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Abstract

Waxy varieties of the tetraploid cereal broomcorn millet (Panicum miliaceum L.) have endosperm starch granules lacking
detectable amylose. This study investigated the basis of this phenotype using molecular and biochemical methods. lodine
staining of starch granules in 72 plants from 38 landrace accessions found 58 nonwaxy and 14 waxy phenotype plants. All waxy
types were in plants from Chinese and Korean accessions, a distribution similar to that of the waxy phenotype in other cereals.
Granule-bound starch synthase | (GBSSI) protein was present in the endosperm of both nonwaxy and waxy individuals, but
waxy types had little or no granule-bound starch synthase activity compared with the wild types. Sequencing of the GBSSI
(Waxy) gene showed that this gene is present in two different forms (L and S) in P. miliaceum, which probably represent
homeologues derived from two distinct diploid ancestors. Protein products of both these forms are present in starch granules.
We identified three polymorphisms in the exon sequence coding for mature GBSSI peptides. A 15-bp deletion has occurred in
the S type GBSSI, resulting in the loss of five amino acids from glucosyl transferase domain 1 (GTD1). The second GBSSI type (L)
shows two sequence polymorphisms. One is the insertion of an adenine residue that causes a reading frameshift, and the
second causes a cysteine—tyrosine amino acid polymorphism. These mutations appear to have occurred in parallel from the
ancestral allele, resulting in three GBSSI-L alleles in total. Five of the six possible genotype combinations of the S and L alleles
were observed. The deletion in the GBSSI-S gene causes loss of protein activity, and there was 100% correspondence between
this deletion and the waxy phenotype. The frameshift mutation in the L gene results in the loss of L-type protein from starch
granules. The L isoform with the tyrosine residue is present in starch granules but is nonfunctional. This loss of function
may result from the substitution of tyrosine for cysteine, although it could not be determined whether the cysteine isoform
of L represents the functional type. This is the first characterization of mutations that occur in combination in a functionally
polyploid species to give a fully waxy phenotype.
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sion of the amylose molecule by the transfer of a-p-glucose
from adenosine diphosphate (ADP)-glucose.

Mutations at the GBSS/ (also called Waxy or Wx) locus
that result in amylose being present in low levels or absent
in endosperm starch (Fukunaga et al. 2002)—the waxy
phenotype—have been characterized in several species.

Introduction

The evolution and diversification of crop plants has been
shaped over thousands of years by conscious and uncon-
scious human selection on a wide range of phenotypic
traits. In plants cultivated primarily as a carbohydrate

source, including cereals, loci that determine starch quality
have been among the key targets for human modification
(Whitt et al. 2002; Olsen et al. 2006). Plant starch comprises
two polymers: amylose, a predominantly linear chain of
o-1,4-linked glucosyl units, and amylopectin, a highly
branched molecule with short a-1,4-linked glucosyl chains
linked by a-1,6-linkages. Cereal endosperm starch typically
comprises 15-30% amylose and 70-85% amylopectin.
Amylose synthesis is catalyzed by granule-bound starch
synthase | (GBSSI, EC 2.4.1.242), which catalyzes the exten-

In barley, a 413-bp deletion in the promoter and 5’ un-
translated region of the GBSSI gene disrupts transcription,
reducing the production of GBSSI protein to a fraction of
its levels in the nonwaxy type (Domon et al. 2002; Patron
et al. 2002). In maize and in foxtail millet (Setaria italica
[L.] P. Beauv), gene expression is disrupted by diverse trans-
posable element insertions (Wessler and Varagona 1985;
Wessler et al. 1990; Marillonnet and Wessler 1997; Kawase
et al. 2005). In rice, a G— T mutation at the splice site of
intron 1 results in incomplete processing of pre-mRNA
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(Hirano and Sano 1991; Wang et al. 1995; Hirano et al. 1998;
Isshiki et al. 1998). In sorghum, a single-nucleotide polymor-
phism (SNP) has been identified, which causes a Glu to His
mutation that may inactivate the GBSSI protein (Mclntyre
etal.2008).Inalltheabovediploid crops, the waxy phenotype
has arisen by spontaneous mutations. In hexaploid bread
wheat, a waxy line has been produced by crossing partially
waxy cultivars with spontaneous mutations in the three
GBSSI homeologues in the A, B, and D genomes (Nakamura
et al. 1995). These have been characterized, respectively, as
a 23-bp deletion in the Wx-A1b allele that affects transcript
splicing or a 173-bp transposon insertion in an exon; a dele-
tion of the entire GBSS/ transcription unit in the Wx-B1b al-
lele; and a 588-bp deletion in the Wx-D1b allele that leads to
the deletion of 30 amino acids from the C-terminus (Vrinten
etal. 1999; Saito et al. 2004). Distinct single-nucleotide inser-
tions and deletions causing frameshift mutations have been
identified as responsible for the independent origin of null
Wx-AT alleles in emmer wheat (Saito and Nakamura 2005).

With the exception of waxy strains of emmer and bread
wheats, which have been generated by modern breeding
programs, waxy varieties of cereals originated in east and
southeast Asia, where they have been selected in response
toacultural preference for glutinous-type (i.e., waxy) starchy
foods (Sakamoto 1996; Olsen and Purugganan 2002).
Panicum miliaceum L. (broomcorn, proso, or common mil-
let), a tetraploid species (2n = 4x = 36), is one of the world’s
oldestand historically mostimportant domesticated cereals;
recent data attest to its presence as early as 10,000 cal BP in
northern China (Crawford 2009; Lu et al. 2009). Its probable
center of domestication was in this region (although with
possibleindependent domestications further westin Eurasia;
Zohary and Hopf 2000; Jones 2004; Hunt et al. 2008), and
thereis currently considerable interest in its early cultivation
and domestication, as revealed through diverse analytical
techniques including stable isotopic analysis, phytoliths,
and lipid biomarkers (Jacob et al. 2008; Barton et al. 2009;
Lu et al. 2009). These factors make this crop an interesting
speciesin which to investigate the selection of waxy mutants.
Distinct terms indicating glutinous broomcorn millet are re-
cordedin Chinese classical texts dating back some 2,000 years
(Sakamoto 1996). Waxy millet therefore provides an ideal
system to explore the biochemistry and molecular biology
that lie behind ancient food-preference choices.

Previous work (Graybosch and Baltensperger 2009) has
shown that the waxy trait in this tetraploid species is de-
termined by recessive alleles at two loci. In the current
study, we have provided the first characterization of these
loci, obtaining DNA sequence for the region corresponding
to the full length of the mature GBSSI protein for two GBSSI
homeologues. We found evidence for the presence of these
two forms of GBSSI in starch granules. At one locus, we
have established a clear link between a genetic mutation
and its biochemical effect of loss of GBSSI activity, leading
to loss of amylose synthesis and waxy-type endosperm. At
the other locus, we identified three alleles, of which two
result in the loss of active GBSSI protein. It was not possible
to determine whether the third allele represents the func-

tional version of this homeologue, but consideration of the
allele distributions and genotype combinations enables us
to establish a hypothesis for the evolution of the waxy phe-
notype in this species.

Materials and Methods

Plant Material

Accessions of P. miliaceum germplasm were provided by
the USDA-ARS North Central Regional Plant Introduction
Station, Ames, IA, and by the Vavilov Research Institute,
St Petersburg, Russia. The majority of the accessions were
described as having landrace status. Grain from 38 acces-
sions was grown in greenhouses at the University of
Cambridge Botanic Garden. Between one and three plants
per accession (72 plants in total) were analyzed for endo-
sperm starch phenotype and subsequently for GBSSI geno-
type (table 1). Eight of these 72 plant samples (highlighted
in table 1)—accession 3o plant #1, 3y #1, 04 #1, 47 #1, 70 #1,
71 #1, 76 #1, and 82 #1—were analyzed for starch protein,
starch synthase (SS) activity, and sequenced for DNA
corresponding to the full length of the mature GBSSI
protein.

Starch Phenotyping

The development of endosperm starch is determined by
the triploid (3n) endosperm genome (Sano 1984; McIntyre
et al. 2008). Panicum miliaceum is largely self-pollinated,
but crosspollination may exceed 10% (Baltensperger
1996); we excluded the possibility of this by bagging plants
at the first sign of panicle development in perforated cel-
lophane bags (Focus Packaging & Design Ltd, Louth,
Lincolnshire, United Kingdom). Grains were harvested at
maturity, crushed individually between glass slides, and
stained with Lugol’s solution (10% [w/v] KI [Sigma-Aldrich
Ltd,, Gillingham, Dorset, United Kingdom], 5% [w/v] I,
[Sigma-Aldrich Ltd.]), diluted 100-fold with water imme-
diately prior to use. Three grains were analyzed per plant.
Starch-granule color was observed under 20x objective
magnification on a microscope (Nikon, Tokyo, Japan).
Slides were photographed using a DN100 camera (Nikon).

Extraction and Analysis of Starch Protein

Starch protein from the eight plant samples highlighted in
table 1 was extracted and analyzed by sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE). A
single mature grain was dehusked and crushed in an Ep-
pendorf tube. The powdered grain was resuspended in
80-pl extraction buffer (50 mM 2-[4-(2-hydroxyethyl)
piperazin-1-ylJethanesulfonic acid (HEPES) pH 8.0, 1T mM
dithiothreitol (DTT), 10 mM ethylenediaminetetraacetic
acid (EDTA) and centrifuged in a benchtop centrifuge at
14,000 rpm for 5 min at 4 °C. The supernatant was trans-
ferred to a second Eppendorf tube, and the pellet was re-
suspended in 80-pl extraction buffer to give equivalent
volumes in the pellet and supernatant fractions.
Twenty-microliter sample buffer (55 mM Tris—HCl pH
6.8, 2% SDS, 10% glycerol, 11 mg ml~' DTT, bromophenol
blue to color) was added to each fraction, and they were
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Table 1. Accessions of Panicum miliaceum Used in This Study.

Accession Individual Starch
Accession Source Plant M5R11 M12R12 Int5LfR3 Overall Granule
Number Origin Variety and Code Number Genotype Genotype Genotype Genotype Phenotype
1 China Beijing USDA-ARS, 1 A G So/L¢ Nonwaxy
P1408805
2 — G So/Lc Nonwaxy
3 A G So/L¢ Nonwaxy
2 Kazakhstan USDA-ARS, 1 — G So/Lc Nonwaxy
P1346938
2 — G So/Lc Nonwaxy
30 Korea south USDA-ARS, 1 15-bp deletion — A S_qs/ly Waxy
Ames 12701
2 15-bp deletion — A S_1s/ly Waxy
3 15-bp deletion —_ A S_1s/Ly Waxy
3y Korea south USDA-ARS, 1 15-bp deletion — A S_is/Ly Waxy
Ames 12701
2 15-bp deletion — A S_1s/Ly Waxy
4 Kyrgyzstan USDA-ARS, 1 — G So/Lc Nonwaxy
P1346936
12 China Shanxi  sanguineum VIR, #8966 1 A G So/L¢ Nonwaxy
16 Mongolia mongolicum, VIR, #464 1 — G So/Lc Nonwaxy
tephrum
2 —_ G So/Lc Nonwaxy
3 - G So/Lc Nonwaxy
24 Kyrgyzstan flavum VIR, #8525 1 — A So/Ly Nonwaxy
29 Kazakhstan dacicum VIR, #3773 1 Heterozygote G So/Lc/SolLe Nonwaxy
Aqtobe heterozygote
2 A G So/L¢ Nonwaxy
31 Ukraine flavum VIR, #3009 1 — A So/Ly Nonwaxy
Poltava
2 — A So/Ly Nonwaxy
38 Azerbaijan coccineum VIR, #1546 1 — A So/Ly Nonwaxy
2 — A So/Ly Nonwaxy
47 Russia VIR, #9052 1 — A So/Ly Nonwaxy
Samara
2 — A So/Ly Nonwaxy
48 Russia flavum VIR, #2804 1 — A So/Ly Nonwaxy
Tatarstan
2 — G So/Lc Nonwaxy
53 Russia sanguineum VIR, #9438 1 — A So/Ly Nonwaxy
Orenburg
54 Russia Altai flavum VIR, #2392 1 — G So/Lc Nonwaxy
2 — A So/Ly Nonwaxy
55 Russia Omsk  vitellinum VIR, #2825 1 — G So/Lc Nonwaxy
2 — G So/Lc Nonwaxy
56 Russia tephrum VIR, #8222 1 — G So/Lc Nonwaxy
Buryatia
2 — G So/Lc Nonwaxy
3 — G So/Lc Nonwaxy
57 Russia Irkutsk  mongolicum VIR, #316 1 — G So/Lc Nonwaxy
2 — G So/Lc Nonwaxy
3 — G So/Lc Nonwaxy
58 Russia Amur tephrum VIR, #8508 1 — G So/Lc Nonwaxy
2 — G So/Lc Nonwaxy
3 -_ G So/Lc Nonwaxy
59 Russia Amur  tephrum VIR, #8545 1 — G So/Lc Nonwaxy
60 Russia badium VIR, #8571 1 — A So/Ly Nonwaxy
Primorskiy
Kray
2 — A So/Ly Nonwaxy
61 Russia tephrum VIR, #50 1 — G So/Lc Nonwaxy
Primorskiy
Kray
2 — G So/Lc Nonwaxy
66 Mongolia VIR, #509 1 — A So/Ly Nonwaxy
67 China NE tephrum VIR ,#1175 1 — G So/Lc Nonwaxy
2 — G So/Lc Nonwaxy
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Table 1. Continued

Accession Individual Starch
Accession Source Plant M5R11 M12R12 Int5LfR3 Overall Granule
Number Origin Variety and Code Number Genotype Genotype Genotype  Genotype Phenotype
68 China sibiricum VIR, #1371 1 15-bp deletion A G S_1s/L¢ Waxy
Manchuria
2 15-bp deletion A G S_1s/L¢ Waxy
69 China NE tephrum VIR, #1999 1 — G So/Lc Nonwaxy
70 China NE subcoccineum VIR, #2012 1 15-bp deletion A G S_1s/L¢ Waxy
71 China NW VIR, #2282 1 A G So/L¢ Nonwaxy
2 — G So/Lc Nonwaxy
3 —_ G So/Lc Nonwaxy
72 China NW flavum/aureum VIR, #2301 1 — A So/Ly Nonwaxy
2 — A So/Ly Nonwaxy
75 China aureum VIR, #3750 1 15-bp deletion A G S_1s/L¢ Waxy
76 China NW ochroleucum VIR, #3790 1 A G So/Ls¢ Nonwaxy
2 A G So/L¢ Nonwaxy
77 China NE album VIR, #8803 1 A G So/L¢ Nonwaxy
2 15-bp deletion A G S_1s/L¢ Waxy
78 China N sanguineum VIR, #8966 1 A G So/L¢ Nonwaxy
79 China NW VIR, #9079 1 — G So/Lc Nonwaxy
80 China NW VIR, #9095 1 — G So/Lc Nonwaxy
2 — G So/Lc Nonwaxy
82 China atrocastaneum VIR, #9205 1 15-bp deletion A G S_1s/L¢ Waxy
Heilongjiang
2 15-bp deletion A G S_1s/L¢ Waxy
84 China VIR, #10155 1 A G So/L¢ Nonwaxy
2 A G So/L¢ Nonwaxy
85 China VIR, #10238 1 15-bp deletion A G S_1s/L¢ Waxy
2 15-bp deletion A G S_1s/L¢ Waxy

A = frameshift G gives
mutation cysteine
codon,
A gives
tyrosine
codon

Note—Origin and variety information as given by the germplasm source institution. Key: USDA-ARS = US Department of Agriculture-Agricultural Research Service; VIR =
Vavilov Institute of Research. Results of genotyping at the S and L loci, and starch phenotyping with iodine, are shown. Where genotype is not specifically indicated, plants
did not have the 15-bp deletion at the S locus and did not have the additional (frameshift) A at the L locus. Entries in bold typeface indicate plants analyzed by SDS-PAGE
and Western blotting, assayed for SS activity, and sequenced for the full-length exon 2-exon 14 region.

heated at 90 °C for 3 min. The samples were cooled and
centrifuged, and the supernatant was analyzed by SDS-
PAGE on 7.5% polyacrylamide gels that were electroblotted
onto polyvinylidene difluoride (PVDF) membrane. Antiserum
was raised to a 60-kDa protein excised from an SDS-PAGE gel
of granule-bound proteins from developing barley (Hordeum
vulgare L.) endosperm (Smith AM, personal communication).
Rabbit sera containing the resulting antibarley endosperm
GBSSI antibodies in a 1:2,000 (v/v) dilution, and the secondary
antibody IgA antirabbit phosphatase conjugate, were used to
develop blots following the method of Denyer, Barber, et al.
(1997). In a second experiment, powdered grain was resus-
pended and washed three times in 2% SDS (instead of extrac-
tion buffer) then once in H,O. The resulting suspension was
spun through 80% CsCl and washed once more in H,O prior
to the addition of sample buffer and subsequent analysis as
above.

GBSS Activity Assays
SS activity assays were carried out on the same eight plant
samples analyzed with SDS-PAGE. Three replicate starch

preparations were made for each plant sample. Starch
preparation followed a method modified from Denyer et al.
(1995). Twenty grains were dehusked and ground in
a chilled mortar, then resuspended in 1-ml extraction
buffer (0.1 M Tris—acetate pH 7.0, 0.5 M NaCl, 1T mM
DTT, and 1 mM EDTA). The homogenate was centrifuged
in a benchtop centrifuge at 13,000 rpm for 3 min at room
temperature and the supernatant discarded. The pellet was
washed in the same way once more with 1-ml extraction
buffer, three times in 1-ml wash buffer (50 mM Tris—
acetate pH 8.0, 1 mM DTT, and 1 mM EDTA), and once
in ice-cold 100% acetone. The pellet was air dried and
stored at —20 °C prior to assaying.

SS assays were carried out in 100 pl volumes containing
100 mM Bicine (pH 8.5), 25 mM potassium acetate, 10 mM
DTT, 5 mM EDTA, 20 pl of 50 mg ml~' potato amylopectin
in water (freshly boiled and then cooled to room temper-
ature), 2 mM ADP[UMC]glucose (at 4.6 GBq mol "), and
20 ul starch suspension (50 mg ml™" starch in 100 mM
3-morpholinopropane-1-sulfonic acid (MOPS) [pH 7.2], 5
mM MgCl,, 50 ml ™" glycerol, and 2 mM DTT, 1 g [’
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bovine serum albumin). Assay mixtures were incubated for
30 min at 25 °C, and then 3 ml ice-cold 75% (v/v) aqueous
methanol containing 1% (w/v) KCl was added to stop the
reaction. Controls were stopped by the addition of
methanol/KCl immediately after the addition of the
starch-granule suspension to the rest of the assay. After
at least 5-min precipitation in methanol/KCl, starch was
collected by centrifugation in a benchtop centrifuge at
3,000 rpm for 5 min at room temperature. The supernatant
was discarded, and the starch pellet was resuspended in
300 pl water. The methanol-KCl precipitation and water
resuspension steps were repeated a further two times. After
the final resuspension in water, 3 ml Hisafe Il scintillant was
added, and radioactivity in starch was determined by scin-
tillation counting. All assays and controls were performed
in triplicate for each replicate starch sample.

DNA Extraction, Amplification, and Analysis

Leaf tissue was freeze dried and ground using a Qiagen
Tissue Lyser. DNA was extracted using either a Qiagen
Plant DNeasy kit (Qiagen Ltd, Crawley, West Sussex,
United Kingdom) or a hexadecyltrimethylammonium
bromide (CTAB) protocol modified from Rogers and
Bendich (1994). In the latter, powder was resuspended
and incubated in a mix of 500 pul CTAB buffer (2%
[w/v] CTAB, 0.1 M Tris—HCl pH 8.0, 1.4 M NacCl,
0.02 M EDTA), 50 pl Sarkosyl buffer (10% [w/v] N-lauryl
sarcosine, 0.1 M Tris—HCl pH 8.0, 0.02 M EDTA), and 5 pl
B-mercaptoethanol) at 60 °C for 1 h. One volume of
chloroform/isoamyl alcohol (24: 1) was then added and
the mixture vortexed to form an emulsion. Following
3-min centrifugation at 13,000 rpm in a benchtop centri-
fuge, the supernatant was transferred into a clean tube,
and the chloroform/isoamyl alcohol clean-up stage was
repeated. Two-third volume of ice-cold isopropanol
was added to the supernatant. Precipitated DNA was pel-
leted by 3-min centrifugation at 13,000 rpm in a benchtop
centrifuge, and pellets were washed in 500 pl 70% (v/v)
ethanol. Following a final centrifugation as above, the eth-
anol supernatant was discarded and pellets air dried prior
to resuspension in 100 pl water.

Initial experimentation with primers from Fukunaga
et al. (2002) to the S. italica GBSSI sequence consistently
demonstrated the presence of two GBSSI loci in
P. miliaceum, which we designated the short (“S”) and long
(“L”) genes. Following further extensive experimentation
with primers designed against the S. italica sequence, we
used the following protocols to amplify the region
corresponding to the entire mature peptide for the S
and L loci in the eight plants previously analyzed for starch
protein and enzyme activity. The L locus was amplified in
a single polymerase chain reaction (PCR) using the primers
FPSLVVC3 and Rstop3 (table 2), in 50 pl volumes using 1%
Finnzymes HF buffer (New England Biolabs, Hitchin, Hert-
fordshire, United Kingdom), 200 M deoxynucleoside tri-
phosphates (dNTPs), 0.3 uM of each primer, 3% dimethyl
sulfoxide, 1 U Finnzymes Phusion High-Fidelity DNA Poly-
merase (New England Biolabs). Cycling conditions were 30 s
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at 98 °G; 40 cycles of 10 s at 98 °C, and 2 min 30 s at 72 °G;
final extension step of 10 min at 72 °C. The S locus could
not be reliably amplified as a single product, apparently due
to the presence of a poly-C motif in intron 7 that often
caused the reaction to fail. We therefore amplified the S
locus in three overlapping fragments. The 5" and 3’ regions
were amplified using the primer combinations FPSLVVC3
and ex7Srext, and int7Sf and Rstop3, respectively. Reactions
were performed as for the amplification of the L locus
above, except using 40 cycles of a three-step PCR cycle
of 10 s at 98 °C, 30 s at 71 °C/64 °C, respectively, T min
at 72 °C. We amplified the central fragment of the S gene
using a nested PCR strategy. The primary PCR used the pri-
mers int5Sf and R11 and was carried out according to the
same protocol as the above reactions, with the differences
that MgCl, was added to give a final concentration of 2 mM
and the three-step cycling program was as follows: 40 cycles
of 20 s at 98 °C, 30 s at 64 °C, and 30 s at 72 °C. The cleaned
product from this reaction was used as template in a sec-
ondary PCR using the primers M17 and Ex8r, which fol-
lowed the same protocol as the primary PCR.

The primers FPSLVVC3 and Rstop3 overlapped with the
N- and C-termini of the mature GBSSI peptide, as expected
by comparison with GBSSIs from other species (supple-
mentary fig S1, Supplementary Material online), by 3
and 21 nt, respectively. Peptide mass fragment analysis
(see below) was therefore used to confirm that the
N- and C-termini matched the amino sequence anticipated
by comparison with S. italica.

Following identification of exon polymorphisms, one
shorter fragment within the S sequence and two within
the L sequence were amplified for all 72 plant samples
analyzed for starch phenotype, using the primers M5
and R11, M12 and R12, and int5Lf and R3, respectively
(fig. 1 and table 2 show positions and details of primers
used). PCRs were carried out on an Eppendorf MasterCy-
cler thermocycler, in 25-pul volumes containing 1x PCR
buffer, 0.3 UM of each primer, 200 pM dNTPs, 1.3 U
DNA polymerase (Expand High-Fidelity PCR System,
Roche Diagnostics Ltd., Burgess Hill, United Kingdom)
and 1-ul template DNA. Reactions for the M5-R11 and
M12-R12 fragments contained 1.5 mM MgCl,; reactions
for the int5Lf-R3 fragment contained 2.5 mM MgCl,.
Cycling conditions for the M5-R11 and M12-R12 frag-
ments were as follows: 2 min at 94 °C 30 cycles of
30 s at 94 °C, 30 s at 58 °C, and 1 min 30 s at 72 °G; final
extension step of 7 min at 72 °C. Cycling conditions for
the int5Lf-R3 fragment were 2 min at 94 °C, 35 cycles of
45sat 94 °C, 30 s at 54 °C, and 2 min at 72 °C, with a final
extension step of 7 min at 72 °C.

PCR products were checked for size on Tris/acetate/EDTA
buffer—agarose gels, excised when necessary, and cleaned us-
ing an illustra GFX PCR purification kit (GE Healthcare,
Amersham, United Kingdom) or a Qiagen gel purification
kit (Qiagen Ltd). Cycle sequencing was performed using pri-
mers for each fragment as shown in table 2. Contigs were
assembled in ChromasPro version 1.41 (Technelysium Pty,
Ltd., Tewantin, Australia). Sequences were aligned in MEGA
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Table 2. Primers Used for PCR and DNA Sequencing.

PCR Sequencing
Amplicon Primers Primers Sequence (5’ to 3') Direction Source
L gene, exon 2—exon 14 FPSLVVC3  FPSLVVC3 TCCCCTCCCTCGTCGTCTGCGC F This study
Rstop3 Rstop3 AGGGAGCGGCCACGTTCTCCTT R This study
Ex5R CTGGCAAAGCAGGCTGAAACG R This study
R3 TGGTAGTTGCTCTTGAGGTA R
M2ext GAGGTTCTTCCACTGCTACAAGC F This study
M16 CACCGATTGCTCTGCATTC F This study
R16 TCACGACTAACCCATCACGC R This study
M4 TTTCTGCATCCACAACATCT F Umeda et al. (1991)
R13 GTACTTGTCCTTGCTGGGGTCCC R This study
M12 CGTGACCATCTCTTCCTGTA F This study
R7 ACGAGTCCACCGGTGGACGC R Umeda et al. (1991)
M5 GGACGTCAGCGAGTGGGACC F Umeda et al. (1991)
m7 CACCAGCCGCTTCGAGCCCT F Umeda et al. (1991)
S gene, exon 2-exon 7/intron 7 FPSLVVC3  FPSLVVC3 TCCCCTCCCTCGTCGTCTGCGC F This study
ex7Srext ex7Srext GGGGCAACCTTTGCATTCTTGTAGATG R This study
Ex5R CTGGCAAAGCAGGCTGAAACG R This study
M2ext GAGGTTCTTCCACTGCTACAAGC F This study
R3 TGGTAGTTGCTCTTGAGGTA R Umeda et al. (1991)
M17 TACACACTGCCATCTGTTGTGC F This study
S gene, intron 5-exon 8 int5Sf TGCATTTAAACAAGGGGCGAGTACTG F This study
R11 CAGGCACACTGCTCCCAATG R This study
secondary PCR
M17 Mm17 TACACACTGCCATCTGTTGTGC F This study
Ex8r Ex8r CGAAGGATGACCTGAACCTCTCA R This study
S gene, intron 7-exon 14 int7Sf int7Sf TCGTTTGATGTTCGTAGACGCC F This study
Rstop3 Rstop3 AGGGAGCGGCCACGTTCTCCTT R This study
R13 GTACTTGTCCTTGCTGGGGTCCC R This study
R11 CAGGCACACTGCTCCCAATG R This study
R7 ACGAGTCCACCGGTGGACGC R Umeda et al. (1991)
M5 GGACGTCAGCGAGTGGGACC F Umeda et al. (1991)
m7 CACCAGCCGCTTCGAGCCCT F Umeda et al. (1991)
L gene, intron 5-exon 7 int5Lf int5Lf ATGTTTGAATGAATGCTCC F This study
R3 TGGTAGTTGCTCTTGAGGTA R Umeda et al. (1991)
L gene, intron 8-intron 9 M12 M12 CGTGACCATCTCTTCCTGTA F This study
R12 CGACGACGAACTCTCAACAC R This study
S gene, exon 9-intron 10 M5 M5 GGACGTCAGCGAGTGGGACC F Umeda et al. (1991)
R11 CAGGCACACTGCTCCCAATG R This study

version 4.0 (Tamura et al. 2007) and predicted intron—exon
boundaries and amino acid sequence established by refer-
ence to the published sequence for S. italica (Fukunaga
et al. 2002). Sequences have been submitted to GenBank;
accession numbers are given in table 3.

We aligned the predicted amino acid sequences in
P. miliaceum with GBSS sequences downloaded from Gen-
Bank for a range of monocots and dicots using the Clus-
talW alignment tool in MEGA 4.0. A maximum likelihood
tree of relationships between these taxa, with 1,000 boot-
strap replicates, was estimated using the PhyML online web
server (Guindon et al. 2005), using the Jones, Taylor, and
Thorton (JTT) 4+ | + G model of protein-sequence evolu-
tion, selected using the Akaike information criterion in
ProtTest (Abascal et al. 2005). Tree files were edited using
Dendroscope version 2.2 (Huson et al. 2007).

Proteomics

In an initial experiment, starch-granule protein from the
samples 4 #1/47 #1 (samples combined), 76 #1, 3y #1,
and 82 #1 was analyzed to identify the proteins present.
Gel plugs (1 mm x 1 mm) containing a band correspond-
ing to a protein approximately 52 kDa in size were cut from

the SDS-PAGE gel, washed twice for 20 min in freshly pre-
pared 400 mM ammonium bicarbonate: 100% acetonitrile
(1:1), twice in 100% acetonitrile for 1 min and then for
15 min, and then air dried for 10 min. The plugs were in-
cubated for 3 h at 37 °C with 5 pl 10 mM ammonium bi-
carbonate containing 50-ng modified porcine trypsin
(Promega, Madison, WI). After the addition of 5 pul 5% for-
mic acid, the plugs were incubated at room temperature
for 10 min. A Dionex U3000 high performance liquid chro-
matography system was used to deliver the peptides at
a flow rate of 150 nl min~' to the mass spectrometer
(LTQ Orbitrap, Thermo Electron Corp., Runcorn, Cheshire,
United Kingdom). Peptides were trapped and desalted us-
ing a precolumn (C18 pepmap100, LC Packings) and then
separated on an analytical column (self-pulled to a length
of 12-cm and 50-um ID and self-packed with Waters
BEH130 C18, 1.7 um) with a gradient of 5-45% acetonitrile
in water/0.1% formic acid at 0.66% increase per minute.
The mass spectrometer was operated in positive ion mode
with a nanospray source and a capillary temperature of
200 °C. The source voltage and focusing voltages were
tuned for the transmission of peptide Met-Arg-Phe-Ala
(m/z 524). Data-dependent analysis was carried out in

1483



Hunt et al. - doi:10.1093/molbev/msq040

G/A substitution

|

2 3 4 5 6 7 8

+-A
[ frameshift mutation

9 10 11 12 13 14

L —a———.-. -
— —_ «— — “— «—
FPSLVVC3 int5Lf R3 M12 R12 Rstop3
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intSSf int7Sf 1/ (GCGCTG)AACAAGGAG(GCGCTG)
15 bp deletion 100 bp

Fic. 1. Structure of the GBSSI sequence analyzed in Panicum miliaceum showing the L and S gene types (putative homeologues) and the relative
sizes of the exons (wide bars, numbered analogously to Setaria italica) and introns. Approximate positions and 5’ to 3’ direction of primers
used for PCR are marked with arrows (primers not to scale). The mutations identified in the L and S loci are identified.

Orbitrap-IT parallel mode (collision induced dissociation
fragmentation) on the five most abundant ions in each
cycle. The Orbitrap was run with a resolution of 30,000 over
the MS range from m/z 400 to m/z 1,800 and an MS target
of 1e® and 1-s maximum scan time. The MS2 was triggered
by a minimal signal of 5,000 with a target of 2e* and 200-ms
scan time. For selection of 2+ and 3+ charged precursors,
charge state and monoisotopic precursor selection was
used. Collision energy was 35, and an isolation width of
2 was used. Dynamic exclusion was set to 1 count and
60-s exclusion with an exclusion mass window of —0.5
to +1.2. Raw files were processed in Bioworks to generate
data files. The merged data files were used to search
the SPtrEMBL (Viridiplantae) database with Mascot 2.2
(Matrixscience) (in-house), with a peptide tolerance of
5 ppm and a fragment tolerance of 0.6 Da, allowing up
to three missed cleavages.

In a second experiment, selected samples were reanalyzed
to identify the C-terminal sequence of the proteins present.
Bands were cut from the gel as above and washed for 30 min
with 200 pl 50% acetonitrile in 0.1M ammonium bicarbonate
containing 5 mM Tris-[2-carboxyethyl]-phosphine, followed
by the addition of 20 pl 250 mM iodoacetamide in water, for
a further 30 min. They were then washed for 30 min in 400 pl
50% acetonitrile in 0.1 M ammonium bicarbonate and dried
under vacuum for 10 min. The plugs were incubated for 18 h

Table 3. Genbank Accession Numbers for the Eight Plants
Sequenced for the Full-Length GBSSI Exon 2-Exon 14 Sequences.

S Gene Sequence L Gene Sequence

Sample Genotype Accession Number Accession Number
4 #1 So/Lc GU199261 GU199253
47 #1 So/Ly GU199262 GU199254
71 #1 So/L¢ GU199263 GU199255
76 #1 So/Ls GU199264 GU199256
30 #1 S_1s/ly GU199265 GU199257
3y #1 S_1s/ly GU199266 GU199258
70 #1 S_1s5/L¢ GU199267 GU199259
82 #1 S_1s/L¢ GU199268 GU199260
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at 37 °Cwith 25 pl 100 mM ammonium bicarbonate contain-
ing 10 pg ml™" proteinase (either AspN endoproteinase or
trypsin). Peptides were recovered by binding to a conditioned
pC18 ZipTip (Millipore, United Kingdom), washed with 5%
acetic acid, and eluted with 2-5 pl of 70% methanol/0.2% for-
mic acid. Analysis was by matrix assisted laser desorption ion-
isation (MALDI) mass spectrometry (Waters Micromass
MaldiMX Micro) using a-cyano-4-hydroxycinnamic acid ma-
trix (10 mg ml™" in 50% aqueous acetonitrile/0.1% trifluro-
acetic acid) and by nanoelectrospray ms/ms using
a Thermo Finnigan LCQ Classic instrument. Desalted sam-
ple was delivered using a static nanospray source (Proxeon
Biosystems, Denmark) at 0.5 kV, and peaks of interest
were interrogated manually for mass and fragmentation
using standard parameters recommended by the manu-
facturer. Results were analyzed using Qual Browser in Xca-
libur 1.2 (Thermo), Mascot (Matrix Science, United
Kingdom) and custom spreadsheets.

Results

Starch Phenotyping

Fifty-eight plants, drawn from 31 different accessions, pro-
duced grain with endosperm starch that stained blue-
black with iodine, indicating the presence of amylose
(nonwaxy; fig. 2[a]). Fourteen plants, drawn from eight
different accessions, produced grain with starch granules
that stained red (waxy type; fig 2[b]).

Starch Protein Analysis and GBSS Activity

We selected four nonwaxy and four waxy plant samples for
analysis of starch protein. In all eight samples, two bands
produced a crossreaction with antibarley GBSSI antiserum
(four plant samples are shown in fig. 3[a]; the other four
samples gave very similar results). One was approximately
52 kDa, slightly smaller than GBSSI in other species, which is
typically close to 60 kDa (Denyer, Edwards, et al. 1997). Be-
cause each lane contains protein from the same amount of
grain material, the intensity of the bands in the soluble and
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Fic. 2. Starch granules of Panicum miliaceum stained with 0.01x Lugol’s solution. (a) Nonwaxy type, stained blue-black (accession 58 plant 1).

(b) Waxy type, stained red—brown (accession 85 plant 1).

insoluble fractions enables a comparison of the relative
amount of the protein in each. Almost all of the 52-kDa
protein was associated with the insoluble (granule-bound)

(a) (b)

47T#1 T6#1 3y#1 82#1
SJL, SJL, S JL, S L,

175 4

80_'"—"__'_-__'4

71 #1 3o0#1 70 #1
. SyL, S JL, S JL,
- e-w W
46 — a
-
30
S | S 1 ‘ S 1 8 | L 2
\ g non-waxy waxy
non-waxy waxy

Fic. 3. (a) Western blot of soluble (S) and insoluble (I) protein
fractions from endosperm starch, developed with antibarley GBSSI
antibody and IgA antirabbit phosphatase conjugate. The band
at ~52 kDa represents the GBSSI protein. The larger ~80-kDa band
most likely represents a second isoform of GBSS in broomcorn
millet. (b) Detail of selected samples (insoluble protein fractions
only) from a parallel blot (using different plants of the same
genotypes) to that in figure 5(a). The S_;s/L¢ genotype, lacking five
amino acids, produces a slightly smaller GBSSI band than the So/L¢
genotype. A double band can be seen in the S_;5/Ly genotype, with
a smaller band of the same size as in the S_;5/L¢ sample and a larger
band comparable in size with the S, GBSSI. The larger band
probably represents the (inactive) Ly protein.

fraction in both nonwaxy and waxy samples. A second pro-
tein, approximately 80 kDa in size, was also observed in all
samples and was distributed more evenly between the sol-
uble and insoluble starch protein fractions. This protein
most likely represents a second isoform of SS, probably SSII.

A close examination of the relative mobilities of the
GBSSI proteins (fig. 3[b]) indicated that the predominant
band in the waxy samples was of a slightly lower apparent
molecular mass than that in the nonwaxy samples. In two
of the waxy samples (30 #1 and 3y #1), a double band was
seen, with the fainter upper band appearing equivalent in
size to the band in the nonwaxy samples.

The four nonwaxy and four waxy plants analyzed for
starch protein were assayed for GBSS activity. SS activity
per mg starch was several-fold higher in the nonwaxy than
in the waxy samples (table 6).

To check whether the waxy GBSSI in the buffer-insoluble
pellet was entrapped in starch granules or insoluble be-
cause it was denatured, we carried out a second western
blotting experiment in which pellets were washed with
SDS and CsCL This has previously been shown to remove
proteins effectively from the outside of starch granules
(Mu-Forster et al. 1996; Stoddard 1999) and should solubi-
lize most insoluble denatured proteins. The results showed
that some waxy GBSSI remained in the insoluble fractions,
indicating that it was still at least partially granule bound
(data not shown). Thus, loss of activity in these waxy mu-
tant GBSSI proteins is not accompanied by loss of the abil-
ity to bind to granules.

DNA Sequencing
Using a combination of primers designed against the
S. italica GBSSI sequence and novel internal primers in

1485



Hunt et al. - doi:10.1093/molbev/msq040

0.1
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Oryza sativa GBSSII

Arabidopsis thaliana GBSSI

Oryza rufipogon GBSSI

Oryza sativa GBSSI
uf, o%ryza glaberrima GBSSI
Austrostipa aristiglumis GBSSI Oryza australiensis GBSSI

Microlaena stipoides GBSSI 7
a7 Elymus scaber GBSSI
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Pisum sativum GBSSI

Manihot esculenta GBSSI

Solanum tuberosum GBSSI

Triticum aestivum GBSSI

Hordeum vulgare GBSSI

Zea mays GBSSI Panicum miliaceum GBSSI-S
78
Panicum miliaceum GBSSI-L

| Setaria italica GBSSI

Sorghum bicolor GBSSI
Sorghum leiocladum GBSS|

FiG. 4. Maximum likelihood tree of GBSS amino acid sequences, using the JTT + | + G model of protein evolution with 1,000 bootstrap replicates.
Percentage bootstrap support values are shown. GenBank accession numbers for the GBSS proteins: Arabidopsis thaliana GBSSI NP_174566;
Austrostipa aristiglumis GBSSI ABU98330.1; Elymus scaber GBSSI ABU98331.1; Hordeum vulgare GBSSI CAA30755, GBSSIb AAM74054; Manihot
esculenta GBSSI CAA52273; Microlaena stipoides GBSSI ABU98332.1; Oryza australiensis GBSSI ABU98325.1; Oryza glaberrima GBSSI BAA01272;
Oryza rufipogon GBSSI ABU98326.1; Oryza sativa GBSSI CAA46294, GBSSII AAL58572; Panicum miliaceum GBSSI-L type ADAG1154, GBSSI S-type
ADAG61162 (this study); Pisum sativum GBSSI AAB265971; Setaria italica GBSSI BAC06486; Solanum tuberosum GBSSI CAA41359; Sorghum bicolor
GBSSI Q43134; Sorghum leiocladum GBSSI ABU98327.1; Triticum aestivum GBSSI AAB26860; and Zea mays GBSSI P04713.

the P. miliaceum sequences, we were able to amplify and
sequence 2 GBSSI products, around 3.6 and 3.2 kb in size,
which we designated the large (henceforth L) and small
(S) fragments, respectively (fig. 1). We identified exon-
intron boundaries within the L and S sequences by alignment
with the published sequence for S. italica GBSSI (AB089143)
and numbered exons and introns correspondingly. Both the
L and S sequences span the region from the start of the ma-
ture GBSSI peptide, midway through exon 2, to the end of
exon 14. These two sequences were present consistently
across accessions of P. miliaceum.

The alignment of P. miliaceum GBSS amino acid sequen-
ces with those of other species is available as supplemen-
tary fig. S1, Supplementary Material online. All GBSSI
sequences form a clade with 100% bootstrap support in
the maximum likelihood tree, distinct from other isoforms
of GBSS, demonstrating that both Panicum sequences are
of GBSSI type (fig. 4) rather than of the GBSSIb/GBSSII types
typically expressed in leaves rather than endosperm.
Panicum miliaceum GBSSI-S and -L types are closely related
to S. italica GBSSI, forming a clade with 94% bootstrap
support, consistent with the taxonomic position of these
genera within Paniceae and their established relationship in
grass phylogenies (e.g, Bouchenak-Khelladi et al. 2008).
Within this clade, the two Panicum sequence types emerge
as sister taxa with 78% bootstrap support.

High exon-sequence identity (95.3%) was seen between
P. miliaceum L, P. miliaceum S, and S. italica GBSSI sequen-
ces, with 97.1% predicted amino acid identity. Eight
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fixed amino acid differences were found between the
P. miliaceum M4R9 L and S genes (supplementary fig. S1,
Supplementary Material online).

The GBSSI intron sequences aligned very weakly both be-
tween P. miliaceum L and P. miliaceum S and with S. italica.
Panicum miliaceum L differed from S by a large deletion
(ca. 300 bp) in intron 5 and a large insertion (ca. 700 bp)
in intron 8. These indels accounted for most of the observed
size difference between the two GBSSI sequences.

Three between-plant exon sequence polymorphisms
were identified in P. miliaceum GBSSI. Polymorphism
for a 15-bp indel was observed in the S gene, near the
5’ end of exon 10, within the region containing the se-
quence GCGCTGAACAAGGAGGCGCTG. By comparison
with other GBSSI sequences in the database, we inferred
that this polymorphism arose from a deletion in some
P. miliaceum. Because of the repetition of the motif
GCGCTG in this region of the alignment, it was not pos-
sible to determine unambiguously the exact position of
the deletion, but it results in a change of amino acid se-
quence from ...ALNKEAL... to ...AL... . In the follow-
ing discussion, we use S, to refer to the allele or protein
product lacking the deletion and S_5 for the allele or its
product with the deletion. The repeated 6-bp motif sug-
gests that this deletion may have arisen by recombination
across this repeat.

The amino acid—sequence alignment showed that the
ALNKEAL motif containing the site of the deletion in some
S sequences is conserved among all Poaceae GBSSI
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Fic. 5. Three-dimensional structure of the Agrobacterium
tumefaciens glycogen synthase protein (Buschiazzo et al. 2004).
The amino acids ALNKKAV that correspond to the ALNKEAL
motif in the Panicum miliaceum GBSSI-S—type protein are
highlighted and indicated with the arrow. A color version of
this figure is available as supplementary figure S2, Supplementary
Material online.

sequences (supplementary fig. S1, Supplementary Material
online). The lysine residue in this motif is conserved across
all SSs and in glycogen synthase of Agrobacterium. Thread-
ing of Arabidopsis SS amino acid sequence onto the 3D
structure of glycogen synthase in Agrobacterium (Buschiaz-
zo et al. 2004; Busi et al. 2007) shows that the five amino
acid deletion in the S protein of P. miliaceum falls in a helix
within the GTD1 (fig. 5; a color version of this figure is avail-
able as supplementary fig. S2, Supplementary Material
online).

Two polymorphisms were observed in the L gene. One
was an insertion/deletion of an adenine residue 19 nt from
the 5" end of exon 9. By comparison with other GBSS/ se-
quences, we inferred that the additional adenine represents
an insertion in P. miliaceum that causes a shift in the read-
ing frame, resulting in altered downstream inferred amino
acid sequence and a novel stop codon 228 codons beyond
the insertion. The second polymorphism was a substitution
of an adenine for a guanine residue in exon 7, which causes
a change from a cysteine codon to a tyrosine codon at
amino acid position 249 (numbered according to the align-
ment in supplementary fig. S1, Supplementary Material
online). By comparison with other GBSSI sequences, we in-
ferred that the cysteine is the wild-type amino acid, and the
tyrosine represents a mutant form.

On the basis of these preliminary results, we designed
fragment-specific primers, such that the primer pair M5/
R11 amplifies the 391-bp region including the deletion site
in the S gene, the primer pair M12/R12 amplifies the 632-bp
region including the A insertion site in the L gene, and the
primer pair int5Lf/R3 amplifies the 251-bp region including
the SNP in the L gene. Genotyping results for the S and
L loci are shown in table 1.

At the L locus, all plants with the frameshift A insertion
had the guanine residue at the SNP site, whereas plants
without the frameshift mutation were polymorphic for
the guanine—adenine substitution. Thus, we defined three

Table 4. Summary of Genotypes Observed in 72 Plants, with
Associated Phenotypes.

Lc Ly L
So 31 Nonwaxy
S 15 0

15 Nonwaxy
5 Waxy

11 Nonwaxy
9 Waxy

NoTe—One plant was heterozygous for So/Lc and So/Ly.

alleles of the L gene: L¢ (frameshift mutation), L¢ (no frame-
shift, cysteine codon at amino acid position 249), and Ly
(no frameshift, tyrosine codon at amino acid position
249). We observed these L-gene alleles in combination with
the S gene alleles Sy and S_ 45 such that five of the six pos-
sible combinations of genotypes were found. Table 4 sum-
marizes the number of plants of each genotype. No other
polymorphic sites were seen in the exon sequence of either
locus.

All of the 14 phenotypically waxy plants had the 15-bp
deletion at the S locus. Nine of these plants had the L allele
with the additional A residue in exon 9, whereas five (all
those from accessions 30 and 3y) had the Ly allele. Of
the 58 nonwaxy plants, none had the 15-bp deletion at
the S locus; at the L locus, 11 had the additional A (L¢allele),
15 had no A insertion in combination with the tyrosine
residue at aa position 249 (Ly allele), and 30 had no A in-
sertion in combination with the cysteine codon at aa po-
sition 249 (L¢ allele). One plant was heterozygous for the L¢
and Lc alleles (table 1). Because the plants (with this one
exception for L) were homozygous at both the S and L
loci, we can be confident that the endosperm genotypes
were homozygous and identical to those of their parent
plants, albeit with one extra copy. Thus, among 72 plants
representing 38 different accessions, there was 100% cor-
respondence between the waxy starch phenotype and the
15-bp deletion at the S locus. At the L locus, the waxy
phenotype of plants with the genotypes S_;s/Ly and
S_1s/Ls is evidence that the Ly and L; alleles do not pro-
duce an active protein product. Because the L allele does
not occur in combination with the S_;; allele, there is no
direct evidence whether L results in an active GBSSI
protein or not.

Proteomics

From the SDS-PAGE gels and the DNA sequence data, we
inferred that the GBSSI protein present in each sample
most likely represented the Sy or S_;5 isoform, according
to its genotype, and also the Lc or Ly isoform in plants with
those genotypes. We inferred that no L-type protein was
present in plants with the L allele, because we did not
see a band of molecular mass ~45 kDa that would corre-
spond to the truncated protein predicted from the frame-
shift. This suggests that the L protein is not expressed or is
unstable. The apparent lower molecular mass of the major
band in the S_;5 compared with the S, samples is consis-
tent with its missing five amino acids. It is likely that the
larger band in the doublet in the samples with the geno-
type S_is/Ly represents the Ly protein. This band was
absent from samples with the genotype S_1s/L:.
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To test these hypotheses regarding protein identity, we
compared the peptide mass fingerprints of the GBSSI pro-
teins excised from the lanes containing the insoluble pro-
tein fractions in the gel in figure 3(a) with those of in silico
trypsin-digested plant proteins in the SPtrEMBL Viridiplan-
tae database to which the P. miliaceum sequences Sy, S_ 15,
Lc, and Ly had been manually added. We found that the
top matches were all GBSSI proteins, confirming that
the 52-kDa protein, present in both nonwaxy and waxy
P. miliaceum starch, is indeed GBSSI. The top protein
matches were S, in the accessions with normal starch
and S_,5 in the accessions with waxy starch. Fragments en-
abling the discrimination of S from L protein were present
in all samples (table 5). All genotypes had peptides specific
to the S protein. These were numerous for all samples ex-
cept the S_5/Ls genotype (sample 82#1), which had low
percentage coverage and overall score and showed only
a few of the discriminatory fragments. Lc/Ly genotypes also
had numerous fragments specific to the L protein, which
were almost or totally absent in L; samples. This indicates
that some of the GBSSI protein in these plants is contrib-
uted by the L or Ly gene as appropriate. It was not possible
to discriminate between the Lc and Ly proteins, because
the diagnostic fragment containing the cysteine—tyrosine
residue was not found in any of the samples analyzed, prob-
ably because of its high molecular mass. To discriminate
between Sy and S_ 45 isoforms, we looked for peptides char-
acteristic of S_5. These were present in S_;5 genotype
samples and almost or entirely absent from S, genotype
samples. Direct evidence for the presence of the S, protein
was limited because many of the fragments containing
the additional five amino acids also occur in the Lc/Ly pro-
teins. This explains the presence of these fragments in the
S_15/Ly genotype sample. The one fragment diagnostic of
So K.YDVSTAIAAKALNK.E, is rare because it relies on
a missed cleavage; it was found single-fold in the mixed
So/Lc and Sy/Ly genotype sample (which had the highest
coverage and emPAl score of any sample). We inferred
the presence of the S, protein in the So/Lc/y and So/Ls gen-
otypes indirectly from the absence of S_;5 fragments in ei-
ther, and in the latter sample, from the presence of S,
characteristic fragments in combination with the evidence
suggesting the L¢ or Ly protein is lacking.

The low e-values of the peptides and manual checking of
the ionic spectra confirmed the reliability of the fragment
identifications. Very low levels of unexpected isoform-
specific peptides are likely to be due to crosscontamination
of the samples. The extensive coverage of the protein se-
quence and the comparative analysis of the four samples
provide good corroborative evidence for the presence of
waxy protein isoforms consistent with the genotype of
each sample.

N- and C-Terminal Identification

The 5’ primer FPSLVVC3 and the 3’ primer Rstop3 over-
lap with the N- and C-termini of the mature GBSSI pro-
tein, as predicted from alignment with other GBSSI
sequences (supplementary fig. S1, Supplementary
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Material online), by 1 and 7 amino acids, respectively.
This precludes identification of possible mutations in
these sites from DNA sequencing, so to confirm the
N-terminus of the mature peptide, we looked for the ex-
pected fragments in the peptide mass fingerprints. All
four samples contained peptides matching the expected
N-terminal sequence —. AAAGMNVVFVGAEMAPWSK.T.
Only one sample, genotype So/Lc,y, with the highest per-
centage sequence coverage, showed the anticipated
C-terminal fragment (K.ENVAAP-). We therefore car-
ried out a second experiment using AspN proteinase
to aim to recover a larger predicted C-terminal peptide
(D489-P531; 4,457 Da average mass). This mass was suc-
cessfully observed in Sy protein by MALDI analysis and its
identity confirmed by electrospray ms/ms of the [M +
3H]?* signal at 1,485.7m/z (monoisotopic). The Mascot
score established its identity as the C-terminal peptide
but with insufficient fragment coverage to confirm
the C-terminal six residues (even though their accumu-
lated mass was as expected). Solid identification was
achieved by ms/ms of the [M + 4H]*" signal at
1,114.5m/z. Manual interpretation of the spectrum iden-
tified a series of triply and quadruply charged b-ions
which clearly derived from the C-terminus of the pep-
tide. This allowed confident matching of the signals to
the expected C-terminal sequence of IAPLAKENVAAP
for So and S_;5 protein samples (fig. 6).

Discussion

Broomcorn millet represents a unique case among plant
species with waxy mutants, in being a functional polyploid
(Graybosch and Baltensperger 2009) in which waxy pheno-
types have appeared and become established without de-
liberate modern breeding. This contrasts with the situation
in wheat, in which partially waxy lines were discovered with
mutations in one or two of the A, B, and D (in hexaploids)
genome homeologues of GBSSI, and fully waxy tetraploid
and hexaploid wheats have only very recently been synthe-
sized through crossing appropriate partially waxy lines
(Nakamura et al. 1993, 1995; Yamamori et al. 1994).
Although reticulate evolutionary relationships and the
ancestry of polyploid taxa in the genus Panicum are not
yet known, the presence of the S and L GBSSI genes in
all samples is consistent with the inference from meiotic
chromosome behavior by Hamoud et al. (1994) that
P. miliaceum is an allotetraploid. We have observed com-
parable related pairs of other protein-coding nuclear se-
quences from P. miliaceum (Hunt HV, unpublished
data). The L and S sequences would thus represent homeo-
logues of the GBSSI gene derived from two (currently un-
known) diploid ancestors of P. miliaceum. Further analysis
of the evolutionary dynamics of Waxy sequences in the ge-
nus Panicum would be needed to confirm this interpreta-
tion; Fortune et al. (2007) demonstrated the presence of
both paralogous and homeologous Waxy sequences in
hexaploid Spartina species. However, the phylogenetic ev-
idence clearly indicates that both the L and S types in
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Table 5. MASCOT search output data from trypsin-digested samples from the gel in Fig. 3(a), showing identified fragments that enable discrimination of S and L proteins and S, and S.;5 proteins

and the identification of N- and C-terminal sequences.

Sample Genotype  Top protein match  Coverage (top match)  Score (top match)  Empai score (top match) S-specific peptides L-specific peptides
04 #1 /47 #1 Sor Lc/Ly So 79% 10806 43.88 K.GGILEADK.V (31x) R.VMVISPR.Y (6x)
(mixed sample) RVMVVSPR.Y (12x) R.VMVISPR.Y (1x)

K.TGFHMGR.L (2x) K.YDVSTAISAK.A (20x)
K.TGFHMGR.L (9x) R.VVGTPVYEEMVR.N (5x)
K.YDVSTAIAAK.A (64x) R.VVGTPVYEEMVR.N (32x)
K.VVGTPAYEEMVR.N (20x) K.YIATKYDVSTAISAK.A (1x)
K.VVGTPAYEEMVR.N (72x)
R.AIKVVGTPAYEEMVR.N (1x)
*So unique marker*
K.YDVSTAIAAKALNK.E (2x)

76 #1 Sor Lt So 62% 14455 5.36 K.YDVSTAIAAK.A (21x) K.YIATKYDVSTAISAK.A (1x)
K.VVGTPAYEEMVR.N (3x)
K.VVGTPAYEEMVR.N (32x)

3y #1 S Ly S5 77% 5324 29.15 K.GGILEADK.V (26x) K.GGILEADR.V (7x)
R.VMVVSPR.Y (10x) R.VMVISPR.Y (3x)
K.SNYQSNGIYK.N (1x) R.VMVISPR.Y (8x)
K.VVGTPAYEEMVR.N (18x) R.VVGTPVYEEMVR.N (6x)
K.VVGTPAYEEMVR.N (37x) R.VVGTPVYEEMVR.N (15x)
K.TGFHMGR.L (3x) K.YDVSTAISAK.A (14x)
K.TGFHMGR.L (24x) K.YIATKYDVSTAISAK.A (1x)
K.YDVSTAIAAK.A (44x)

82 #1 S.1s Lg S5 56% 850 2.74 K.YDVSTAIAAK.A (1x) none

- 33)IW ulodwWoo4g Ul suoireIniy AXepn
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P. miliaceum represent GBSSI genes; neither represents the
GBSSIb/GBSSII type isoforms that are typically found in
nonendosperm tissues, such as the pericarp in wheat,
and pods, roots, and nodules in pea and contribute to am-
ylose synthesis in these organs (Hylton et al. 1996; Denyer,
Barber, et al. 1997; Vrinten and Nakamura 2000; Edwards
et al. 2002). It is likely that orthologues of the GBSSIb/
GBSSII protein exist in P. miliaceum too but encoded by
loci distinct from those coding for the L or S genes.
Waxy mutants in different species result variously from
mutations that cause loss of GBSSI gene expression, loss of
starch granule-bound protein, or loss of enzyme activity.
The data accumulated from other species consistently in-
dicate that GBSS! is the sole locus controlling endosperm
starch waxiness. Polygenic control occurs only when this
locus is duplicated in functional polyploids: The genetic
data of Graybosch and Baltensperger (2009) indicated
the existence of distinct waxy mutations at two GBSS/ loci
in P. miliaceum. Our SDS-PAGE data showed that the GBSSI
protein was present in approximately equal amounts in
both waxy and nonwaxy lines. In contrast, Graybosch
and Baltensperger (2009) found only trace amounts of
GBSSI in waxy lines; however, we have found that the re-
covery of GBSSI from starch can vary with genotype and

C-terminal
peptides
K.ENVAAP.- (1x)
none
none
none

- AAAGMNVVFVGAEMAPWSK.T (4x)
- AAAGMNVVFVGAEMAPWSK.T (1x)

- AAAGMNVVFVGAEMAPWSK.T (2x)

N-terminal peptides
- AAAGMNVVFVGAEMAPWSK.T (2x)

- AAAGMNVVFVGAEMAPWSK.T (2x)
-.AAAGENVVFVGAEMAPWSK.T (7x)

- AAAGMNVVFVGAEMAPWSK.T (2x)

- AAAGMNVVFVGAEMAPWSK.T (1x)
- AAAGMNVVFVGAEMAPWSK.T (1x)
- AAAGMNVVFVGAEMAPWSK.T (2x)

Peptides
characteristic
of Ly
none
none
none
none

= :: extraction method (data not shown). The SS activity data

T3 2 demonstrated that the GBSSI protein in waxy types was

£39 o ° ° ° nonfunctional. Consideration of the protein identities

£3 2 § § § § and genotype data indicates that, depending on the par-

$ % g ticular mutant alleles present in a given genotype, either

- g one (S) or two (S and L) GBSSI loci contribute to this non-

€°% functional protein product. We have characterized the mu-

tations at these two loci as follows.

% %5 o Our experiments revealed two S-type GBSSI alleles (So

Bt o S o and 5,15) and Fhree L-tyPe QBSSI alleles (L¢, Ly, and Ly).

.5 g £ o Of the six possible combinations of these S and L alleles,

< 22 22 2 we found only five: None of the 72 plants analyzed had

2% 3 008 O the genotype S_;s/Lc. The most common genotype was
&< << < .

g < <2 < SO(LC (31 plants, from 17 accessions). We can postulate that

£ 9 p g9 < this represents the ancestral genotype, for the following

N; s $S S reasons: It is the most abundant genotype, and its distri-

bution includes accessions from northern China, thought
to be the center of diversity and origin of broomcorn millet
(Crawford 2009; Hu et al. 2009). From the phenotype of the
So/Ls plants, we know that the S, allele encodes an active
GBSSI protein. Given that no waxy mutants are known in
any wild plant species (Sakamoto 1996; Shapter et al. 2009),
it is highly likely that the diploid ancestors of Panicum
miliaceum, and the newly formed tetraploid P. miliaceum
or its wild progenitor, had S and L alleles encoding func-
tional proteins. The data of Graybosch and Baltensperger
(2009) indicate that a functional L-type allele still exists in
the genepool. Thus, we hypothesize that Lc encodes this
active GBSSI, although proof of this is lacking at present,
in the absence of an S_;5/Lc genotype individual. Both
the Lc and S_45 alleles are present at relatively high fre-
quency in Chinese samples, but because P. miliaceum
is strongly self-pollinating, it is possible that nonrandom
mating has meant this genotype has not arisen or is

Peptides characteristic of S,
(note: most are also
attributable to Lc/Ly)
K.EALQAAAGLPVDR.K (90x)
K.EALQAAAGLPVDRK.I (10x)
K.ALNKEALQAAAGLPVDR.K (2x)
K.YDVSTAIAAKALNK.E (2x)
K.EALQAAAGLPVDR.K (70x)
K.EALQAAAGLPVDRK.I (1x)
K.EALQAAAGLPVDR.K (20x)
K.EALQAAAGLPVDRK.I (3x)
K.EALQAAAGLPVDRK (1x)

*So unique marker*

(mixed sample)

Only fragments identified as the top match for each query were included. The number of queries matching each peptide is shown in brackets after the sequence.

Table 5. Continued
Sample

04 #1 /47 #1

76 #1

3y #1

82 #1

—_
N
O
o
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MS? of [DLSWKGPAKNWENVLLSLGVAGSQPGIEGEEIAPLAKENVAAP+4H] 4+

residue predicted ions m/z
5 number b3+ bd+ 144758
29 G 1002.19 751.89
5 30 E 1045.20  784.15
- 31 E 1088.22  816.42 b42*
32 I 112591 844.69
85 33 A 1149.59 862.45
o b4 34 P 1181.94 886.71
T 35 L 1219.64 914.98
75 36 A 1243.32 932.74
37 K 1286.01 964.76
e 38 E  1329.03  997.02
65 39 N 1367.04 1025.53
40 VvV 1400.07 1050.30
60 41 A 1423.74 1068.06
- 42 A 1447.42  1085.82
b33% 43 P 1479.77 1110.08
%0 b4 1149.76 b413*
partial b-series ions from peptide D489-P531
45 1085.99 142383
T b24z+
1071.45 1276.21
35 1097.38 pore
b4 141
30 h39% 1140.02
25 1025.22 b393+
20 b32** b36%* 1367.14 b40*
15 12884 i pages 124350 18p2n
. 121225 1277.08 "
10 b202 1168.37 353 b383
5 115899 [121983 | 132908 1448 45
‘ 1498 62
o AL L *;‘i""l‘i' r-‘-r-?i'
1000 1050 1100 1150 1200 1250 1300 1360 1400 1450 1500
m /z

Fic. 6. Ms/ms fragmentation of [D489-P531 + 4H]4+ jon 1,114.5m/z. A series of b>"and b*" ions can be seen which correspond to those
expected from the peptide, confirming the sequence of the C-terminal section. Zoomscan of selected peaks confirmed 3+ charge state.

extremely rare. If our model is correct, the mutant S_5
allele in combination with either the mutant Ly or mutant
L; allele is required to produce a plant with the waxy
phenotype.

Redundancy of homeologous gene copies in polyploid
species means that it is not uncommon for one homeo-
logue to lose function (Wendel 2000). It is possible that

Table 6. Granule-Bound Starch Synthase Activity in Nonwaxy and
Waxy Endosperm Starch Extracts of Panicum miliaceum.

GBSS activity

(nmol min~" mg™" starch)
Plant Sample Phenotype Mean Standard Error
4 #1 Nonwaxy 0.491 0.100
47 #1 Nonwaxy 0.250 0.085
71 #1 Nonwaxy 0.226 0.063
76 #1 Nonwaxy 0.433 0.160
30 #1 Waxy 0.021 0.010
3y #1 Waxy 0.026 0.010
70 #1 Waxy 0.017 0.006
82 #1 Waxy 0.017 0.002

The mean and standard error are of three extraction replicates.

following tetraploidization in P. miliaceum, a loss-of-
function mutation in either the S or L GBSSI gene would
have had little effect on starch phenotype. This is consis-
tent with the results of Graybosch and Baltensperger
(2009). We found two such genotypes with loss-of-function
mutations in just the L gene: So/Ly in 15 plants and Sy/L¢in
12 plants. We have shown that both the Ly and L; alleles
confer loss of L-type GBSSI function. The mutant Ly and L¢
alleles arose independently, as demonstrated by the finding
that no plant with the frameshift mutation in exon 9 also
had the alanine substitution in exon 7, and they may have
become widespread within the P. miliaceum distribution
because, in isolation, they had little impact on the starch
phenotype. This is demonstrated by the high frequency of
the Ly allele in samples from western Russia, Ukraine and
the Caucasus, far from the region where sticky-starch foods
are preferred. It is also possible that a mutant L allele in an
So background may confer a partially waxy phenotype with
a slightly lower than normal amylose content that is fa-
vored for some food uses. If so, these alleles may have
spread more rapidly through the population due to active
selection. There is evidence that partial waxy mutants of
wheat were selected specifically for the production of udon
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noodles (Nakamura et al. 2002). The varieties of hexaploid
wheat now grown for udon noodle production have one or
two inactive waxy alleles. It is thought that the slightly
lower amylose content of these genotypes confers desirable
phenotypic properties and has thus been selected.

The mechanism of loss of activity in mutant L-type
GBSSI clearly differs between alleles. For the Ly mutant al-
lele, a frameshift due to the insertion of an additional nu-
cleotide (A) is responsible for the loss of the L protein. The
predicted protein product of the L; gene has its GTD1 do-
main disrupted and truncated as a result of the frameshift
within GTD5 and is therefore unlikely to be catalytically
active. We did not see any evidence for this protein from
immunoblotting, and it is probable that it is unstable or not
synthesized at all (perhaps as a result of nonsense-mediated
decay of the RNA). The Ly allele is also evidently inactive,
and we can hypothesize that it is the substitution of ade-
nine for guanine at position 249 in exon 7 (which causes
the substitution of tyrosine for cysteine in the amino acid
sequence) that results in loss of L protein activity. The cys-
teine residue is conserved in all monocot GBSSI sequences
and is located in GTDS5, close to the active site.

Itis likely that the loss-of-function mutation in the GBSSI-S
gene arose in a line already carrying an L-gene mutation, be-
cause no S_;s/Lc genotype plants were found, and that this
resulted in a plant with a fully waxy phenotype. A single mu-
tation appears to account for loss of S protein activity in all
samples analyzed: The 15-bp deletion was present in all
plants with waxy-type grain, and conversely, all genotypes
with this deletion had waxy grain. We found 14 waxy-
phenotype plants: 9 plants with the S_;5/L; genotype and
5 with the S_1s/Ly genotype. It is unlikely that the S_;5 mu-
tation occurred more than once, and so, we suggest that the
two genotypes that demonstrably result in waxy phenotypes,
S_15/Ly and S_5/L;, arose from hybridization between one of
these genotypes and a phenotypically nonwaxy plant with
the alternative mutant L allele in an S, background.

The five amino acid deletion in the GBSSI-S protein,
responsible for the loss of S protein activity in the
P. miliaceum S_;5 allele, lies in the GTD1 (fig. 5).
The seven-amino-acid sequence spanning the deletion in
the wild-type allele (ALNKEAL) is conserved in all monocot
GBSSls, suggesting it is functionally important. Our immu-
noblot, peptide fragment MS data and SS activity assay re-
sults show that the mutant GBSSI-S protein is present but
nearly or completely inactive. This mutant GBSSI protein
nevertheless persists in binding to starch granules, as has
been found previously for some mutant GBSSIs in other
species (e.g, one of the three mutant pea embryo GBSSI
isoforms identified by Denyer et al. [1995] was found in
normal amounts inside starch granules). We hypothesize
that the five-amino-acid deletion in the P. miliaceum
GBSSI-S protein results in a disruption of the GTD1, result-
ing in the observed loss of SS activity, but does not affect
the binding of this protein to the starch granules.

It is possible that other mutant GBSSI alleles exist in
P. miliaceum. However, our determination of the full-length
amino acid sequences of the mature L and S GBSSI proteins,
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inferred from DNA sequence and peptide mass fragment
data in multiple waxy and nonwaxy samples, means that
we can be confident that no other mutations exist that uni-
versally account for loss of functional protein at either locus.

All waxy-type individuals in this study came from acces-
sions of East Asian (Chinese and Korean) origin. All samples
originating elsewhere (Russia, Ukraine, the Caucasus,
Central Asia, and Mongolia) were nonwaxy. Chinese sam-
ples showed a mixture of waxy and nonwaxy types both
within and between accessions. This distribution of waxy
phenotypes concurs with the data of Kimata and Negishi
(2002), who found waxy and intermediate phenotypes in
around 60% of P. miliaceum accessions from East Asia
(China, Korea, and Mongolia) and at very low frequencies
among accessions from elsewhere in Eurasia. These authors
also found that nearly 100% of Japanese accessions were
waxy or intermediate; we did not include any samples from
Japan in this study, and we did not observe any of the in-
termediate phenotypes.

A similar geographic pattern is found in other cereals,
comprising a mix of waxy and nonwaxy varieties in East
and Southeast Asia, and near-exclusively nonwaxy varieties
elsewhere in the range. This includes both species domes-
ticated within the region (foxtail millet, rice) and those do-
mesticated elsewhere and introduced into East Asia (barley,
maize, sorghum, and Job’s tears; Sakamoto 1996; Patron
et al. 2002; Kawase et al. 2005; Olsen et al. 2006; Fan
et al. 2008). Waxy types have not been recorded in wild ce-
reals (Sakamoto 1996; Shapter et al. 2009). Selective sweeps
in the Waxy genomic region have been demonstrated in rice
and maize that reflect strong postdomestication selection,
revealing the shaping of crop genome evolution through
human choice (Olsen et al. 2006; Fan et al. 2008; Vaughan
et al. 2008). A “glutinous-endosperm starch food culture,”
which arose early in the history of cereal farming in East and
Southeast Asia and remained confined to the cultures of
this region, is thought to have driven selection for waxy mu-
tants arising in domesticated cereal populations.

The waxy broomcorn millet lines in this study all showed
the same mutation in the GBSSI-S gene, implying a single
origin for the loss of protein function in this homeologue.
In the GBSSI-L gene, there are two nonfunctional alleles of
independent origin. As in foxtail millet (S. italica), where
waxy phenotypes have resulted from several different
transposon insertion events (Kawase et al. 2005), waxy al-
leles in broomcorn millet may have distinct distribution
geographies. Further investigation of the distribution of
these alleles within and between populations, varieties,
and landraces of cultivated broomcorn millet is of great
relevance to understanding both the history of this crop’s
origins and spread and how the organization of crop plant
diversity has been shaped by human food choices.
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