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Abstract

Evaluation of harvest data remains one of the most important sources of information in the

development of strategies to manage regional populations of white-tailed deer. While

descriptive statistics and simple linear models are utilized extensively, the use of artificial

neural networks for this type of data analyses is unexplored. Linear model was compared to

Artificial Neural Networks (ANN) models with Levenberg–Marquardt (L-M), Bayesian Regu-

larization (BR) and Scaled Conjugate Gradient (SCG) learning algorithms, to evaluate the

relative accuracy in predicting antler beam diameter and length using age and dressed body

weight in white-tailed deer. Data utilized for this study were obtained from male animals har-

vested by hunters between 1977–2009 at the Berry College Wildlife Management Area.

Metrics for evaluating model performance indicated that linear and ANN models resulted in

close match and good agreement between predicted and observed values and thus good

performance for all models. However, metrics values of Mean Absolute Error and Root

Mean Squared Error for linear model and the ANN-BR model indicated smaller error and

lower deviation relative to the mean values of antler beam diameter and length in compari-

son to other ANN models, demonstrating better agreement of the predicted and observed

values of antler beam diameter and length. ANN-SCG model resulted in the highest error

within the models. Overall, metrics for evaluating model performance from the ANN model

with BR learning algorithm and linear model indicated better agreement of the predicted and

observed values of antler beam diameter and length. Results of this study suggest the use

of ANN generated results that are comparable to Linear Models of harvest data to aid in the

development of strategies to manage white-tailed deer.
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Introduction

White-tailed deer (Odocoileus virginianus) (WTD) are among the largest herbivore ungulates

in forested ecosystems of the eastern United States [1]. Numbers of this animal represents a

significant economic impact. Hunting in North America contributed an estimated $38.3 bil-

lion annually to the economy of the United States [2]. In 2001, an estimated 10.3 million hunt-

ers harvested deer and in 2006 approximately 10.7 million hunters harvested 6.2 million deer

in the United State of America [1, 3]. In contrast, overabundance of WTD can lead to human-

wildlife conflict. Based upon the National crash data base (2001–2005) approximately 300,000

wildlife-vehicle collisions per year are reported, with a vast majority of those events involving

deer [4]. Economic damage of wildlife-vehicle collisions was reported to exceed $8 billion/year

[4] Annual damage to vegetable and grain crops in the northeastern United States was esti-

mated to exceed $168 million [5]. Therefore, it becomes critical to manage the population of

WTD to meet objectives in a given environment. One of the most important sources of infor-

mation utilized to develop WTD management plans is availability of annual harvest records

for a given area. Information related to animal physical characteristics provide critical infor-

mation about the number and overall health status of the regional deer herd. These records

can assist managers in determining the appropriate management strategies to achieve defined

objectives.

The relationships among antler characteristics, age and field-dressed weight and predic-

tions of these traits in deer populations have been studied by using linear models [6, 7]. Signifi-

cant literature exists related to the use of body measurement, such as antler size, to predict age,

as well as correlation between antler size and body weight. While antler size and body mass are

common measurements recorded from harvest data, these two characteristics are often evalu-

ated separately. Studies typically focus on correlations between specific factors on either antler

traits or body size [3, 8–13]. For example, Hewitt et al. [14] reported a weak positive relation-

ship (Pearson correlation coefficient = 0.37), between yearling antler size and girth size. The

use of this type of information is reported to be used by managers to evaluate the results of har-

vest criteria to develop future management plans [3, 14–16].

While the concept of Artificial Neural Network (ANN) for statistical analysis was initi-

ated as early as 1911, most significant developments of application have occurred in the

past 50 years [17, 18]. A review of current literature indicates ANNs have been used suc-

cessfully in pattern recognition, classification, aspects of prediction and forecasting,

modeling problems in medicine and engineering, and agricultural applications [19–23].

The concept of ANN for statistical analysis was inspired by the potential to mimic organi-

zation and communication pathways found in the nervous systems of organisms. The most

common methodology for utilization of ANN is to divide the dataset into training (learn-

ing) and test datasets. The training dataset is used to train the network and to determine

the best ANN architecture by choosing the number of neurons in the hidden layer based

on a learning algorithm such as Levenberg–Marquardt (L-M), Bayesian Regularization

(BR) and Scaled Conjugate Gradient (SCG) backpropagation. The test dataset is used to

test network performance and to validate the model based on new and unseen datasets

[22–24].

Therefore, our objective was to compare the performances of a typical linear model to ANN

with three different learning algorithms of L-M, BR and SCG backpropagation on the predic-

tions of antler beam diameter and length using age and field-dressed weights of harvested

WTD.

Comparison of linear model and artificial neural network
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Materials and methods

Deer population and study area

Access to annual deer harvest data (1971–2014) collected from the Berry College Wildlife

Management Area (BCWMA) was granted by scientists working with the Georgia Department

of Natural Resources (GDNR). We did not kill these animals and so we did not need IACUC

approval for this research.

The Berry College campus, located in Northwest Georgia, USA (34.2904˚ N, 85.1892˚ W)

consists of 11,340 ha, with approximately 1,215 ha maintained as the Berry College Wildlife

Refuge. In an effort to provide public access to areas available for hunting, the state of Georgia,

through the GDNR–Wildlife Resources Division, leases large tracts of land on an annual basis

from private land holders. These areas are designated as Wildlife Management Areas. The

Berry College Wildlife Management Area (BCWMA) has been in existence since 1971 consist-

ing of an average of 7,200 ha.

The BCWMA is within the Ridge and Valley physiographic province with elevations rang-

ing from 172 m to 518 m [25]. The BCWMA consisted of mixed forest dominated by pine

(Pinus spp.), oaks (Quercus spp.), hickories (Carya spp.), openings of native grasses such as Big

bluestem (Andropogon gerardi), Little bluestem (Schizachyrium scoparium), Indian grass (Sor-
ghastrum nutans), Eastern game grass (Tripsacum dactyloides), Broomsedge (Andropogon vir-
ginicus) and Switchgrass (Panicum spp) and wetland areas at lower elevations. Typical

precipitation in the area was > 130 cm/year. The BCWMA had a deer population density at 12

deer/km2 [26].

Wildlife Management Areas are managed by the GDNR in cooperation with the land

holder. As such, hunting access and seasons are typically different than the general state regu-

lations. While changes in the BCWMA related to hunting of WTD have occurred since 1971

to the current year, in general there have been 2–4, 2-day to 4-day firearm hunts offered in

October–December, annually. A quota system to regulate the number of hunters permitted for

each hunt has also occurred. All animals harvested during the firearm hunts are required to be

transported to a check station managed by the GDNR. The GDNR have been collecting data

including age and sex of animals, field dressed weight, antler characteristics of males as well as

information relating to hunter demographics since 1971-current year. A subset (1977–2008) of

this data was utilized for this study.

Training and testing datasets

BCWMA deer harvest dataset includes the variables of year and month of harvest (September,

October, November, December), field-dressed weight (weight of animal without internal

organs, (kg)), antler beam diameter (estimated diameter of the main beam typically obtained

immediately cranial to the burr of the antler, (cm)), and length of antler (measured from the

burr to the tip of the main beam, (cm)) between 1971 and 2014. The WTD harvest dataset

were created by using 2,899 observations from male deer between 1977 and 2008 after cleaning

missing observations of antler beam diameter and length in the BCWMA deer harvest data.

The WTD harvest dataset for the statistical analysis and model comparison was split into

two subsets: training and testing datasets. The training dataset was created by using randomly

2,543 observations (88%) of the WTD harvest dataset for training in the development of model

and parameter estimation. Table 1 shows distribution of training WTD harvest data across

year and month. As seen in Table 1, the distribution of 2,543 observations was unbalanced and

sparse across year and month. There were no observations between 1978 and 1987 for the

months of 11 and 12, and between 1996 and 2007 for the months of 9 and 10, which makes it

Comparison of linear model and artificial neural network
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not possible to add the interaction term between year and month into the linear model. Due to

variations between years related to particular month a given firearms hunt was available, the

interaction term between year and month was not included into the linear model.

The testing WTD dataset was 12% of the deer harvest dataset, independent of training data-

set was used to validate the model. There were 356 observations within the testing dataset rep-

resenting all months and years (Table 2).

Table 1. The distribution of training white-tailed deer harvest dataset across year and month.

Year Month Year Month

9 10 11 12 9 10 11 12

1977 3 65 28 0 1993 0 47 44 0

1978 0 65 0 0 1994 0 63 25 1

1979 0 37 0 0 1995 0 42 32 1

1980 3 46 0 0 1996 0 0 118 0

1981 5 48 0 0 1997 0 0 106 0

1982 5 50 0 0 1998 0 0 80 21

1983 7 34 0 0 1999 0 0 85 13

1984 2 45 0 0 2000 0 0 53 9

1985 8 62 0 0 2001 0 0 85 8

1986 5 81 0 0 2002 0 0 76 11

1987 0 63 0 40 2003 0 0 65 24

1988 4 12 103 0 2004 0 0 42 20

1989 0 18 53 14 2005 0 0 49 9

1990 3 4 71 17 2006 0 0 66 10

1991 0 43 47 0 2007 0 9 52 2

1992 0 72 38 0 2008 0 0 58 16

https://doi.org/10.1371/journal.pone.0212545.t001

Table 2. The distribution of testing white-tailed deer harvest dataset across year and month.

Year Month Year Month

9 10 11 12 9 10 11 12

1977 0 12 2 0 1993 0 13 5 0

1978 0 9 0 0 1994 0 12 3 0

1979 0 6 0 0 1995 0 7 7 0

1980 1 7 0 0 1996 0 0 15 0

1981 1 9 0 0 1997 0 0 10 0

1982 1 7 0 0 1998 0 0 11 2

1983 0 9 0 0 1999 0 0 15 2

1984 1 5 0 0 2000 0 0 10 1

1985 1 10 0 0 2001 0 0 16 0

1986 1 5 0 0 2002 1 0 8 2

1987 0 6 0 4 2003 0 0 11 5

1988 0 0 15 0 2004 0 0 3 3

1989 0 0 9 3 2005 0 0 11 1

1990 0 0 5 2 2006 0 0 8 1

1991 0 8 7 0 2007 0 1 5 1

1992 0 3 5 0 2008 0 0 9 3

https://doi.org/10.1371/journal.pone.0212545.t002
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Statistical analysis

Linear model. The linear model in Eq 1 was applied for the statistical analysis of antler

beam diameter and length:

Yijk ¼ mþ ai þ tj þ b1ðx1ijk � �x1Þ þ b2ðx2ijk � �x2Þ þ eijk ð1Þ

where Yijk is the response variable for antler beam diameter or length; μ is the overall mean for

antler beam diameter or length; αi is the ith hunting year effect (i = 1977, 1978, . . ., 2008); τj is

the jth hunting month effect (j = 9, 10, 11, 12); β1 and β2 are the regression coefficients of age

(x1) and field-dressed weight (x2) of hunted WTD; �x1 and �x2 are the averages of age (x1) and

field-dressed weight (x2) and eijk is the normally distributed error term with mean zero and

variance σ2.

The lm package for R [27] was used to fit the linear model shown in Eq 1. Statistical signifi-

cance of model terms was determined with F-tests. After significant effects of factors were

identified, differences between least square means of hunting years and months were consid-

ered significant at p<0.05 (2-tailed) based on the type I error rate.

Artificial neural networks. ANN is comprised of neurons as data processing units which

are connected via adjustable weights (wi). Neurons are arranged based on their functions in

layers, an input layer, hidden layer(s), and an output layer. In the input layer, each neuron is

designated to each input variable (xi). The training or learning process for pattern recognition,

classification or prediction in ANN is carried out by comparing the ANN simulated output

values ðŶ iÞ to the observed (actual) values (Yi) and calculating a prediction error using training

dataset. The error ðŶ i � YiÞ is then back propagated through the network and weights are

adjusted as the network attempts to decrease the prediction error by optimizing the weights

that contribute most to the error by using a learning algorithm [23]. There are many types of

learning algorithms in the literature [28–30]. The objective of every learning algorithm is to

reduce the global error by adjusting the weights and biases in the ANN procedure. However, it

is very difficult to know which learning algorithm will be more efficient for a given problem.

In this study, L-M, BR and SCG backpropagation algorithms were used to determine the ANN

algorithm providing faster learning and producing better estimates in the analysis of antler

beam diameter and length.

Multi-Layer Perceptrons (MLP) are the simplest and most commonly used ANN architec-

ture due to their structural flexibility, good representational capabilities and large number of

programmable algorithms [31, 32]. The feedforward Multi-Layer Perceptron Artificial Neural

Network (MLPANN) was proposed for this study and composed of many interconnected neu-

rons which are grouped into an input layer, an output layer and an intermediate or hidden

layer. An MLPANN is a fully connected network since every neuron is connected to all neu-

rons of the next layer.

In the present study utilizing the MATLAB Neural Network Toolbox, the feedforward

MLPANN model was structured with three layers including an input, one hidden and an out-

put layer [33]. Graphical representation of the proposed MLPANN model is shown in Fig 1.

As seen in Fig 1, in the MLPANN model, independent variables of the hunting year and

month, age and field-dressed weight in the input layer represent the four input neurons. Also,

dependent variables of antler beam diameter and length of harvested deer in the output layer

represent the two output neurons in the MLPANN model. The MLPANN can have more than

one hidden layer; however, theoretical works have shown that a single hidden layer is sufficient

for an ANN to approximate any complex nonlinear function [34, 35]. Therefore, in this study,

a one-hidden-layer MLPANN is used by including the number of neurons between 1 and 30.

Comparison of linear model and artificial neural network
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As presented in Fig 1, the input layer distributes the input signal xi (the hunting year and

month, age and field-dressed weight of deer) to neurons in the hidden layer. Each neuron j in

the hidden layer sums up its input signals xi after weighting them with the strengths of the

respective connections w1ji from the input layer and computes its output z (Eq 2) as a tangent

sigmoid transfer function of the sum, given by

z ¼
e
P

w1jixi � e�
P

w1jixi

e
P

w1jixi þ e�
P

w1jixi
ð2Þ

The output (antler beam diameter and length of WTD) of neurons in the output layer is com-

puted in the same manner by using linear transfer function. Following this calculation, a learn-

ing algorithm is used to adjust the strengths of the connections to allow a network to achieve a

desired overall behavior.

Metrics for evaluating model performance. Comparisons of expected observations

against observed observations provides a valuable guide to overall model performance. The

performance of models can be evaluated relative to past observations, relative to other models

or against our own theoretical expectations. Agreement with observations is inherently partial.

Models agree with some observations but not all. A model can certainly perform well against

historic observations, and the precision and accuracy of the fit can be quantified [36].

Chang, Hanna [37], Yu et al. [38] and US EPA [39] used and recommended Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), Fraction of Model Predictions (FACT2),

Pearson Correlation Coefficient (r) and Index of Agreement (IA) to quantify the differences

Fig 1. Artificial neural networks architecture for white-tailed deer (Odocoileus virginianus) dataset.

https://doi.org/10.1371/journal.pone.0212545.g001
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between model predictions and observations and to assess the effectiveness of each model to

make precise predictions.

MAE and RMSE provide a good indication of how close the predicted and observed values

are [40, 41] and are calculated as follow:

MAE ¼
Pn

i¼1
ðjŶ i � YijÞ

n
ð3Þ

and

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðŶ i � YiÞ

2

n

s

; ð4Þ

where Yi is the observed value of antler beam diameter or length for the ith WTD, Ŷ i is the pre-

dicted value of antler beam diameter or length for the ith WTD and n is the number of observa-

tions in the dataset. Smaller values of MAE and RMSE indicate smaller error, which shows

better agreement between predicted and observed values.

FACT2 that satisfy

0:5 �
Ŷ i

Yi
� 2:0 ð5Þ

is another good indicator of the agreement between predicted and observed values [40, 41]. A

scatter plot with the 1:1 correspondence line, together with the 1:2 and 1:1⁄2 lines allows a

quantitative comparison between predictions and observations. A count of the fraction of

points within 1⁄2 and 2 times the observations, FACT2, is a useful metric for model evaluation.

FACT2 values closer to one indicate closer match between predicted and observed values and

thus indicate better model performance.

r is a measure of the strength and direction of a linear relationship between two variables. A

correlation coefficient of 1 indicates a perfect one-to-one linear relationship and -1 indicates a

negative relationship. The calculation of r is below:

r ¼
1

n � 1

Pn
i¼1

Ŷ i �
�̂Y

sŶ

 !
Yi �

�Y
sY

� �

� ð6Þ

In model comparison, r value provides a measure of deviation between predicted and observed

values and is expected to be positive.

IA is given by Willmott et al. [42]:

IA ¼ 1 �

Pn
i¼1
ðŶ i � YiÞ

2

Pn
i¼1
ðjŶ i �

�Y j þ jYi �
�Y jÞ2
� ð7Þ

IA is a nondimensional measure and bounded by 0 and 1. The value of IA closer to 1 indicates

better agreement between predicted and observed values and better model performance.

Results and discussion

This study presents the assessment of linear model and MLPANN model with three different

learning algorithms (L-M, BR and SCG) to predict antler beam diameter and length from the

WTD harvest dataset obtained from the BCWMA. Results were compared to determine the

best model and the best learning algorithm of MLPANN model for the analysis of WTD har-

vest dataset.

Comparison of linear model and artificial neural network
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In the analyses of antler beam diameter and length from the training dataset using linear

models, four principal assumptions of linearity, independence, Normal distribution and equal

variance of residuals were provided for the inferences on factors affecting the two antler mea-

sures. Then, univariate linear model analyses of antler beam diameter and length were com-

pleted to better understand the statistical significance of the model in Eq 1 and predictor

variables in the model. The results from linear model analyses indicated that all factors were

significant (p<0.05). Estimates of regression coefficients of age (b̂1 ¼ 5:49 and 4.36) and field-

dressed weight (b̂2 ¼ 0:88 and 0.75) in Eq 1 showed that there were positive linear relation-

ships between the effects of age and field-dressed weight and the traits of antler beam diameter

and length. This result is consistent with previous reports [6, 7, 43]. Our results also showed

that age is related to antler characteristics and body size in WTD. The implication of this in

deer ecology or hunt management is that the age of the deer or the weight of the deer can be

predicted from the antler size characteristics and thus providing the wildlife managers extra

information needed to make herd health decisions. Specifically, antler traits reflect male

quality or affect male-male competition which has implications for sexual selection. Deer

herd managers equipped with this type of information could encourage the hunting of

males with bigger antlers to prevent directional selection in the herd. Results also demon-

strated r2 (coefficient of determination) values of 81.53% and 80.29%, respectively, suggesting

a large portion of variation in antler beam diameter and length was interpreted by the linear

model.

In the analyses of antler beam diameter and length from training dataset to develop ANN

model structure, the network was defined as a one-hidden-layer MLPANN. Learning in one-

hidden-layer MLPANN was made using one of the back propagation (L-M, BR or SCG) algo-

rithms with the number of neurons between 1 and 30. Determining the number of neurons in

the hidden layer is an important task in the network [44, 45] since the convergence rate of the

network and the time elapsed for prediction may be affected by the number of neurons in the

hidden layer [46].

Fig 2 shows the effect of the number of neurons on the time elapsed to learn the structure of

network by algorithms (L-M, BR and SCG). As presented in Fig 2, there was a positive linear

relationship between the elapsed time for prediction and the number of neurons within L-M,

BR and SCG learning algorithms. The learning algorithms of L-M and SCG had similar

elapsed time in MLPANN model; however; BR learning algorithm spend much more time to

learn the structure in MLPANN model for antler beam diameter and length.

The optimum number of neurons was determined based on the minimum value of mean

squared errors obtained by comparing the predicted values with the observed values of antler

beam diameter and length for the training dataset (Fig 3). Fig 3 indicated that 29 neurons for

L-M and BR algorithms and 3 neurons for SCG algorithm resulted in smallest mean squared

errors and the optimized MLPANN structures of 4-29-2, 4-29-2 and 4-3-2 were determined

for L-M, BR and SCG algorithms, which had four inputs (hunting year, month, age, field

dressed weight) at input layer, the tangent sigmoid transfer function at hidden layer with neu-

rons and two linear transfer functions for antler beam diameter and length at output layer.

Pearson correlation coefficient based on the number of neurons was calculated to deter-

mine the performance of L-M, BR and SCG learning algorithms in the MLPANN model for

antler beam diameter and length in training dataset (Fig 4). Correlation coefficients ranged

between 0.85 and 0.91 with L-M and BR learning algorithms resulting in similar values com-

pared to those from SCG learning algorithm across the number of neurons. The highest corre-

lation coefficients were obtained from the optimized MLPANN structures of 4-29-2, 4-29-2

and 4-3-2 for L-M, BR and SCG algorithms (Fig 4).

Comparison of linear model and artificial neural network
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Fig 2. Effect of the number of neurons on the performance of Levenberg–Marquardt (L-M), Bayesian Regularization (BR) and

Scaled Conjugate Gradient (SCG) learning algorithms in the Multi-Layer Perceptron Artificial Neural Network (MLPANN)

model.

https://doi.org/10.1371/journal.pone.0212545.g002

Fig 3. Mean squared error based on the number of neurons using Levenberg–Marquardt (L-M), Bayesian Regularization (BR) and Scaled

Conjugate Gradient (SCG) learning algorithms in the Multi-Layer Perceptron Artificial Neural Network (MLPANN) model for antler beam

diameter and length in training dataset.

https://doi.org/10.1371/journal.pone.0212545.g003
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Comparison of linear model and MLPANN model with L-M, BR and SCG

algorithms

Linear model and MLPANN model with L-M, BR and SCG learning algorithms were devel-

oped by using training dataset. The performance of the models was determined quantitatively

in terms of MAE, RMSE, FACT2, r and IA after analyzing antler beam diameter and length

from test dataset using the models and metrics for model performance (Table 3). As seen in

Table 3, metrics for linear and MLPANN models were similar within antler beam diameter

and length. However, metrics values of MAE and RMSE for linear model and the MLPANN

model with BR learning algorithm indicated smaller error and lower deviation relative to the

mean values of antler beam diameter and length in comparison other MLPANN models dem-

onstrating better agreement of the predicted and observed values of antler beam diameter and

length. However, MLPANN model with SCG learning algorithm resulted in the highest error

within the models.

The scatter plots of predicted versus observed values are displayed in Fig 5. A 1:1 line is

added on each graph to facilitate the comparison to the ideal model, and a factor of two scatter

is indicated by the dashed 1:2 and 2:1 lines [47–49]. As shown in Fig 5, all the models seem to

Fig 4. Pearson correlation coefficients between observed and predicted antler beam diameter and length based on the number of neurons using

Levenberg–Marquardt (L-M), Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) learning algorithms in the Multi-Layer

Perceptron Artificial Neural Network (MLPANN) model for antler beam diameter and length in training dataset.

https://doi.org/10.1371/journal.pone.0212545.g004

Table 3. Metrics for model performance using antler beam diameter and length from test dataset.

Model Evaluation Parameters Diameter (cm) Length (cm)

Linear

Model

ANN Model Linear

Model

ANN Model

L-M BR SCG L-M BR SCG

MAE 6.16 6.20 6.14 6.19 4.46 4.42 4.36 4.53

RMSE 8.12 8.25 8.19 8.26 5.66 5.56 5.49 5.67

FACT2 0.98 0.99 0.99 0.99 0.95 0.94 0.94 0.94

r 0.80 0.80 0.80 0.79 0.83 0.84 0.84 0.83

IA 0.87 0.86 0.87 0.86 0.90 0.90 0.90 0.90

ANN = Artificial Neural Networks, L-M = Levenberg–Marquardt, BR = Bayesian Regularization, SCG = Scaled Conjugate Gradient, MAE = Mean Absolute Error,

RMSE = Root Mean Squared Error, FACT2 = Fraction of Model Predictions, r = Pearson Correlation Coefficient, IA = Index of Agreement.

https://doi.org/10.1371/journal.pone.0212545.t003
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over-predict lower values. FACT2 and IA metric values were between 0.98 and 0.99, between

0.86 and 0.87 for antler beam diameter and between 0.94 and 0.95, equal to 0.90 for antler

beam length, respectively. These metric results indicated that all models resulted in close

match and good agreement between predicted and observed values and thus good perfor-

mance for all models.

The Pearson correlation coefficients are also added on the graphs to measure the strength

of the linear relationship between the predicted and observed values [38]. The metric values of

r were between 0.79 and 0.80 for antler beam diameter and between 0.83 and 0.84 for antler

beam length. The r2 values demonstrated that 63.04% to 64.32% and from 69.22% to 71.23% of

the total variation in the antler beam diameter and length could be interpreted by the respec-

tive models.

Higher values of FACT2, r and IA were obtained from the MLPANN model with BR learning

algorithm and linear model which indicated better agreement of the predicted and observed val-

ues of antler beam diameter and length. In this study, overall the MLPANN model with BR learn-

ing algorithm provided more accurate results compared to the other MLPANN models in

predicting antler beam diameter and length. The utilization of the ANN statistical methodology

may provide wildlife managers another tool in the evaluation of data to assist in the development

of appropriate deer management plans. To the best of our knowledge this is the first manuscript

that reported the application of ANN to deer harvest data and also demonstrated the potential

utility of ANN to better understanding antler characteristics for use in management decisions.

Conclusion

From the results and discussion above it can be concluded that there is a linear relationship

between field-dressed weight, age of the animal, and antler characteristics. This knowledge will

Fig 5. Predicted versus observed antler beam diameter and length for test dataset by Linear model and Levenberg–Marquardt (L-M), Bayesian

Regularization (BR) and Scaled Conjugate Gradient (SCG) learning algorithms in the Artificial Neural Network (ANN) model.

https://doi.org/10.1371/journal.pone.0212545.g005
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be very useful in making management decision. in deer herd in the WMA Based on various

performance criteria (MAE, RMSE, FACT2, r and IA), ANN model with BR backpropagation

learning algorithm performed similarly when compared to ANN models with L-M and SCG

backpropagation learning algorithms in predicting the antler beam diameter and length of

WTD as outputs in this study. It is important to underline the potential of ANN models with

L-M, BR and SCG backpropagation learning algorithms for mapping non-linear relationship

between input and output variables. However, comparison of results from linear model and

ANN models with learning algorithms indicated that all models yielded good fit with the antler

beam diameter and length of WTD in training and test dataset. However, these results under-

score the fact that ANNs can compete with linear models for the modeling of the antler beam

diameter and length of WTD and thereby expanding the statistical tool kit available to analyze

data and make predictions in herd management.

Supporting information

S1 Appendix. Excel spreadsheet containing raw data from the study. Each sheet contains

the individual data points used in training and test process.

(XLSX)

S2 Appendix. R and MATLAB scripts. Script contains the R and MATLAB programs for the

analysis of the training and test datasets. (R)

(R)
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