tems. Although each cell contains almost identical geno-
mic information, at least several hundred major cell types
with distinct morphology, behavior, and functions are
expected to exist in the human body. Deviation from the
destined identity of functional cells is a major cause of
human diseases. Different cellular compositions of tumor
tissue may result in different drug responses and prog-
noses. Disease-associated genetic variants affect only
particular cell types, which makes functional validation of
candidate variants derived from genome-wide association
studies challenging”. Therefore, understanding human
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body operation at the cellular resolution is the ultimate
goal in biology and medicine.

Investigation of individual cell types in vivo is techni-
cally challenging. Flow cytometry analysis has been used
for single-cell profiling for the past several decades®, albeit
with some limitations. First, it is a targeted analysis
method for only a preselected set of molecules. Second,
due to the spectral limitation of fluorescent proteins, this
method can profile up to 17 proteins simultaneously,
which is extended to ~40 proteins by mass cytometry®.
Recently, we have witnessed a rapid improvement in
single-cell RNA sequencing (scRNA-seq) technology,
which is indeed a game changer in the field of single-cell
biology. Current scRNA-seq technology can easily gen-
erate whole-transcriptome data for hundreds to thou-
sands of cells from a single sequencing reaction and
identify key genes associated with each cell type or state
by differential expression analysis across distinct cellular
groups of similar transcriptome. Therefore, we now
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characterize individual cell types or states in a tissue that
is generally composed of diverse cell types. To date, a wide
variety of methods for scRNA-seq data generation and
analysis have been developed, and they are extensively
described in other excellent reviews®*”. Recent bench-
marking studies also showed that scRNA-seq protocols
differ substantially in their ability to capture RNA, scal-
ability, and cost effectiveness®”.

Despite much improvement, single-cell omics may not
be sufficient for understanding cellular heterogeneity.
Although differential expression analysis of scRNA-seq
data may identify genes specific to cell types and states,
understanding cellular identity simply from a list of up or
downregulated genes would be a daunting task because
the functional effects of genes depend on their relation-
ships. Gene functions and the effects of disease-associated
variants are largely attributable to the interaction partners
of these genes in the given cellular context'®'!. From a
systems biology perspective, network modeling of genes
will be highly useful for understanding functional orga-
nizations of key regulators involved in operational path-
ways of each cell state'”. Network biology has shifted our
perception of a cell from a system mainly comprised of
the linear signaling pathways to one occupied by many
highly complex intertwined connections among mole-
cules. In particular, the gene regulatory network (GRN) is
an intuitive but versatile graph model for functional
analysis that has been extensively utilized over the past
decade. GRNs have made significant contributions to
identifying disease biomarkers and therapeutic targets and
were ultimately realized as a crucial tool for deciphering
medical genomics data'®. Scrutinizing the regulatory
interactions between genes in various biological contexts
will provide valuable insights into how the emergent
functions of a given living system was designed to be
regulated.

In this review article, we introduce the definition of
single-cell network biology and present the current
methodologies to infer GRNs from scRNA-seq data and
determine how they can improve our understanding of
regulatory circuits for cellular identity and facilitate the
practice of precision medicine.

What is single-cell network biology?

Network biology has served as a useful tool for the study
of complex cellular systems by providing a glimpse into
the functional organization of genes operating in normal
and disease states. The GRN is a particularly useful type of
gene network that is composed of regulatory relationships
inferred from variations across many sources of expres-
sion. Typical approaches to analyze GRNs include the
identification of hub genes based on network centrality
measures'* and functional modules using algorithms for
finding network communities'®. Network biology has
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already proven useful for the study of cellular systems, and
here, we present an emerging approach in network biol-
ogy with single-cell transcriptome data, namely, single-cell
network biology.

Before the era of single-cell genomics, transcriptomic
data were generated from tissue samples using bulk
RNA sequencing (bulk RNA-seq). To estimate expres-
sion correlation between genes, a large number of
expression measurements was generally required,
accordingly demanding an equal number of sequencing
reactions for tissue-based analysis. Consequently, the
correlation of gene expression could be measured
through a sample-by-gene matrix (Fig. 1a). Therefore, it
is imperative to prepare a large number of samples for
network modeling based on bulk RNA-seq data. Con-
versely, GRNs can be inferred from a single sample
preparation followed by a single sequencing reaction
with scRNA-seq analysis because it can generate
expression measurements for generally hundreds to
thousands of individual cells in parallel, generating a
cell-by-gene matrix (Fig. 1b). To infer regulatory inter-
actions specific to a particular cell type, we need to
divide cells into groups representing cell types using
dimension reduction and unsupervised clustering. This
procedure provides multiple cell-by-gene matrices for
distinct cell types, each of which will be used for
building cell-type-specific GRNs. Recently, multiple
studies demonstrated that the majority of bulk tissue
coregulatory links are explained by “cell-type composi-
tion variation” among samples rather than “state var-
iation within a cell type”*®"”. Therefore, only a fraction
of the network inferred from bulk RNA-seq data might
represent true within-cell coregulation between genes
(Fig. 1a). In contrast, networks inferred from the cell-by-
gene matrix for each cell type mainly represent intra-
cell-type coregulatory relations between genes (Fig. 1b).

Needless to say, the first benefit of single-cell network
biology is its enabling of the reconstruction of cell-type-
specific transcriptional regulatory programs. Since the
regulatory program specific to each cell type is the core
element governing the cellular identity, cell-type-specific
GRNs would be key tools for the study of cellular het-
erogeneity. Furthermore, these cell-type-specific GRNs
will reveal key regulatory factors and circuits for specific
cell types, facilitating mapping between disease-associated
variants and affected cell types. In addition, single-cell
network biology provides technical advantages. First, it
requires only a small amount of tissue sample for network
modeling; even a single biopsy would suffice with ade-
quately high throughput. Second, it can infer regulatory
networks from single cells at various levels of cellular
identities: major types, subtypes, or states. Third, it can
infer regulatory networks from single cells of each person,
resulting in personalized GRNs. Thus, in this aspect,
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Fig. 1 Comparison between network inference with bulk RNA-seq and scRNA-seq. a Network inference with bulk RNA-seq analysis. Multiple
tissue samples and sequencing are required to produce a gene-by-sample matrix. Correlation between genes can be detected from both expression
variation across cell states and variation of cell-type composition across tissue samples. The resultant coregulatory network is mostly composed of
cell-type composition-induced coexpression. b Network inference with scRNA-seq. A single tissue sample is disassociated into cells that are
individually analyzed in parallel. Clustering of the cells along with dimension reduction enables the identification of cell populations for each of the
major cell types. Using a gene-by-cell count matrix for each cell type, we can infer networks mainly composed of within-cell coregulatory links.
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single-cell network biology is cost-effective and highly
flexible and provides a personalized platform for biome-
dical research.

Network inference from single-cell gene expression data

Various algorithms for inferring regulatory interactions
between genes using bulk transcriptome data have been
developed. Popular approaches to network inference from
bulk transcriptome data are based on Boolean networks,
Bayesian networks, ordinary differential equations
(ODEs), information theory, regression, and correla-
tion'®~%°, Although these methods can be directly applied
to single-cell transcriptome data with some adjustment,
network inference algorithms specifically developed for
single-cell transcriptome data are also available.

Since single-cell transcriptome data can be ordered by
pseudotime, many algorithms to infer regulatory networks
based on time-ordered transcriptomes have been expli-
citly developed. The basic assumption of trajectory ana-
lysis is that each cell lies in a continuous process of
cellular differentiation. The trajectory reconstructed by
“pseudotemporal” ordering of cells can then be used for
network inference. However, the lack of consensus among
resultant trajectories implies that the performance of the
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network inference with pseudotime information will
greatly depend on the trajectory analysis algorithm.
Pseudotime information has been used to reconstruct
GRNs*'"?* from single-cell transcriptome data. A recent
benchmarking study, however, showed that the methods
that do not require pseudotime information performed
better?”.

There are a wide variety of metrics that can be used for
measuring coregulatory associations between genes, but
their application for single-cell transcriptome data was
mostly unsatisfactory”®. Another benchmarking study
concluded that most of the currently available methods
for regulatory network inference are not effective for
single-cell transcriptome data, even those explicitly
developed for single-cell studies™. The high proportion of
false-positive network links inferred from single-cell gene
expression data may be attributable to the intrinsic
sparsity and high technical variation. Although these
benchmarking results may suggest a lack of general
applicability of network inference methods for single-cell
biology, caution is advised in making such conclusions.
The true positive regulatory links used for evaluation may
not accurately represent the ground truth of the reg-
ulatory gene network in the tested cell types or states. In
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addition, the optimal network inference method for given
single-cell data could vary across cell types.

As this review focuses on the application of single-cell
network biology, we only provide a brief description of
major approaches to GRN inference from single-cell
transcriptome data. More extensive reviews about com-
putational algorithms are available from other recent
publications®®*°.

Boolean models

A Boolean network is the simplest approach to recon-
structing regulatory gene networks®. In systems biology,
a Boolean network refers to a set of genes with binary
states (activated or repressed)®'. This approach is often
used to describe the interaction between mRNAs and
proteins to predict gene patterns®>. In this network, each
cell is classified into a certain state, and similar cells are
then connected. The resulting state-cell graph provides
useful information about key regulators that drive certain
cellular states. Its simplicity allows the resulting network
to be determined with as few assumptions as possible,
with one naturally being that all genes must follow a
binary law. Single-cell Boolean GRNs have been suc-
cessfully applied to predict curated models of hemato-
poiesis®>*°, A drawback of this approach is the
computational burden. Thus, Boolean-based tools have
limited scalability, which will prevent users from building
a genome-scale network. Therefore, users must carefully
select the genes they wish to model, which is usually no
more than 100 genes. The Partially Observed Boolean
Dynamical system model is a framework for modeling the
behavior of GRNs, and this approach allows indirect and
incomplete observation of gene states and has been
explored for application to scRNA-seq data®®.

Ordinary differential equation (ODE) models

GRN modeling via ODE focuses on a series of discrete
states to capture the dynamics of the network in question.
While other methods discretize variables, ODE uses
continuous variables and is one of the popular methods to
map a dynamic system of gene regulation. To date, ODE
is the best analyzed approach for nonlinear systems®’. In
this model, the change in expression over continuous time
is characterized by a function that takes the inhibitory or
activating influence of other genes as variables'®. This
approach is most suitable for identifying a process in a
system that is assumed to be continuous (e.g., differ-
entiation). The input time scale could be either an infer-
red pseudotime or metadata from a time-series
experiment. SCODE® is a network construction tool that
relies on ODE to map differentiation in single-cell tran-
scriptome data. Some tools based on ODE assume a
steady state condition®**°, which makes them suboptimal
for differentiation-related analysis.
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Regression models

Most regression-based network inference tools follow
an underlying assumption that the expression of all genes
can be summarized as a simple weighted linear equation.
For this assumption to hold true and produce a reliable
prediction, the variables of the data must be independent,
and the residuals (errors of fitted linear model) must
follow a normal distribution, which is not usually the case
for current single-cell transcriptome data. Therefore,
most network inference tools based on regression models
must be adjusted by a statistical trick (e.g., polynomial
modeling, data transformation) to bypass these assump-
tions. Users must be careful so that this preprocessing
step does not compromise the overall structure of the
data. In this approach, users may need to provide a list of
regulators such as transcription factors (TFs) as input
data. Then, the network inference algorithm deconstructs
the problem of explaining the expression of a certain
target gene with a set of regulators. Here, each sub-
problem is viewed as a feature selection. Regression-based
approaches not only estimate the underlying association
between regulators and target genes but also infer the
association intensities. The success in ensemble of
regression trees (random forest) by GENIE3*' has led to
this approach being widely used for network inference
from both bulk and single-cell transcriptome data. How-
ever, GENIE3 calculation is not feasible for data from
more than several thousand cells. Subsequently, a much
faster and more scalable assembly method for regression
trees, GRNBoost, was developed***, Regulatory networks
inferred from single-cell regression analysis tend to have
more false-positive links than those inferred by bulk
transcriptome regression analysis. To reduce false-
positive links, networks inferred from GENIE3 or
GRNBoost were filtered for putative direct-binding tar-
gets based on TF binding motif enrichment in the SCE-
NIC software package®”.

Correlation and other association models

GRNs based on coregulatory interactions are commonly
inferred from correlations between genes across sources
of expression variation**, Common measures of expres-
sion correlation between genes are the Pearson correla-
tion coefficient and rank-based Spearman correlation
coefficient. Sources of expression variation are not limited
to cell state differences. A large portion of variation can
originate from various technical factors, which can easily
create confounding effects in correlation inference. Batch
effects across samples can also generate nonbiological
variation. Because single-cell transcriptomic data are
associated with high noise and sparsity, the effect of
technical variation could be more critical for single-cell
coregulatory network inference. An evaluation of
coexpression-based network inference with scRNA-seq
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data from 31 individual studies comprising 163 cell types
showed lower retrieval of known functional links than
those inferred from bulk RNA-seq data®. The same study
also showed reduced performance of coexpression-based
network inference with the normalization of UMI data,
probably due to unintended covariation, particularly
among low-expressing genes. The improved performance
with batch-corrected UMI data®, however, suggests that
with single-cell coexpression-based network inference,
extra care is needed for handling technical variations.

Mutual information (MI) can also measure associations
between genes based on expression profiles, and it is
particularly useful for mapping nonlinear associations®.
In constructing a coexpression network from scRNA-seq
data, users must consider the various technical properties
distinct among different sequencing platforms that govern
single-cell transcriptome data. An algorithm of MI-based
network inference has been explicitly developed for
single-cell transcriptome data®’.

The coregulatory association between genes with mul-
tiple sources of expression variations can be measured by
many other metrics. Recently, 17 distinct measures of
association for inferring gene networks were evaluated
and showed that proportionality measures performed best
across multiple scRNA-seq datasets and technologies®.
The compositional nature of transcriptomic data, in
which only the relative abundance of transcripts is mea-
sured per sample*®, may contribute to the high perfor-
mance because scRNA-seq currently only captures a small
proportion of the total transcripts per cell. It is, however,
noteworthy that all the association measures, including
proportionality, assessed in this study barely performed
above random expectation, suggesting that the high noise
and sparsity of scRNA-seq data must be addressed during
data preprocessing before network inference. One such
effort recently developed is a method for measuring cor-
relation with scRNA-seq data by pooling cells considered
biological replicates and transforming the count matrix to
z scores, which dramatically increases correlation between
genes and facilitates network inference®.

Network filtration for single-cell gene expression

While the “bottom-up approaches” are mainly used to
infer cell-type-specific networks from gene expression
data, they can also be constructed by filtration of refer-
ence gene networks through single-cell gene expression
data (referred to as the “top—down approach”). In this
approach, single-cell transcriptome data that contain
multiple factors are used to fine-tune the reference net-
work to reflect specific context. Gene network databases,
such as STRING®®, HumanNet*', and PCNET"* provide
high-confidence gene functional links. Filtering the global
networks for expressed genes for a distinct cell type will
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result in a cell-type-specific network. The “top—down
approach” for constructing context-specific networks with
bulk RNA-seq data has already been applied to cancer
research. Prognostic biomarkers of ovarian cancer and
leukemia have been identified by filtering the global
protein—protein interaction network for disease specifi-
city®®. Sample-specific network®* analysis has been shown
to be more effective for identifying driver genes in indi-
vidual tumors®, and aggregating these drivers across
cancers may reveal new insights into precision cancer
therapy.

SCINET®® is a recent computational framework that
allows optimal filtering of the reference network to obtain
a cell-type-specific network according to the input single-
cell data. Using these cell-type-specific networks, the
authors showed that disease-associated genes tend to
interact with each other with cell-type specificity, with
marker genes showing higher -cell-type-specific cen-
tralities than those in the global network by integration of
cell-type-specific networks. This analytical framework,
which can be generally applied to any reference network
and any single-cell expression dataset, enables researchers
to infer cell types and cell-type-specific modules govern-
ing certain disorders.

Hypothesis generation in single-cell network biology

Global gene networks inferred from diverse biological
contexts have proven useful in generating hypotheses of
the functions and phenotypic effects of genes via network
centrality and information propagation through the net-
work. Moreover, analysis of network communities can
elucidate pathways or functional modules for complex
phenotypes such as diseases®”. Cell-type-specific networks
along with single-cell gene expression data can extend the
power of network biology to explain the cellular hetero-
geneity underlying phenotypes of multicellular organisms
such as human diseases. Major strategies for hypothesis
generation in single-cell network biology (summarized in
Table 1) are based on identifying context-associated
subnetworks and utilizing topological dynamics. In addi-
tion, analysis of personalized gene networks along with
genotype information can elucidate network-mediated
effects of disease-associated genetic variants.

Hypothesis from subnetwork analysis

Pathways rather than individual genes are the functional
units of cells. Thus, pathway-based functional inter-
pretation of cellular states is more intuitive than gene-
based interpretation. Weighted correlation network ana-
lysis (WGCNA)>® has been a popular tool for identifying
functional modules based on coexpression networks
inferred from a large number of gene expression profiles.
WGCNA with single-cell transcriptome data for a cell
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Table 1 Summary of hypothesis generation through single-cell network biology.
Approaches Advantages Limitations References

Subnetwork analysis of
module and regulon activities
(Fig. 2)

Topology analysis of disease-
associated cell-type-specific
network (Fig. 3)

Genotype-network association
and coexpression QTL analysis
(Fig. 4)

Enabling the identification of key regulators that
are associated with a disease-associated
phenotype at cell-type resolutions

Graph-based, intuitive, and comprehensive
methods for prioritization of genes associated with
a disease-associated phenotype at cell-type
resolutions

1. Considerable amount of false-positive SNPs may
be removed from cell-type specificity.

2. Significantly fewer number of samples needed
compared to eQTL studies through the bulk

1. Various parameters to adjust for module
identification. Difficult to choose optimal
parameters without some form of prior knowledge
of functional gene sets.

2. No definitive method exists for detecting
regulatory links. Inferred links will vary depending
on applied network-inference algorithm.

1. Various measures of network centrality (hubness).
Different centrality measures may predict different
candidate genes.

2. Various experimental and technical factors must
be taken into consideration that might affect
network topological changes.

1. Compared to other types of single-cell studies,
relatively large number of patient samples may be
necessary.

2. Doublets (two genotypes barcoded in a single

42,58

49,56

77

counterpart.

cell) must be taken into consideration and
processed during demultiplexing of data.

type may identify functional modules that are associated
with a particular state (e.g., disease-related state) of the
cell type. Often, by using topological properties (e.g.,
centrality) or external functional information, we may be
able to identify key regulators of functional modules and,
in turn, the associated cellular states (Fig. 2a). For
example, WGCNA along with scRNA-seq data from early
embryo cells revealed that each stage of the early devel-
opment of mouse and human embryos can be delineated
by a few functional modules®. WGCNA on single-cell
transcriptome data also enabled the discovery of signals
that activate dormant neural stem cells in nonneurogenic
brain regions®, regulators of chemotherapy resistance in
esophageal squamous cell carcinoma® and prognostic
markers for prostate cancer®”. The WGCNA package
requires users to adjust various parameters so that
appropriate modules are defined, and this may often
become a potential difficulty in the absence of prior
knowledge of disease-associated gene sets.

Subnetworks composed of a TF and its target genes are
also useful for functional analysis in single-cell network
biology. Here, a set of target genes regulated by each TF is
called a regulon. SCENIC** is a popular software tool for
the generation of TF-regulon subnetworks for given
scRNA-seq data and their downstream analysis. In this
analytical platform, individual cells or subpopulations that
represent a particular cell state can be depicted by the
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activity of each regulon. Because each regulon is con-
sidered a regulatory unit, regulon activity profiles across
cellular states can suggest GRNs governing cellular
identity or transitions. Moreover, regulon analysis facili-
tated the identification of key regulators for cellular states
and interpretation of their target pathways by gene set
enrichment analysis for the regulon genes (Fig. 2b). In a
recent study, regulon-based analysis of scRNA-seq data of
patient-derived melanoma cultures revealed key reg-
ulators and GRNs specific for intermediate states during
the epithelial-mesenchymal transition of melanoma
cells®®, which may provide new therapeutic targets to
prevent the acquisition of metastatic potential and drug
resistance due to cell state switching.

Hypothesis from network topology analysis

Emergent cellular phenotypes depend not only on
genotypes but also on edgotypes, context-specific net-
works of molecular interactions®®, implying that the
dynamics of regulatory interactions underlie cellular
heterogeneity. Comparisons between cell-type-specific
networks for different states, such as disease and healthy
states, will show topological changes for each gene in
centrality (hubness) and neighbors (targets). Genes that
show significant changes in one of these topological
properties would be candidate regulators involved in the
cellular state of interest (Fig. 3). For example, a recent
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study generated healthy and type 2 diabetes (T2D) reg-
ulatory networks using scRNA-seq data from pancreatic
islet cells®. The study demonstrated that many genes
with significant changes in centrality are involved in T2D.
Another study generated GRNs for self-renewing cells,
erythroid-committed =~ progenitors, and  myeloid-
committed progenitors and demonstrated that the line-
age regulator DDIT3 changes its targets in three different
GRNs®. Gene sets involved in particular biological pro-
cesses or diseases may also change their modularity
(intraconnectivity) between different cellular states, which
suggests their association with a particular cellular state
(e.g., disease-related state). For example, gene networks
were generated for six brain cell types®®, in which neu-
ropsychiatric disorder genes were found to preferentially
interact in neuronal cells, whereas genes for neurode-
generative diseases do so in glial cells. Another recent
study demonstrated that modularity measures based on
the enrichment of coexpression among genes associated
with specific neurodevelopmental disorders increased in
specific cell types®. These results suggest that disease-
related genes tend to preferentially interact with cell types
for different disease classes. Although network topology
analysis offers an intuitive method for observing a cell-
type-specific system, a large number of links and the
associated complexity potentially cause difficulty in
interpretation. Researchers must also take into account
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that many experimental and technical factors must be
controlled to accurately compare different networks.

Hypothesis from genotype-network association

A major problem in health care today is imprecision
medicine, wherein only a small portion of patients
respond to routinely prescribed drugs®’. This may be
because patients have different genetic variations that
influence the functional effects of genes involved in
pathogenesis or pharmacodynamics. The majority of
such variations exert phenotypic effects via the action of
expression quantitative trait loci (eQTLs)®® because
most of them are located within noncoding regions®’.
The eQTLs have long been suggested to exert their
influence in a cell-specific manner, and the large portion
of unresolved eQTLs may be attributable to the cell-type
dependent effects of these eQTLs’*”". Cell-type-specific
eQTL analysis can be conducted by sorting each cell
type, which generally has a high cost. As scRNA-seq can
provide transcriptome data for multiple cell types of a
given tissue simultaneously, it can greatly facilitate cell-
type-specific eQTL analysis’>""> (Fig. 4a). Cell-type-
specific eQTL studies may possibly reduce the detection
of false-positive SNPs associated with disease that have
often emerged as potential limitations of bulk RNA-seq-
based eQTL research (e.g., Simpson’s paradox). More-
over, utilizing a large number of cells in single-cell
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Fig. 3 Hypothesis generation from network topology analysis in
single-cell network biology. Inferences in coregulatory
transcriptome profiles of cells from two distinct states (healthy control
versus disease state) lead to the construction of different GRNs. Genes
that show changes in three types of network topology are likely to be
associated with the state: centrality, neighbors, and modularity. For
example, correlation analyses for monocytes from healthy and
diseased samples may generate different networks, and changes in
three types of topology between them will be examined for every
gene. Similarly, networks for different developmental times along with
topological analysis would suggest disease-associated genes because
many disease states are associated with defects in development. For
example, defects in the maturation of monocytes into functional
dendritic cells would result in immune disorders.

datasets may significantly reduce the number of samples
required for eQTL detection. It is noteworthy, however,
that for more accurate analysis, this approach will
require a larger number of donors than typical single-
cell-based studies.

Interestingly, some eQTL effects of a gene can be
modified by the expression of another gene’® (Fig. 4b).
For example, the effect of a FADS2 eQTL is modulated
by the expression of the sterol binding factor gene
SREBF2. Therefore, these genetic variants are called
coexpression QTLs, because they affect the coregulatory
relationship between two genes’®”’. Single-cell tran-
scriptome data from each person can be sufficient to
infer gene—gene correlation, building personalized
GRNs’”7%, Given that personal- and cell-type-specific
coregulatory relationships between genes can be mod-
eled using scRNA-seq data, we may test whether per-
sonal genetic variants affect disease risk or drug
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response by altering coregulatory interactions. If a cor-
egulatory interaction between a disease gene and a drug
target that affects the disease gene activity is modulated
by a coexpression QTL, this genotype information could
be utilized in tailored prescription for individual
patients in the future (Fig. 4c).

Challenges and future perspectives

The major challenges in single-cell network biology are
associated with the single-cell omics technology, as the
quality of inferred networks relies largely on the quality of
single-cell transcriptome data. Single-cell profiling tech-
nologies are rapidly evolving. However, various technical
hurdles, such as low capture efficiency, high dropout
rates, and high noise in signals, must be considered and
overcome to observe true biological variations in gene
expression®. New computational methods need to be
developed to overcome those intrinsic limitations of
scRNA-seq data. For example, imputation of dropouts in
single-cell transcriptome data will vary in the probability
of false gene—gene correlations’®, and the methods need
to be further improved in the future. In addition, the
integration of multimodal single-cell omics data® and
multiomics data® would contribute in improving network
inference and interpretations.

Many statistical approaches have been developed to
address these issues, and depending on the basic
assumptions that the researchers are willing to adhere to
an appropriate method must be chosen for different
datasets. Each algorithm with its own preprocessing steps
will result in different networks. Therefore, preprocessing
of the single-cell dataset will be the critical step of the
network inference algorithm. Moreover, network infer-
ence tools with different algorithmic concepts will per-
form optimally for different sets of data (e.g., time series,
developmental, perturbation). Therefore, researchers
must choose their methods depending on the data that
they have collected and the system that they wish to
evaluate. Different types of networks (regulatory or
functional) will provide different insights, and it is
important to extract reasonable conclusions allowed from
numerous types of networks and make suitable
predictions.

In this paper, we highlighted the effectiveness of using
network-based studies in resolving cellular heterogeneity.
Personalized gene networks obtained from single-cell
transcriptome data will facilitate the development of novel
applications based on personal genetic variation for pre-
cision medicine. For translation of single-cell network
analysis to clinical settings, user-friendly analytical pipe-
lines must be established for different types of diseases.
These efforts together will improve our ability to accu-
rately diagnose and predict disease risks and ultimately
lead to the development of precision medicine.



Cha and Lee Experimental & Molecular Medicine (2020) 52:1798-1808

1806

a
el = scRNA-seq
} | .
(A/G) Disease gene X (Multiplexed)
Q
Patient 1 ﬁ[r} GG \ = i ell-type 1
Patient 2 + I
o Celltipei2 Disease-associated
patient3 /| J AA > Genotype . Iminor) cell-type
] ( Cell-type 3 \
[ ] N\ Vomr e /
L ]
L]
@ j G Demultiplexed
Patient N [ﬂ GG (genotype-based)

-

~

-

b Identify genes for cxQTL C cxQTL-based prescription
in (minor) cell-types (If Drug A targets Gene Y)
(—SE’// Patient 1(GG) Patient 3(AA)
Cell-type 3 Cell-type3
Network Network
>
3
]
U]
" N o
Drug
o @ o
Disease .')
Gene X
65 o
% | aa
<
Q
(U]
I:' SNP1 ’:’
] 1 Gene Y | Gene X I
Disease Gene X Drug Atarget (A/G) Disease gene

&

medicine (e.g., prescribing it only for patients with SNP AA).

Fig. 4 Hypothesis generation from genotype-network association in single-cell network biology. a Many disease-associated single nucleotide
polymorphisms (SNPs), which are called expression QTLs (eQTLs), exert phenotypic effects through the regulation of gene expression in a cell type-
specific manner. Therefore, eQTL analysis needs to be conducted for specific cell types, particularly for minor cell types. The recently developed
multiplexed scRNA-seq technology along with demultiplexing based on genotype information will facilitate cell-type-specific eQTL mapping.

b Some eQTL effects are dependent on the expression of other genes. This dependency is detected by genotype-specific coexpression, called
coexpression QTL (cxQTL). Here, a disease gene X is coexpressed with gene Y only if its eQTL has a homozygous major allele (AA). ¢ If the gene Y is a
target of drug A that eventually inhibits the activity of disease gene X via interaction with gene Y, the genotype-dependent coregulatory interaction
between genes X and Y is critical for drug action. Then, for prescription of drug A, the cxQTL genotype information can be utilized for precision
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