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A B S T R A C T   

Gliomas are the most invasive brain tumors characterized by high mortality and recurrence rates. Glioblastoma 
(GBM), a grade IV brain tumor, is known for its heterogeneity and resistance to therapy. Modern diagnostics of 
various forms of malignant brain tumors is carried out mainly by imaging methods, such as magnetic resonance 
imaging, electroencephalography, positron emission tomography, and tumor biopsy is also used. The disad-
vantages of these methods are their inaccuracy and invasiveness, which entails certain risks for the patient’s 
health, so modern science has stepped up the search for more reliable and safe methods for diagnosing gliomas, 
including the search for novel biomarkers. MicroRNA (miRNAs), a class of small non-coding RNA, perform the 
most important functions in various biological processes. In recent years, great progress in the study of miRNAs 
paths associated with the GBM pathogenesis has been achieved. MiRNAs molecules were identified as diagnostic 
and prognostic biomarkers, and can also serve as therapeutic targets and agents. This review provides current 
knowledge about the role of miRNAs in the pathogenesis of glial brain tumors, as well as the potential use of 
miRNAs as diagnostic and therapeutic targets for gliomas.   

1. Introduction 

Gliomas are malignant tumors of the central nervous system that 
originate from glial cells: astrocytes, oligodendrocytes, ependymocytes, 
and are divided into astrocytomas, oligodendrogliomas, ependymomas, 
glioblastomas, and some others [1]. The annual incidence of gliomas 
worldwide is approximately 6 cases per 100,000 people [2]. According 
to the degree of malignancy and aggressiveness, the World Health Or-
ganization divides tumors of the central nervous system into 4◦, while 
tumor cells of the 4th degree are characterized by anaplasia, high 
mitotic activity, microvascular proliferation and (or) necrosis and are 
the most aggressive and malignant [3]. The median survival of patients 
varies depending on the degree of malignancy of gliomas: for diffuse 
IDH-mutant astrocytoma (grade 2), this indicator is 10–12 years, for 
glioblastoma (grade 4), on average, 10–12 months [4]. Despite the fact 
that measures to prevent gliomas are not yet known, the importance of 
their early diagnosis, as well as other types of cancer, remains obvious: 
an early diagnosis, before the onset of symptoms, increases the chances 

of successful treatment of the patient, contributing to a slowdown in the 
rate of growth and development. Tumors and increased survival [5]. 
Currently, magnetic resonance imaging (MRI) is used to diagnose brain 
tumors, as well as electroencephalography, if the tumor is detected 
when searching for the cause of epilepsy [2,6]. In addition to MRI, 
positron emission tomography with labeled amino acids is also used to 
determine the “hot spots” of metabolism and the site of biopsy taking 
[7]. However, recently, new methods for diagnosing gliomas have been 
actively studied and proposed, not only with the help of imaging and 
biopsy, but also by analyzing biological fluids, mainly blood and cere-
brospinal fluid. New methods still need detailed study, but nevertheless, 
some of their advantages have already been established. Usually, to 
determine the type of malignant lesion, the patient must undergo sur-
gery, which is accompanied by the risk of postoperative complications, 
and further observation of the tumor using MRI does not distinguish 
tumor progression from radiation necrosis [8]. Cancer diagnostics using 
blood and CSF biomarkers is non-invasive (thus facilitating the collec-
tion of samples for research and reducing the risk of adverse effects to a 
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minimum), the ability to track tumor progression in real time, and 
distinguish between progression and pseudoprogression [9]. In 
connection with the foregoing, it remains relevant to study the current 
state of the problem of searching for potential biomarkers of malignant 
brain tumors (gliomas) in body fluids, in particular, in cerebrospinal 
fluid and blood. This review contains the results of research by foreign 
and domestic authors on the development of new methods for diag-
nosing gliomas. A biomarker is a biological indicator of a pathogenic 
process or a pharmacological response to therapy, quantified or objec-
tively determined [10]. With the help of diagnostic biomarkers, it is 
possible to detect or confirm the presence of a disease, to establish a 
subtype of pathology [11]. The content of tumors, metabolic products of 
malignant cells enter the blood and cerebrospinal fluid, so their quan-
titative and qualitative determination in these fluids is a diagnostic 
criterion. In theory, proteins and individual amino acids, microRNAs, 
extracellular nucleic acids, exosomes, and circulating tumor cells can act 
as diagnostic biomarkers of glioma [12]. 

2. Involvement of micrornas in the oncogenesis of brain gliomas 

MicroRNAs are short non-coding RNAs, about 20–22 nucleotides 
long, which are involved in the control of the expression of protein- 
coding genes (Fig. 1) [12]. 

They can act as tumor growth suppressors; they can also act as on-
cogenes. MicroRNA regulates a large number of processes in the human 
body. Cell growth, its proliferative activity, tumor invasion, its metas-
tasis, apoptosis, angiogenesis, and immune response - all these processes 
are regulated by microRNA [ [13,14]]. Currently, there are a number of 
studies of the role of individual microRNAs in brain gliomas, which 
indicate their diagnostic significance not only for detecting gliomas, but 
also in determining the degree of their malignancy. Research methods 
used to determine the level of microRNA expression in most studies 
include: real-time PCR, digital drop PCR, microarrays, sequencing. Un-
fortunately, the works published to date do not contain a clear system-
atization of the results with a description of miRNA profiles 
corresponding to different histotypes of gliomas and their degree of 
malignancy. Therefore, in our article, we will try to carry out a sys-
tematic analysis of published data on the expression of the most studied 

miRNAs. From the literature data, it is known that in the tissues of 
low-grade gliomas, compared with the surrounding brain tissue, there 
are multidirectional trends: along with a decrease in the expression 
levels of oncosuppressor miRNAs-7, -137, − 153, − 181, − 128 there is an 
increase in these parameters in miRNA-9 (Table 1) [15–18]. For onco-
genic, microRNA-21 and -221/222, there is a correlation between the 
level of their expression in tumor tissues and the degree of malignancy of 
gliomas [19,20]. However, statistically significant differences that make 
it possible to differentiate Grade I from Grade II gliomas in terms of 
miRNA expression levels have not yet been obtained [20]. In high-grade 
gliomas, compared with paratumorous tissue, similar trends were noted: 
a decrease in the expression levels of oncosuppressor microRNAs-7, -31, 
− 137, − 153, − 181, − 128, − 124 [ [19,21,22]] and, conversely, an 

Fig. 1. Two mechanisms used by miRNAs to regulate translation. Some miRNAs are able to bind completely complementary to target mRNAs, which causes their 
degradation. RISC - RNA induced silencing complex. 

Table 1 
Functions of miRNAs in gliomas.  

miRNAs Function Ref. 

microRNA-221/222 
(oncogene) 

Proliferation (+), invasion (+), apoptosis (− ), 
temozolomide resistance (+), radioresistance 
(+) 

19 

microRNA-23a 
(oncogene) 

Proliferation (+), invasion (+), apoptosis (− ), 
migration (+) 

21 

microRNA-21 
(oncogene) 

Proliferation (+), migration (+), invasion (+), 
apoptosis (− ), temozolomide resistance (+), 
radioresistance (+) 

19 

miRNA-181 
(oncosuppressor) 

Invasion (− ), apoptosis (+), radioresistance 
(+) 

16, 19 

miRNA-9 
(oncosuppressor) 

Migration (− /+), proliferation (±), 
radioresistance (+), growth of tumor cells (− ) 

18, 
26, 27 

miRNA-137 
(oncosuppressor) 

Proliferation (− ), migration (− ), invasion (− ) 15 

miRNA-124 
(oncosuppressor) 

Angiogenesis (− ), invasion (− ), metastasis (− ), 
cell cycle (− ) 

15 

miRNA-128 
(oncosuppressor) 

Proliferation (− ), angiogenesis (− ), apoptosis 
(+), differentiation (+) 

17 

miRNA-31 
(oncosuppressor) 

Proliferation (− ), invasion (− ) 19 

miRNA-153 
(oncosuppressor) 

Proliferation (− ), apoptosis (+) 22 

miRNA-7 
(oncosuppressor) 

Migration (− ), invasion (− ), radioresistance 
(− ) 

19, 21  
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increase in these indicators of oncogenic miRNAs-21, -23a, − 221/222 [ 
[19,23]]. At the same time, the expression level was significantly higher 
in glioblastoma tissues compared to Grade III gliomas. The same pattern, 
but without significant differences, was noted for miRNA-9 in Grade III 
and Grade IV gliomas [18]. According to the levels of expression of some 
miRNAs, gliomas of different grades of malignancy not only differ from 
paratumorous tissue, but also from each other. For example, in some 
cases, oligodendroglioma can be distinguished from glioblastoma. In the 
latter, the expression levels of miRNA-21, -132, − 134, − 155, − 218, and 
-409-5p are three times and miRNA-128 four times higher than in oli-
godendrogliomas [24]. 

3. The role of micrornas in the development of brain gliomas 

Oncosuppressive miRNA-7 is involved in the regulation of Wnt- 
dependent and Raf/Ras/ERK/MEK-dependent signaling pathways, 
controlling the processes responsible for tumor growth and malignancy: 
invasion, proliferation, migration, and apoptosis (Fig. 2). 

Visani M. et al. recorded a decrease in the expression of this miRNA 
in gliomas compared to paratumorous tissue [21]. The level of onco-
suppressive microRNA-9 was significantly increased in groups of grades 
I-III compared with conditionally normal adjacent brain tissues, but no 
statistically significant differences were found for glioblastomas [18]. 
Increased expression of miRNA-9 leads to a significant increase in cell 
migration in the tumor tissue and prevalence over their proliferation, 
this is associated with a decrease in the expression of NF1 and CREB. On 
the contrary, a decrease in miRNA-9 expression leads to a predominance 
of cell proliferation over their migratory ability [25]. The work of 
Gomez G. et al. showed that the target for oncosuppressive miRNA-9 is 
the FOXP1 gene. An increase in its expression level in vitro in U251 and 
U373 cell cultures stimulated their growth [26]. With an increase in 
miRNA-9 expression, resistance to chemotherapy (temozolomide) in-
creases, this is associated with activation of the expression of the com-
ponents of the SHH complex of multiple drug resistance [27]. 

MicroRNA-21 is one of the most highly expressed microRNAs in 
human cells; however, its expression level is further increased in glioma 
tissues [19]. The results of many studies of miRNA-21 indicate an in-
crease in the level of expression in glioma tissues by about 5–15 times 
compared with the norm [ [19,21]]. The oncogenic effect of 
microRNA-21 in human glioma cells is mediated through suppression of 

the expression of tumor suppressor genes such as HNRPK, TAp63, JMY, 
RECK, TOPORS, TP53BP2, DAXX, TGFBR2/3, PDCD4, and TIMP3 [28]. 
An increase in miRNA expression leads to an increase in proliferation, 
invasion, and a decrease in apoptosis of tumor cells. In addition, the low 
level of its expression, according to the Cancer Genome Atlas (TCGA), is 
weakly associated with increased survival. Inhibition of miRNA-21 
leads, along with a decrease in EGFR expression, to arrest of the cell 
cycle in the G1/S phase and, ultimately, to inhibition of tumor growth 
(Fig. 3) [29]. 

In high-grade gliomas, there is an increased level of expression of 
oncogenic microRNA-23, which, due to inhibition of the expression of 
the transcription factor HOXD10, which regulates the expression of 
MMP-14, leads to the activation of glial cell invasion [23,30]. Tan X. 
et al. noted that an increase in the growth of gliomas is associated with 
increased levels of miRNA-23a expression, which depends on the tran-
scription factor CREB and suppresses the expression of the PTE gene 
[31]. A decrease in the expression levels of miRNA-23a and miRNA-21 
in vitro in the U138 glioma cell line reduced the ability of the tumor 
to form colonies [23]. MicroRNA-137 is oncosuppressive, its expression 
is significantly reduced not only in oligodendroglial tumors II-III, but 
also in grade III-IV gliomas [ [15,32]]. Visani M. et al. also obtained 
similar results, but a significant difference was found in gliomas only 
between grades I and IV [33]. As the degree of malignancy of gliomas 
increases (especially in glioblastomas), miRNA-137 expression levels 
decrease, leading to activation of proliferation and invasion of tumor 
cells [34]. According to Xu J. and colleagues, it was found that the 
expression level of microRNA-153-3p in all groups of glial tumors, 
compared with the control group, was significantly reduced [22]. Its 
target is the anti-apoptotic proteins Bcl-2 and Mcl-1. 

Gliomas of low and high malignancy are characterized by activation 
of anti-apoptotic mechanisms and signaling pathways that enhance the 
survival of their cells. Along with this, microRNA-153-3p suppresses the 
expression of the IRS-2 activator of the PI3K/AKT-dependent signaling 
pathway, which is also responsible for the survival of these tumor cells. 
This indicates the antitumor role of microRNA-153-3p in the develop-
ment of these neoplasms [35]. MicroRNA-181a and microRNA-181b are 
oncosuppressive, and deregulation of their expression contributes to the 
manifestation of glioma malignancy [27]. The target of miRNA-181a 
and miRNA-181b is the BCL2 gene [ [19,36]]. Shi L. et al. noted a 
decrease in the level of expression of these microRNAs in glioblastoma 

Fig. 2. MiRNA-7 inhibits Wnt-Signaling in glioblastomas.  
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multiforme, as well as a negative correlation with the grade of glioma 
malignancy, so that the lowest expression values are achieved in grade 
II-IV gliomas [16]. Our studies have also shown that the expression level 
for miRNA-181b in glioma tissues is lower than in paratumorous brain 
tissue. Moreover, its decrease is proportional to the increase in the de-
gree of malignancy of neoplasms [20]. The p27 and p57 proteins, as well 
as the PTEN, TIMP3, PUMA, and Cx43 genes, which regulate the cell 
cycle and cell survival processes, are targets of the oncogenic 
microRNA-221/222 cluster [37]. In a number of studies, an increased 
expression of microRNA-221, -222 in gliomas was noted [ [38,39]], 
which promotes cell migration by downregulating PTPμ expression, as 
well as increasing sensitivity to chemotherapy drugs by reducing the 
level of MGMT expression [40]. We have found that in the tissues of 
high-grade gliomas there is a statistically significant increase in the 
expression level of miRNA-221 compared with conditionally normal 
adjacent brain tissues [20]. MiRNA-128 is a neuron-specific miRNA 
involved in neural differentiation in malignant gliomas such as glio-
blastoma. It acts as an oncosuppressor [ [17,41]]. The target of this 
miRNA is the transcription factor E2F3a; a decrease in its expression 
level inhibits tumor cell proliferation and the cell cycle [42]. Zhang Y. 
et al. showed in their works that the level of its expression in gliomas is 
reduced compared to the level in paratumorous tissue [ [17,42]]. 
MicroRNA-124 is oncosuppressive; it is involved in neuronal differen-
tiation. It was found that the level of its expression is reduced not only in 
glioblastomas and oligodendrogliomas, but also in medulloblastomas 
[43–45]. The expression level of miRNA-124 is statistically significantly 
reduced in gliomas (Grade III) and glioblastomas compared with para-
tumorous tissue [20]. It regulates the cell cycle in the G0/G1 phase and 
also inhibits CDK6 kinase, which stimulates angiogenesis [ [15,28]], 
leading to the emergence of newly formed vessels. The latter play a 
leading role in the further growth of neoplasms and their metastasis 
[46]. Transfection of miRNA-124 into glioma cell lines leads to a 
decrease in cell migration [47]. 

When studying the expression levels of miRNA-31 in the tissues of 
high-grade gliomas, a statistically significant decrease was found in the 
tumor tissue compared to the conditionally normal adjacent brain tis-
sues [20]. In glioma cell culture, this miRNA not only inhibits cell 
migration and indirectly affects the activation of the transcription factor 
NF-kB, angiogenesis, but also the level of E-cadherin associated with the 
epithelial-mesenchymal transition [ [48,49]]. MicroRNA-31 acts as an 
oncosuppressor, and its level can correlate with the predisposition of the 
tumor to invasion and metastasis [20]. 

4. Conclusions 

To date, extensive experience has been accumulated in determining 
the level of microRNA expression in human brain glioma tissues using 
various methods [50–56]. But there are certain obstacles that limit the 
application of these methods when using miRNAs in clinical diagnostics. 
Firstly, this is due to the fact that many studies have been performed on 
small groups of patients with different histological structures of brain 
tumors. Secondly, brain gliomas are heterogeneous neoplasms, which 
complicates the interpretation of the obtained data and the selection of 
miRNAs that could act as diagnostic markers. In this regard, an impor-
tant task is to standardize methods for determining miRNA expression 
levels and selecting optimal reference genes. To obtain reliable data, 
large-scale prospective studies are needed to determine the role of 
microRNAs in the oncogenesis of gliomas and confirm their effectiveness 
as biomarkers in the diagnosis of neuroepithelial brain tumors. The 
ongoing in-depth study of the molecular genetic characteristics of gli-
omas based on the study of the role of miRNAs in oncogenesis is, in our 
opinion, a promising direction in determining the molecular mecha-
nisms of tumor growth for prescribing timely and adequate adjuvant 
therapy in complex treatment, as well as predicting the course of 
oncological disease. 
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