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Abstract

With the advance of precision medicine, the availability of tumor tissue for molecular analy-

sis has become a limiting factor. This is particularly the case for bone metastases which are

frequently occurring in cancer types such as prostate cancer. Due to the necessary decalci-

fication process it was long thought that transcriptome analysis will not be feasible from

decalcified formalin-fixed, paraffin-embedded (DFFPE) in a large manner. Here we demon-

strate that mRNA extraction from DFFPE is feasible, quick, robust and reproducible and that

decalcification does not hamper subsequent gene expression analysis. This might assist in

implementing transcriptome analysis from DFFPE into every day practice.

Introduction

Prostate cancer (PCa) is the most frequent non-cutaneous cancer among men [1]. Although

the prognosis of PCa has continually been improving during the last twenty years [2, 3], a sig-

nificant number of patients will experience tumor progression with metastatic disease and can-

cer-related death. For example, in 2019, more than 30,000 deaths were caused by metastatic

PCa in the United States [1]. The most common site for metastatic spread of PCa is the skeletal

system [4, 5]. Bone metastases cause high morbidity with pain and skeletal-related events such

as pathological fractures [6]. In the context of precision medicine (PM) recent advances were

made in understanding the molecular biology and pathology of cancer by implementing high

throughput gene sequencing methods and integrative molecular analyses [7]. The molecular

landscape of metastatic prostate cancer differs significantly from primary PCa, therefore

molecular analysis from metastases rather than primary tumors might provide the most useful

information to guide clinical management [8]. However, availability of metastatic tissue for

molecular analyses is considered a major limiting factor, particularly in the setting of tissue

obtained from bone metastases [9]. Several biobanking protocols for fresh tissue from PCa

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0257416 September 16, 2021 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Saraji A, Offermann A, Stegmann-Frehse

J, Hempel K, Kang D, Krupar R, et al. (2021)

Cracking it - successful mRNA extraction for digital

gene expression analysis from decalcified,

formalin-fixed and paraffin-embedded bone tissue.

PLoS ONE 16(9): e0257416. https://doi.org/

10.1371/journal.pone.0257416

Editor: Vincenzo L’Imperio, Universita degli Studi di

Milano-Bicocca, ITALY

Received: June 23, 2021

Accepted: August 31, 2021

Published: September 16, 2021

Copyright: © 2021 Saraji et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: PCa, Prostate cancer; PM,

Precision medicine; PCaBM, Prostate cancer bone

https://orcid.org/0000-0003-3053-8373
https://doi.org/10.1371/journal.pone.0257416
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257416&domain=pdf&date_stamp=2021-09-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257416&domain=pdf&date_stamp=2021-09-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257416&domain=pdf&date_stamp=2021-09-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257416&domain=pdf&date_stamp=2021-09-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257416&domain=pdf&date_stamp=2021-09-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257416&domain=pdf&date_stamp=2021-09-16
https://doi.org/10.1371/journal.pone.0257416
https://doi.org/10.1371/journal.pone.0257416
http://creativecommons.org/licenses/by/4.0/


bone metastases (PCaBM) have been developed. However, the majority of PCaBM are obtained

by routine surgery followed by decalcification [10, 11]. In order to prepare a proper paraffin sec-

tion from bone tissue, the tissue is generally treated either with acids (formic acids) or with an

organic chelating agent such as ethylenediaminetetraacetic acid (EDTA) to soften the bone tis-

sue by reacting with calcium in a process called “decalcification” [12]. Decalcification can result

in severe degradation of RNA [13]. The quality of archival FFPE tumor tissue is further affected

by several factors including pre-fixation time and process, fixation processing, temperature and

sample size. In addition, the quality and quantity of FFPE-extracted RNA is influenced by frag-

mentation, degradation, and cross-linking with proteins [14, 15]. The resulting low quality and

quantity in particular of RNA is thought to hamper further analysis [16]. In a comprehensive

study, Bohmann et al. compared different RNA extraction methods and could show that the

fully automated bead-based method provided the overall best yield and reproducibility for

high-throughput RNA expression analysis [11]. Most RNA extraction methods from FFPE

(mainly using PCR) were performed from non-bone tissue rather than decalcified bone tissue

[17]. Traditionally, quantification of RNA yield analyses was measured by RT-PCR. In contrast,

performing digital expression profiling by NanoString™ technology enables RNA quality control

without any amplification or enzymatic reactions methods [18–20]. We aimed to show that

mRNA extraction from DFFPE bone samples is feasible in a quick, robust and reproducible

manner. In addition, subsequent successful digital gene expression (DEG) analyses opens new

opportunities to carry out molecular analyses from DFFPE bone samples.

Materials and methods

Ethic statement

Our study was approved by the Ethics Committee of the University of Luebeck (project code

18–053, date of approval: March 2nd 2018, date of amendment: June 17th 2020).

DFFPE samples and cohort description

This study included 36 DFFPE blocks from PCaBM (12), plasma cell myeloma (MM) (12) and

normal bone tissue (12) (Table 1). The latter two were used as control tissue. All samples have

been collected from the archive of the Institute of Pathology, University Hospital Schleswig-

Holstein (UKSH) Luebeck, Germany. All samples have been decalcified using an EDTA based

method with a fixation time of 48 to 72 hours. Histopathological evaluation and annotation of

tumor areas for macrodissection was performed by Verena Sailer and Anne Offermann.

Study cohort included 36 DFFPE randomly selected blocks from prostate cancer bone

metastases (PCaBM) (n = 12), plasma cell myeloma (MM) (n = 12) and normal bone tissue

(n = 12).

RNA extraction from decalcified FFPE blocks

DFFPE blocks from PCaBM, MM and normal bone tissue were sectioned into 8 μm-thick

cuts. Two tissue sections were placed on each slide. The sections were compared with the

Table 1. Data set reference and cohorts (source of data).

Cohort /Operator-derivated data Plasma Cell myeloma (Number of samples) Normal Bone (Number of samples) PCa Bone metastasis (Number of samples)

Data from QubitTM 12 12 12

Data from NanoDrop1 12 12 0

Data from NanoString™ 12 12 12

https://doi.org/10.1371/journal.pone.0257416.t001
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annotated HE and only the marked tumor tissue was scraped off with a scalpel. RNA was iso-

lated using the automatic bead-based Maxwell1 RSC RNA FFPE Kit (Cat. No: AS1440, Pro-

mega). According to the manufacturer’s manual, the scraped tissue was transferred into a

RNase-free tube with 300μl mineral oil and vortexed for 10 seconds. Then the sample was

heated at 80˚C and incubated at room temperature for a while. Furthermore, 250 μl of master

mix including lysis buffer, proteinase K and blue dye was added to the sample and followed by

20 second centrifuging. The sample was later heated at 56˚C and 80˚C. After an incubation

time a DNase cocktail was added and the sample was transferred to the Maxwell1 FFPE car-

tridge yielding purified RNA. The isolated RNA was eluted in 50μl of nuclease-free water and

then measured with NanoDrop1 or QubitTM. For long-time storage, the RNA samples were

divided into 7 μl aliquots and stored at -80˚C.

mRNA quantity and purity assay

The quality and quantity of the extracted mRNA were analyzed by two independent methods

to enable inter-operator variability comparison, namely by QubitTM 2.0 fluorometer (Thermo

Fisher Scientific Inc.) and NanoDrop1 (Thermo Fisher Scientific Inc.). NanoDrop1 performs

nucleic acid purity and quantification assay by measuring the ratio of absorbance at 260/280

nm. QubitTM 2.0 utilizes fluorescent dyes to measure the concentration of nucleic acids by

determining the emission of relative fluorescence emission (RFU) value for each sample auto-

matically. Since no difference in inter-operator variability was observed between these two

methods we continued using the QubitTM 2.0 fluorometer.

Digital quality control (QC) NanoStringTM analysis for mRNA expression

Digital quality control (QC) analysis for mRNA was performed using the NanoStringTM PanCan-

cer Progression Panel. The samples were loaded (10–35 ng RNA in a total of 30 μl loading mixture)

on a cartridge and proceeded by utilizing a fully automated Prep Station following manufacturer’s

recommendations (NanoStringTM Inc.). The proceeded cartridge was then sent for digital analysis

with the nCounter1 Sprint Profiler system (performed at the Institute of pathology, Hannover

Medical School, Hannover, Germany). Data were exported as reporter code count (RCC) files and

then imported to NanoString nSolver™ analysis software v4.0 for further analysis. Automatic qual-

ity control of mRNA was performed according to the software’s instructions.

Statistical analyses

All the sample sizes are mentioned in each figure. For comparison of two samples student’s
two-tailed t-test was used. For comparison of more than two samples 1- way-ANOVA with

Tukey post hoc test was used. A p<0.05 was considered as statistically significant. Data are

shown as means ± SD. For statistical analysis and data presentation the following software sys-

tems were applied; QubitTM 2.0 IQ Analyzer, NanoString nSolver™ analysis software v4.0 and

Prism 6 (GraphPad Software Inc., San Diego, USA).

Results

Quantification and purity assay from DFFPE of MM and normal bone

tissue using NanoDrop1 operator

First, we measured the extracted RNA by using NanoDrop1 to compare RNA concentration from

DFFPE in normal bone tissue and MM. We obtained a satisfactory amount of RNA concentration

from both groups above the minimum required RNA concentration for NanoStringTM (~10 ng/

μL) analyses (Fig 1A–1F). However, the yield of RNA in MM was significantly higher than normal
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bone tissue (Fig 2A). This was to be expected as the cellularity of MM bone samples is in general

higher than in normal bone. The purity of the extracted mRNA was measured as ration ratio of

260/280 of the different absorption spectra and we observed that almost 100% of MM and more

than 60% of the RNA from normal bone were indicated as pure RNA (Fig 2B).

Operator-dependent variability of mRNA yield from DFFPE of MM and

normal bone tissue using NanoDrop1 and QubitTM

To check the variability between two operators, we performed another mRNA quantification

using a QubitTM 2.0 fluorometer and compared these results with the NanoDrop1 results for

mRNA extracted from the same samples (MM and normal bone tissue).

Fig 1. Schematic overview of the workflow. (A) Collecting tissue from PCaBmet patients (B) Decalcification

procedure using EDTA (C) Representative picture of DFFPE from PCaBmet tissue (D) mRNA extraction using bead-

based Maxwell1 RSC RNA FFPE Kit (E) Digital QC by nCounter1 reader and nSolver™ analysis software provided by

NanoStringTM (F) Data output from digital QC nSolver™ analysis software.

https://doi.org/10.1371/journal.pone.0257416.g001
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We found that all samples reached mRNA concentrations as required by NanoString™
(minimum of ~10 ng/μL). In addition, there was no significant difference in RNA concentra-

tions (p>0.05) by using QubitTM 2.0 fluorometer or NanoDrop1 (Fig 3A and 3B). By moni-

toring the relative fluorescence emission (RFU) value for each sample using QubitTM we

observed that almost 80% of the extracted mRNA from MM and more than 90% of the mRNA

from normal bone tissue were in the standard range of RFU (Fig 3C).

Fig 2. Quantification and purity assay of mRNA yield from DFFPE of normal bone tissue and MM using

NanoDrop1. (A) Scatter-dots plot indicating quantification of mRNA concentration yield from DFFPE of normal

bone tissue and MM using NanoDrop1. Dashed line indicates the threshold value for minimum amount of required

mRNA for NanoStringTM analyses. p<0.05 for comparison, n = 12 for in each group. Data were analyzed by Student’s t
test and shown as means ± SD. (B) Scatter-line plot representing mRNA qualification by using NanoDrop1. Dashed

line indicates the threshold value for minimum and maximum ratio (260/280) of different absorption spectra as a

measure of mRNA purity extracted from DFFPE of MM and normal bone tissue.

https://doi.org/10.1371/journal.pone.0257416.g002
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Fig 3. Comparison of mRNA yield from DFFPE of MM and normal bone tissue using NanoDrop1 vs. QubitTM.

(A) Scatter-dots plot indicating quantification of mRNA concentration yield from DFFPE of MM by using

NanoDrop1 and QubitTM 2 Fluorometer. n = 12 for in each group. Data were analyzed by Student’s t test (p>0.05)
and shown as means ± SD. (B) Scatter-dots plot indicating quantification of mRNA concentration yield from DFFPE

of normal bone tissue by using NanoDrop1 and QubitTM 2 Fluorometer. n = 12 for in each group. Data were analyzed

by Student’s t test (p>0.05) and shown as means ± SD. Threshold lines in plot A and B (dashed lines) indicated the

minimum required mRNA concentration (~10 ng/μL) for gene expression assay by NanoStringTM (C) Scatter-Line

plot using QubitTM 2 Fluorometer representing relative fluorescence emission (RFU) of mRNA extracted from DFFPE

of normal bone tissue and MM. lines indicates the threshold for minimum and maximum RFU value.

https://doi.org/10.1371/journal.pone.0257416.g003
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Quantification of mRNA yield from DFFPE of PCaBM tissue using QubitTM

Based on the results from Fig 2, we performed another mRNA measurement for the mRNA

extracted from PCaBM tissue using QubitTM and then compared those to the previous mRNA

measurements extracted from DFFPE of MM and normal bone tissue. The quantity of mRNA

extracted from PCaBM DFFPE was notably high and above the threshold amount (Fig 4).

NanoString™ digital quality control

NanoString™ performs an automated quality control of the input mRNA (Fig 5A). Digital

imaging QC reports the percentage of field of views (FOVs) which have been successfully

scanned by nCounter1. Based on the nSolver analysis software user manual at least 75% (0.75)

of FOVs must be captured (https://www.nanostring.com/products/analysis-software/nsolver).

In this study imaging QC results indicated that all samples passed with a score of minimum

0.9 (90%) thus confirming a robust RNA quantity (Fig 5B). NanoString™ provides another QC

for RNA quality evaluation by measuring RNA fragmentation percentage. Based on NanoS-

tringTM QC at least 50% of the sample must be more than 300 nucleotide (nt) in length as the

optimal quality performance (https://www.nanostring.com/products/analysis-software/

nsolver). Our results showed almost all RNA samples are higher than 50%, thus representing a

good quality of mRNA (Fig 5C). Binding density is another important parameter of QC and

indicates the concentration of barcodes spots (mRNA) per square micron [21]. Our results on

mRNA binding density showed that all samples are in the ideal range between 0.1–2.25 spots

per square micron (Fig 5D). However, the binding densities of samples from normal bone and

PCaBM were significantly higher than from MM (p<0.0001).

Fig 4. Quantification of mRNA yield from DFFPE of MM, normal bone tissue and PCaBM tissue using QubitTM.

Scatter-dot plot indicating quantification of mRNA concentration yield from DFFPE of MM, normal bone tissue and

PCaBM tissue using QubitTM 2 Fluorometer. p<0.05 and p<0.0001 for comparison, n = 12. Data were analyzed by

1-way ANOVA test and shown as means ± SD. Threshold line indicated the minimum required mRNA concentration

(~10 ng/μL) for gene expression assay by NanoStringTM.

https://doi.org/10.1371/journal.pone.0257416.g004
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Fig 5. Digital QC analysis of mRNA yield from DFFPE of MM, normal bone and PCaBM tissue using

NanoStringTM technology. (A) Representative data output of QC nSolver™ analyses for mRNA analyses from DFFPE

of PCaBM. (B) Scatter-Bar graph representing digital imaging QC nSolver™ analysis (% of fields of view) of mRNA

extracted from DFFPE of MM, normal bone and PCaBM tissue provided by NanoStringTM. p<0.001 for comparison,

n = 12 for in each group. Data were analyzed by 1-way ANOVA test and shown as means ± SD. (C) Scatter-Bar graph

representing mRNA fragmentation by QC nSolver™ analysis. % of probes with more than 300 nucleotides (nt) from

DFFPE of MM, normal bone and PCaBM tissue provided by NanoStringTM. Dashed line indicates the threshold value

(50%) for minimum percentage of probes (greater than 300 nt). p<0.0001 for comparison n = 12 for in each group.

Data were analyzed by 1-way ANOVA test and shown as means ± SD. (D) Scatter-Bar plot indicating mRNA binding

density using QC nSolver™ analysis from DFFPE of MM, normal bone and PCaBM tissue provided by NanoStringTM.

Dashed line indicates the threshold value for minimum amount of RNA binding density (0.1–1.8 spots per square

micron) according to NanoStringTM. p<0.0001 for comparison n = 12 for in each group. Data were analyzed by 1-way
ANOVA test and shown as means ± SD.

https://doi.org/10.1371/journal.pone.0257416.g005
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Discussion

In this study we were able to demonstrate that mRNA extraction and subsequent digital gene

expression analysis using the NanoString™ method from decalcified formalin-fixed and paraf-

fin-embedded bone samples is feasible and produces robust results. Despite well-known RNA

degradation in FFPE [22, 23], we have shown that mRNA from DFFPE using an automated

bead-based extraction method was sufficient both in quantity and quality to pass the digital

QC as provided by NanoString™ technology. Thus, decalcification by EDTA does not hamper

subsequent gene expression analysis. In particular, PCaBM showed less mRNA fragmentation

and more density equities. Importantly, we did not alter regular mRNA extraction protocols

thus confirming that mRNA extraction form DFFPE can be employed in daily routine. We ini-

tially started with utilizing tissue from PCaBM for gene expression analysis to study the com-

plex landscape of metastatic prostate cancer. Even though we employed archival DFFPE that

was several years old we successfully performed NanoString™ analyses. This opens up new

opportunities for gene expression analysis in the daily management of patients e.g., for patients

with hematological diseases who usually undergo routine bone biopsy at the time of first diag-

nosis and often during therapy as well. The turn-around time from macrodissection to data

analysis is around 6–10 working days. This short timespan might further assist implementing

gene expression analysis from DFFPE in clinical management. Furthermore, the vast archives

of pathology laboratories worldwide [24] provide a valuable, as yet largely untapped resource

for studying bone metastases, benign bone diseases and the bone microenvironment. Our

work was limited by the sample’s range and number. We are confident that this initial study

warrants performing large scale transcriptomic analyses from bone samples.

Conclusions

In conclusion we have shown that DFFPE can be utilized for gene expression analysis thus

assisting to integrate transcriptome data into everyday patient care to improve the prognosis

and prediction.
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