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Abstract: Coronavirus disease (COVID-19) has had a significant impact on global health since the
start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide
with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning
and deep learning have played a major part in this pandemic for the diagnosis and treatment of
COVID-19. In this research, we review these modern tools deployed to solve a variety of complex
problems. We explore research that focused on analyzing medical images using AI models for
identification, classification, and tissue segmentation of the disease. We also explore prognostic
models that were developed to predict health outcomes and optimize the allocation of scarce medical
resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on
patients over a period of time. This comprehensive review of the different AI methods and modeling
efforts will shed light on the role that AI has played and what path it intends to take in the fight
against COVID-19.

Keywords: COVID-19 prognosis; deep learning; machine learning; CT scan; X-rays

1. Introduction

COVID-19 is a viral infectious disease caused by SARS-CoV-2 that affects the respira-
tory system of infected persons and can range from mild to severe symptoms. The spread
of the disease is predominantly through small aerosol particles that are expelled when
coughing, sneezing, breathing, or talking. Comorbidities such as cardiovascular disease,
diabetes, chronic respiratory disease, or cancer can increase the chances of developing
serious illness or medical complications [1]. COVID-19 is primarily diagnosed using reverse
transcription polymerase chain reaction (RT-PCR) tests which includes specific detection of
the sequences for the nucleocapsid, envelope, spike, and RNA-dependent RNA polymerase
proteins of the virus [1]. These tests have high specificity, but their sensitivity rates could be
as low as 60–70% [2]. The use of artificial intelligence (AI) in this area has made significant
contributions in this regard to identify, forecast, and treat COVID-19. There are several
forms of medical data ranging from text to images in the form of X-rays or CT scans. Text
data can include patient health and several factors being recorded in the hospital after
COVID-19 diagnosis. Radiation information can be used to diagnose COVID-19 and also
study the progression of this disease. Machine Learning algorithms are equipped with the
potential to detect hidden trends and aid a clinician in the decision-making process which
can save countless lives and utilize hospital resources in an optimal way. However, to train
such accurate models, machine learning algorithms need access to huge datasets.
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The use of machine learning models as diagnostic and prognostic tools helps to
increase both accuracy and speed while ensuring desired patient outcomes. Prior to
COVID-19, researchers and clinicians have had tremendous success in using machine
learning to identify and classify chest radiographs for multiple applications including the
diagnosis of pneumonia [3,4]. Machine learning algorithms like Naïve Bayes, K-nearest
neighbor and Support Vector Machines(SVM) were all optimized with the best features.
Machine learning has also been applied to predict symptomatic intracranial hemorrhaging
from brain CTs and clinical variables in patients suffering from acute ischemic stroke [5].
Results were used to determine whether to administer intravenous thrombolysis (tPA)
which can result in the dissolution of the blood clot or can lead to complications from
intracranial hemorrhaging. Machine learning also finds application in the identification
of liver tumor boundaries in CT imaging [6]. Machine learning techniques like AdaBoost
allowed a model to learn diverse intensity distributions of the tumor regions and then use
those results for developing a detection algorithm. Machine learning also finds applications
in fields such as urinary bladder cancer staging in CT urography [7]. Various automated
segmentation techniques can detect bladder lesions and then extract both texture and
morphological features for classification.

In this review, we summarize some of the machine learning architectures that have
been successful at an accurate diagnosis of COVID-19 using primarily CT imaging datasets.
Based on the existing literature presented in research similar to [8,9], we primarily focused
on machine learning models developed and published in the years 2021, and 2022. Using
a combination of standard keywords in Google Scholar such as “COVID-19”, “Machine
Learning”, “Deep Learning”, “Diagnostic COVID-19”, “Longitudinal COVID-19”, and
“COVID-19 prognosis”, we report 108 of the most relevant papers that played a significant
role in the shaping the research. We found 10 papers from 2020, 47 from 2021, and 51 from
2022. Figure 1 shows a summary of this research based on country, as well as publishers.
This paper’s main contribution is as follows:

• Summary of the current AI applications in the COVID-19 setting ranging diagnostic,
to prognostic models.

• In diagnostic models, classification and segmentation approaches have been presented.
The diagnostic models are primarily focused on deep learning while the prognostic
and longitudinal study explores machine learning.

• Longitudinal studies were reported in order to better understand how COVID-19
affected patients over time. This involved using serial medical imaging data that
showed disease progression at different points in time. This gave researchers the
ability to track disease severity and improve classification and segmentation models.

• The development of prognostic models allowed researchers to diagnose COVID-19
more accurately at different disease stages while providing critical information on a
patient’s prognosis. Some of the patient outcomes that could be predicted included:
Mortality, Hospital admission, Intensive care unit admission, and Hospital length of
stay These predictors also provided valuable information to healthcare systems for
the allocation of scarce medical resources.

The remaining article is organized as follows. Section 2 looks at common machine
learning techniques identified in this research focusing specifically on deep learning
which was extensively used in COVID-19 diagnosis using primary CT images and ra-
diographs complemented with other clinical variables. Section 3 presents the publicly
identified datasets that were used by authors for developing machine learning methodolo-
gies. Section 4 looks primarily at the use of CT imaging and X-rays for COVID-19 diagnosis.
Section 5 looks at research that explores prognostic models as well as studies longitudinal
data for monitoring patients suffering from COVID-19. Finally, Section 6 presents the
conclusion from this review.
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(a)

(b)

Figure 1. Research presented in this paper summarized based on (a) country and (b) publisher.

2. Machine Architectures Used in COVID-19 Diagnosis

Machine learning refers to the process of using data for generating a model followed
by using that model to make predictions. The most commonly used Maximum Likelihood
Classification involves the calculation of the probability that a given feature belongs to a
specific class label [10,11]. Datasets used for training contains pre-selected feature values
that correspond to these classes which in our case could be either ‘normal’ or ‘COVID-
19’. Classification is done by determining two values for the classes, the mean and the
covariance which is then used in a normal distribution for probability estimation. Each
record/data point will be assigned a probability for every class and the highest probability
class is selected for the data point. For COVID-19 diagnosis, the commonly used machine
learning models identified included random forests, and support vector machines (SVM).
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Figure 2. Support vectors on yellow area, are used to create boundaries also known as hyperplanes.
The SVM in the figure is using a linear kernel denoted by the straight line equation. Image distributed
under a CC BY-SA 4.0 license.

2.1. Machine Learning Models

Random Forests are an ensemble learning method of machine learning that performs
classification, regression, and other tasks through the use of decision trees. For the Kth tree,
a random vector is generated that is independent of the past vectors but with the same
distribution. From this random vector and the training set, a tree is grown, resulting in a
classifier. Thus, a random forest classifier consists of a large collection of tree-structured
classifiers and each tree casts a vote for the most popular class [12]. The resiliency of this
system allows for the addition of more trees to not induce over-fitting. Random forests
converge towards a limited generalization error value as the number of trees increases. The
accuracy of this method is dependent on the strength of the tree classifiers along with the
correlation between them. SVM is a supervised learning method in machine learning that is
used for classification, regression, and outlier detection. Classification can be either binary
or multi-class depending on the dataset. The dataset can be described as p-dimensional
vectors which can be separated by a p—1-dimensional hyperplane called a linear classifier.
A hyperplane is a subspace whose dimension is one less than that of its ambient space. The
optimal hyperplane is the linear decision function with the maximum margins between the
vectors of the two classes that are being classified [13]. Figure 2 shows how hyperplanes
are used to separate class labels. These vectors that are on the margin can be described as
support vectors. To create this separation between the two, these data are transformed into
a higher dimensional space that makes classification easier.

2.2. Deep Neural Networks

A deep neural network (DNN) is a type of machine learning which uses multiple
consecutive hidden layers between the input and output. These hidden layers are used
to extract and process the information received, making weighted calculations. When a
deep neural network is trained, the weights are adjusted automatically to more closely
match labels on manually identified data. The image of a DNN is shown in Figure 3.
Here the hidden layers are represented by blue, while yellow represents input and orange
represents output.
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Figure 3. The structure of DNN model. Image distributed under a CC BY-SA 4.0 license. Number
one represents input layer followed by two which are the hidden layers and finally three which is the
output layer.

2.3. Convolutional Neural Networks

Convolutional neural networks, or CNNs, are deep learning algorithms useful for
image processing. A CNN is overall a black box technique, where the input and output
are the only parts we can observe. The internal workings of a CNN can be understood in
theory, but we cannot easily discover the internal workings of a trained CNN. This can be a
setback, as we do not truly know what part of an image the model considers when making
the classification. However, high accuracy on a large variety of testing images serves as
proof that a model is performing well. Segmentation networks are slightly superior to
classification networks in this regard, as the output image shows what the model is seeing.
To extract features from an image, the CNN utilizes kernels. These kernels scan over every
pixel of the image (for a stride of one), and a kernel size larger than 2 × 2 will consider a
matrix including three neighboring pixels. A larger kernel size considers more surrounding
pixels. For a kernel size of 3× 3, it also views the eight surrounding pixels. A kernel utilizes
a weighted matrix to interpret the pixel and send it to the feature map. Each convolution
outputs a full feature map from the input image. The size of this feature map can change
based on the stride used—a stride of one will not change the image size, but a stride of
two will halve the size of the image. Stride refers to how far the kernel moves, so a stride
greater than one will skip half of the pixels to create the feature map. This is used for
downsampling, and it is useful for increasing the computational efficiency of the model.
CNNs use multiple layers of convolutions in order to pick up on different levels of features.
Earlier layers pick up low-level features, such as lines or curves in the image. Later (or
deeper) layers begin to pick up on the high-level features of the image, which are specific
details in the image. For example, one low-level feature of a face would be the curve
of the forehead. A higher level feature could be the eyes or something equally specific
to the image. Besides being used to primarily process images, CNNs have also found a
wide variety of applications in other domains like bioinformatics and cybersecurity among
others. In cybersecurity research such as [14], the authors present how features can be
represented in a matrix format for malware detection applications using CNN. Authors
in [15] report the applicability of using CNNs for DNA sequence interpretation. CNNs
have also been applied for named entity recognition of biomedical text [16].

The input of a CNN—whether the task is classification or segmentation—is an image.
When a CNN model is created, the input shape is specified, and cannot be changed without
retraining an entirely new model. If the model is designed to take an input image of shape
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256 × 256, an image of shape 128 × 128 must be resized. Preprocessing includes a step in
which the images are resized to fit the determined input shape.

The output of CNN defines the differences between model tasks. A classification
model, such as ResNet or MobileNet, will provide a prediction of which class the entire
image belongs to. This comes as a probability for each class—for two classes, there will be
two numbers, each between 0 and 1. A simple binary classification task decides which of
the two classes the image belongs to. For COVID-19 detection, these models are often used
to classify images as either positive or negative. Segmentation models, on the other hand,
will predict the class of every separate pixel of an image. This generates the predicted mask.

2.3.1. UNet

The UNet model [17] architecture shown in Figure 4 is a 2D convolutional neural
network that was designed to give precise segmentation given fewer training images. The
model is also noted for being very efficient, generating a segmentation of a 256 × 256
image in a matter of seconds. This architecture follows a contracting path, followed by an
expansive path. The diagram of this architecture forms a U-shape, hence the name UNet.
The contracting path (left) uses a traditional CNN shape to extract the information while
reducing the size of the image. The model uses blocks that contain two 3 × 3 convolutional
layers, a ReLU function, and then a 2 × 2 Max Pooling layer. The Max Pooling layer uses
a stride of 2, which performs downsampling. After each block, the number of feature
channels is doubled. The left and right paths of the UNet architecture match such that after
each downsample, a cropped version of the feature map is passed on to the respective block
during upsampling. The expansive path (right) consists of the mentioned upsampling of
the feature map, a 2 × 2 convolution, a concatenation with the downsample’s respective
feature map, two 3 × 3 convolutions, and finally a ReLU. The 2 × 2 convolution serves to
halve the number of feature channels on the map.

Figure 4. The structure of a UNet model similar to the original one proposed in [17]. Image distributed
under a CC BY-SA 4.0 license.

2.3.2. VGG Frameworks

The visual geometry group (VGG) model [18] shown in Figure 5 is a basic deep 2D
convolutional neural network architecture. The general structure of a VGG model uses
many blocks of convolutional layers, followed by three fully connected layers for the task
of classification. The convolutional layers use a kernel size of 3 × 3, with a convolutional
stride of 1 pixel, with a standard input size of 224 × 224 pixels. Each convolutional block
contains a couple of convolutional layers and ends with a pooling layer. This pooling layer
is used to reduce the dimensions of the image before moving to the next block. The fully
connected layers use the ReLU activation, and the final layer uses the SoftMax activation
to predict the output. There are 4096 channels in the first two layers, while the channel in
the last layer is equal to the number of output classes. For the ImageNet database (which
VGG was created for), there are 1000 channels for each of the 1000 image classes. There
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are a few types of VGG architectures, denoted by the depth of the layers—VGG16 uses 16
neural network layers (13 convolutional with three fully connected), while VGG19 uses 19.

Figure 5. The structure of VGG-16 model adapted for prediction of COVID-19 using CXR.

2.3.3. Residual Networks

The ResNet architecture [19] is a 2D convolutional neural network that uses identity
shortcut connections to skip a number of weighted layers in the network. The basic structure
of ResNet shown in Figure 6 uses 34 weighted layers, consisting of 33 convolutional layers
and only one fully connected layer for classification. The convolutional layers use a 3 × 3
kernel, and down sampling occurs directly by certain convolutional layers using a stride
of 2. ResNet was created to allow a deeper model while avoiding the vanishing gradient
problem, which occurs when the weights in deeper layers of the model are not significantly
impacted during training. Because of the use of the ReLU activation, along with the residual
layers, ResNet is able to use 34 total layers, while this is a lot of layers, it uses fewer filters
and is much less complex than similar architectures. The baseline ResNet model only has
18% of the FLOPs seen in the VGG19 architecture.

Figure 6. The structure of ResNet 50 model [19], distributed under a CC BY-SA 4.0 license

2.3.4. MobileNet

The MobileNet architecture [20] is a 2D convolutional neural network designed for
the purpose of mobile vision applications, and as such, the model is very lightweight. The
MobileNet model allows the programmer to trade between latency and accuracy based on
the requirements of the application. This is done through the alteration of the two hyper-
parameters width multiplier and resolution multiplier. The width multiplier can be used
to decrease the number of input channels and output channels by the same factor. This is
similar for the resolution multiplier, where the resolution of the input image (and every layer
thereafter) is reduced by the same factor. The basic structure of MobileNet uses depthwise
separable convolutions, a form of factorized convolutions as shown in Figure 7. These
factorize standard convolutions into depthwise and 1 × 1 pointwise convolutions. Where
a standard convolution would filter and combine the inputs in one step, the depthwise
convolution applies a single filter for each input channel, and the pointwise convolution
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combines those outputs. Each layer—both depthwise and pointwise—of the model is
followed by batch normalization and a ReLU nonlinearity. To downsample the image, a
stride is set in the depthwise convolutions as well as the first convolutional layer. At the
end of the model, there is an average pool to reduce the spatial resolution, followed by a
fully connected layer using SoftMax classification.

Figure 7. A visual interpretation of (A) standard convolution compared to (B) depthwise separable
convolutions used in MobileNet

2.3.5. DenseNet

The DenseNet architecture [21] is a 2D convolutional neural network which, similar to
ResNet, utilizes identity shortcut connections. In contrast to ResNet, each layer in DenseNet
is connected to all of the subsequent layers as shown in Figure 8. This makes full use of the
benefits of these connections, and the authors propose that this promotes feature reuse. This
makes the architecture very parameter efficient. The design of DenseNet uses two types of
blocks—transition layers and dense blocks. A dense block consists of multiple convolutions
in a stack, and the output of a layer is directly connected to every other convolution which
comes after it. In a dense block containing five convolutions, the fifth layer will take in
the outputs of the four previous layers. Each dense block is separated by transition layers.
These layers use both a convolution and pooling layer in order to downsample the feature
maps. The last step of the model contains a 7 × 7 global average pool and a fully connected
layer with SoftMax for classification. Each variation of DenseNet uses four dense blocks
and three transition layers, followed by the classification layer. More computationally
intensive (and better performing) DenseNet architectures are created by increasing the
number of feature maps in the later dense blocks.

Figure 8. The structure of DenseNet [21] block shown in [22]. Features are added from all preceding
blocks.
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The choice of deep learning algorithms is heavily influenced by the data being pro-
cessed at any time. For example, deeper models (models with many layers), can be more
accurate but often suffer from the vanishing gradient problem. This issue can be resolved
by using Residual Networks however, they are computationally expensive. Lightweight
models, like ShuffleNet [23] utilizing depthwise separable convolutions, can be very effec-
tive but due to limited training parameters, can reduce accuracy. It has also been observed
that attention UNet models provide higher accuracy than traditional UNet models [24] but
these models could require longer training times. We observe through our reviews that
based on the data being analyzed authors have reported a mix of different models being
better at classification or segmentation.

2.3.6. Recurrent Neural Networks

For longitudinal or time series data, a simple CNN is not sufficient. It can capture
the data points, but it does not have the tools to view them as a series of events. This is
desirable for applications such as prognostic models, where the progression of a disease
over time is important information in determining the patient’s outcome. This is where
the recurrent neural networks (RNNs) step in. An efficient version of the RNN called the
long short-term memory (LSTM) concept is used. It is suited for time series predictions
of variable durations and considers previous information by using multiple blocks which
each consist of forgetting, input, and output gates.

The forget gate gives attention to the right information while ignoring irrelevant
information. A sigmoid function is used, assigning an importance value between zero and
one to part of the previous output. Necessary data is closer to one, and unnecessary data
is closer to zero. The input gate takes the current state and previously hidden state and
passes this to a second sigmoid function. This again assigns a value between zero and one,
but values closer to zero are now considered important while values closer to one are not.
The current state and hidden state are also passed through a tanh function, which regulates
the network by keeping values between −1 and 1. The tanh and sigmoid outputs are then
multiplied. The use of the output gate is to output a new hidden state. The previous hidden
state and the input are passed to a sigmoid function, and the new cell state is passed to a
tanh function. This is multiplied with the sigmoid to determine which information was
relevant and outputs the hidden state. This creates the final output of the entire cell, which
is the new cell state, and the new hidden state, which passes along to the next time step.

By creating a chain of these memory blocks, the LSTM can retain short-term time
series information for a long period of time. This is an improvement on the basic recurrent
neural network design, which can only retain short-term time series information for a short
while. A complete example of an LSTM block is shown in Figure 9.

Figure 9. The structure of an LSTM block used to process longitudinal data and distributed under a
CC BY-SA 4.0 license.
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3. Datasets for Research

The datasets included in this review consisted of both public and private COVID-19
datasets that contained Computer Tomography, X-ray, and Ultrasound imaging. The size
of these datasets varied widely with one consisting only of 20 images while another one
of the largest datasets consisted of over 500,000 images. Most of the datasets that were
found came from studies that were more focused on diagnostic imaging and analysis of
COVID-19. Prognostic and Longitudinal studies only included 6 public datasets, while
many of them were private. Public datasets may lack critical demographic, clinical and
patient outcome data associated with imaging data. Access to private datasets through
research institutions and healthcare systems is more difficult but would allow for greater
control over where the information is coming from along with the types of information
that are available to researchers. The most commonly available public repositories for
these public datasets were found to be Kaggle and GitHub. Table 1 shows the name of the
publicly available COVID-19 dataset along with the modality in which the imaging was
conducted. The size of the datasets in a number of images is also included along with a
link to the dataset.

Table 1. Publicly available COVID-19 CT scan datasets.

Dataset Name Modality Size of Dataset Link to Dataset

1a CT 120

[25]RICORD 1b CT 120

1c CXR 998

COVIDx CT 2a CT 194,922
[26]

2b CT 201,103

Extensive COVID-19 chest X-ray and CT chest images dataset CXR 9544
[27]

CT 8055

MosMed CT 1000 [28]

COVID-CT CT 812 [29]

China Consortium of Chest CT Image Investigation (CC-CCII) CT 514,103 [30]

COVID-19 CT segmentation dataset CT 929 [31]

COVID-19 CT lung and infection segmentation dataset CT 20 [32]

CoronaHack chest X-ray dataset CXR 5910 [33,34]

COVIDx CT-2A CT 194,922 [26]

COVID-19 radiography database CXR 21,165 [35,36]

COVID-19 image data collection CXR 1000 [34]

Augmented COVID-19 X-ray images dataset CXR 1824 [37]

SARS-CoV-2 CT scan dataset CT 2482 [38]

COVID-CT set CT 63,849 [39]

Chest X-Ray images (Pneumonia) CXR 5863 [40]
COVID-19-vs-normal dataset CXR 800 [41]

COVIDx-US LUS 12,943 + 150 videos [42]

COVID-19 patients lungs X-ray images 10,000 CXR 3428 [34,40,43]

COVID-19 & normal posteroanterior (PA) X-ray CXR 280 [44]
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Table 1. Cont.

Dataset Name Modality Size of Dataset Link to Dataset

COVID-19 image dataset CXR 317 [45]

COVID-19 X-ray classifier CXR 407 [34,40]

COVID-19-CT-Seg CT 20 [32]

COVID-19 detection X-ray dataset CXR 3071 [34,46,47]

Chest X-ray (COVID-19 & Pneumonia) CXR 6432 [34,40,48]

SegmentedLungCXRs CXR 342 [49]

Actualmed COVID-19 chest X-ray dataset initiative CXR 238 [50]

COVID-19 X-ray dataset (Train & Test Sets) CXR 188 [34,51,52]

4. COVID-19 Prediction Using Deep Learning

COVID-19 has tremendously impacted patients and medical systems globally and
deep learning has been extensively used to create COVID-19 prediction models. Figure 10
highlights some of the commonly used models by researchers. Much of the datasets used
were CT scans and chest radiographs. The research was focused on both classification
and segmentation to identify patterns during diagnosis. The following section contains a
discussion on variants of deep learning models along with the machine learning approach
utilized so far.

Figure 10. Common deep learning architectures explored in COVID-19 diagnosis.

4.1. Diagnosis Using Chest Radiographs

In [53], the authors proposed CovNNet, a custom convolutional neural network, to
detect COVID-19 in CXR. The second approach for the model used a fuzzy preprocessing
step, in which fuzzy and normal CXR are fed into separate CovNNet models. The CovNNet
architecture consists of three convolutional blocks, which contain a convolutional layer with
ReLU activation followed by a max pooling layer. These features are combined, and then
the model feeds to a multi-layer perceptron, which classifies the input as either COVID-19
or non-COVID-19. This second approach has the highest accuracy and time requirement of
80.9% and 50 s, respectively. The dataset used contained a CXR of 64 COVID-19 positive
patients and 57 patients with interstitial pneumonia. In [54], the authors proposed a join-
fusion model which combines clinical data and CXR to increase the accuracy of the final
prediction. CXR images are fed into EfficientNetB7 (which uses the ImageNet weights)
which feeds to a global average pooling 2D layer before reaching the concatenation layer.
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Clinical data is passed to a feature set layer before reaching the concatenation layer. After
this concatenation layer, the data is passed through three dense layers, separated by dropout
layers. Finally, binary classification is performed to diagnose the patient as either COVID-19
positive or healthy. The proposed model achieves an accuracy of 97% after training on a
collection of 270 records from King Fahad University Hospital.

Research in [55] proposed two models—the first uses a DNN on the fractal features of
images and the second is a CNN which uses CXR images. The whole model architecture is
as follows: a COVID-19 and non-COVID-19 image are fed through feature extraction before
being passed to the DNN for classification. The non-COVID input image is also passed to
the CNN before feature extraction, and the CNN classifies the image. The COVID input
image is passed to the CNN for segmentation, and ground truth is generated. The DNN
concluded with an accuracy of 84.11%, which is significantly lower than the accuracy of
the CNN, which concluded at 94.6%. CNNs are a type of deep learning neural network
suited for image processing. This is due to the use of kernels, which process groups of
pixels during each convolution. This allows CNN to capture spatial information, which is
extremely useful in the localization of infections. DNNs mostly lack the ability to capture
this spatial information due to their inherent architecture thereby leading to CNNs having
higher accuracy. The dataset used consists of 812 total images, where 437 are of COVID-19
positive patients and 383 are of healthy patients. In [56], CXR were used to detect infected
patients. The authors proposed a hybrid model after comparing 11 different deep learning
architectures. The proposed model was optimized using k-fold cross-validations alongside
a spotted hyena optimizer for better feature extraction. It was observed that a combination
of Resnet-101, with the J48 algorithm decision tree, and the hyena optimizer showed the
highest performance across accuracies. The dataset however was smaller with 50 normal
and 50 COVID-19 patients. This study [57] developed a deep learning model called XR-
CAPS that incorporates a UNet model for image segmentation and a capsule network for
feature extraction for the prediction of COVID-19 from CXR images. The dataset consisted
of 896 patients who were either healthy, had pneumonia or were COVID-19 positive. The
results showed an accuracy of 93.2%, a sensitivity of 94% and a specificity of 97.1%, which
outperformed similar models such as ResNet50, DenseNet21, and DenseCapsNet.

In [41], the authors created a system called COVID-CheXNet which used CXR to detect
COVID-19. Prior to using ResNet-34 to classify scans as having COVID-19, the authors used
contrast enhancement on the CXR and noise reduction technique by applying adaptive
histogram equalization and Butterworth bandpass filter. The system achieved an accuracy
rate of 99.99%, a sensitivity of 99.98%, and a specificity of 100% using the weighted sum
rule at the score level. The model was trained using 400 COVID-19 and 400 normal CXRs
gathered from five different sources. Discussions in [58] proposes two experiments to
predict COVID-19 in CXR images. The first experiment performs a binary classification
between COVID-19 and normal patients. In the second experiment, the classes COVID-19,
normal, and pneumonia were considered. The proposed Deep CP-CXR model includes
batch normalization first. This is followed by six blocks, which consist of a convolutional
2D layer and a leaky ReLU layer. After this is a max pooling 2D layer, a dropout layer,
a flatten layer, a dense layer, a dropout layer, and a final dense classification layer. The
accuracy of binary classification was 100%, and the accuracy of multi-class classification
was 98.57%. The dataset used 1626 COVID-19 positive images, and 1802 normal images.

Research in [59], the neural network architecture CapsNet was used to classify COVID-
19 in CXR images. In contrast to a normal CNN, CapsNet uses capsule layers. High-level
capsules reuse the output of multiple lower-level capsules to produce an output vector
that measures the probability of an entity existing in the image. This allows a capsule
architecture to better capture spatial information, which traditional CNNs degrade through
the pooling technique. The model classified images as either normal, COVID-19, and
pneumonia. A train/validation/testing split of 60/20/20 percent, respectively, was used on
the dataset of 454 COVID-19 images, 4273 pneumonia images, and 1583 normal images. The
method of convolutional and capsule neural networks was compared in experiments, in
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which the proposed capsule model outperformed the conventional CNN architecture. The
accuracy of normal, pneumonia and COVID-19 was 77.9%, 88.1%, and 81.2% for the CNN
and 86.6%, 89%, and 94% for the proposed capsule network. This study [60] also proposed
the use of CNNs for the purpose of classifying CXR images as either healthy, COVID-19, or
other viral-induced pneumonia. The dataset used was created from a previous study, which
worked to combine public datasets of COVID-19 and other pneumonia images, along with
normal images. The final dataset included 10,192 normal images, 3616 COVID-19 images,
and 1345 pneumonia images. Multiple CNN architectures were tested—namely ResNet18,
GoogLeNet, AlexNet, VGG16, DenseNet161, along with a minimal CNN model created by
this study. Each of the popular architectures contained a minimum of 6,000,000 parameters,
while the proposed model only contained approximately 130,000 parameters. Every model
tested, including this minimal CNN, achieved an accuracy of 97% or higher on the given
data. Of these models, ResNet18 held the highest experimental performance by correctly
classifying 256 of the total 269 testing images. This ResNet18 model was passed to an
end-user application, which was given to a total of 10 experts, each with 12 to 23 years
of professional experience in radiological analysis. The experts independently selected
150 images from their own datasets, for a total of 1500 total images being tested. The model
correctly classified a total of 1486 of these images, which was confirmed by the experts. The
greatest source of incorrect classification came from uncertain images (such as early stages
of infection), and in these cases, the experts reported that it was also hard for humans
to classify.

The study in [61] similarly proposed a CNN for the use of classifying CXR images as
either COVID-19, pneumonia, or normal. The architecture used was based on the popular
architecture EfficientNet B5, which had been pretrained using the noisy student approach.
Transfer learning was applied to the model in order to fit it to the given classes, and the
rest of the deep learning model was based on a prior study. The datasets used by this
study were COVIDx, COVIDBIMCV , and COVIDprivate which contain 13,958, 10,953, and
305 images, respectively. An equal amount of testing images for each class were selected,
with 300 from COVIDBIMCV and 150 from COVIDprivate. This was the same for validation,
with 300 images each from COVIDx and COVIDBIMCV , and 90 from COVIDprivate. Five
separate random divisions of training and validation datasets were created, each with a re-
spective EfficientNet model. This created five separately trained EfficientNet models, which
were combined into an ensemble approach for classification. The final ensemble model was
compared to the skills of six radiologists, with 10 months to 15 years of experience. The
deep learning model in this study scored higher than all six radiologists on the classifica-
tion of COVID-19 and showed results comparable to the other models or radiologists for
non-COVID-19 pneumonia and normal images. Researchers in [62] propose a model which
combines feature maps from trained models to classify images as either COVID-19, viral
pneumonia, or normal. Two public CXR datasets from the Kaggle website were used, each
with the classes normal, COVID-19, and viral pneumonia. In terms of COVID-19, viral
pneumonia, and normal images, the first dataset had 137, 90, and 90 images, respectively,
while the second has 3616, 1345, and 10,192 images. The proposed approach involves the
use of feature maps from MobileNetV2, EfficientNet0, and DarkNet53 in that order. After
these feature maps are concatenated, the NCA optimization algorithm is applied to select
the best 82 features out of the 3000 which is given by the concatenated feature maps, which
serves to reduce time and cost in the proposed approach. Multiple classification techniques
were tested, with SVM classification providing the best results across each of the datasets.
The proposed techniques performed well with an average accuracy of 99.05% on the first
dataset and 97.1% on the second dataset.

The study in [63] proposed a fusion-based CNN named COVDC-Net to classify CXR
images into either three or four classes. The paper claims to address not only the need
for rapid and accurate detection of COVID-19 but also the possibility that the currently
overworked radiologists might have an increased rate of error due to exhaustion. Two
datasets were used in this study—the first contains 4883 total images of the classes COVID-
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19, normal, and pneumonia. The second dataset explores the use of four classes for the
classification task, with 305 COVID-19, 375 healthy, 379 bacterial pneumonia, and 355 viral
pneumonia images. The proposed fusion method combines VGG16 and MobileNetV2,
both of which are pretrained on the ImageNet dataset. These models were selected as a
pair after testing many combinations between VGG16, VGG19, MobileNetV2, ResNet50,
and DenseNet. Using confidence fusion, the types of features can be taken from both
CNN architectures to create a more effective classification system. An overall accuracy
of 96.48% is achieved for the first database of three classes, and an overall accuracy of
90.22% was achieved for the second database of four classes. A note is made to the vague or
incomplete representation of metrics from other studies, which may cause repercussions if
the techniques are later used in practical settings. The full metrics of this study are displayed.
This study [64] used a lightweight CNN with edge computing to efficiently detect COVID-
19 in CXR images. To increase the number of samples available in the dataset, DCGAN
was implemented. DCGAN is a deep convolutional generative adversarial network, which
uses deep learning in an unsupervised approach that replicates the distribution of data
in each dataset. This generates new training images, which improved the accuracy of the
classification model. For classification, the models MobileNetV2, ResNet18, and VGG19
were tested, and each model achieved functionally high accuracies. In order, MobileNetV2,
ResNet18, and VGG19 achieved an F1 score of 82, 87, and 83 percent. The authors conclude
that the accuracy achieved through MobileNetV2 is very comparable to the other models
while utilizing a much smaller model. The use of edge computing further increases
the efficiency of the system by processing information locally instead of relying on a
centralized server.

The research done in [65] utilized image processing and a proposed CNN architecture
to accurately classify CXR images as COVID-19, pneumonia, or normal. The dataset used
in this study is a combination of three separate datasets. A total of 864 COVID-19, 6235
pneumonia, and 4254 normal images were available across these three datasets. These
collected images were subjected to preprocessing, which extracted the lungs from the
image as the ROI. This ROI is then combined with the original image and given to CNN for
classification. The proposed CNN architecture C-COVIDNet is designed to be extremely
lightweight and only consists of eight total layers. Five convolutional layers are used,
followed by three dense layers, and between each layer, a dropout is used. The last dense
layer uses SoftMax activation to generate the class prediction. In total, 97.5% accuracy
was achieved using the preprocessing techniques and C-COVIDNet, which beats other
state-of-the-art CNNs. The study in [66] proposes a novel model to detect COVID-19
and pneumonia using CXR images in real-time. The dataset used in the study contains
1102 COVID-19, 1341 normal, and 1345 viral pneumonia images. The proposed model
COVID-CXDNetV2 uses an implementation of YOLOv2, which is then modified using
ResNet. There are 14 convolutional blocks, five max-pooling layers, and four residual
connections included in the model followed by a convolution layer, flatten layer and linear
layer in that order. In differentiating between the three classes (normal, COVID-19, and
pneumonia), the overall accuracy of the proposed model is 97.9%, which outperforms some
state-of-the-art models. The study in [67] proposed both an LSTM and CNN model to
detect COVID-19 and influenza in CXR images. For this study, a time-series dataset was
gathered from Kaggle, UCI repository, and hospitals in Islamabad. For this experiment,
70% of the images were used to train the models, and 30% of the images were used to
test. The proposed system is as follows: A series of CT scans are fed into the CNN, which
identifies the images as either healthy or infected. If a patient is determined to be healthy,
then this information is passed on to medical records. If the patient is determined to be
infected, the images will be sent to the LSTM model which classifies the infection as either
COVID-19 or Influenza, which would then be passed to medical records. This architecture
is designed to better differentiate between COVID-19 and Influenza in the early stages of
infection, which poses a challenge due to the similarity between the two infections. Of the
two models developed, the LSTM performed the best—the CNN achieved 94% accuracy,
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while the LSTM achieved 98% accuracy. Both accuracies are high, which shows that the
proposed deep learning techniques can accurately differentiate between healthy, Influenza,
and COVID-19 using CXR images.

Researchers in [68] explore the potential of semi-supervised neural networks in de-
tecting COVID-19 in CXR when only a small number of training images is available. The
dataset contains five image classes—normal, bacterial pneumonia, COVID-19, lung opacity,
and viral pneumonia. There are 404 training images for each of the classes, as well as
207 testing images for each class which were collected from a different source than the
training images. These images were resized to 224 × 244, and a percentage of data was
assigned to be unlabeled data to employ semi-supervised learning. The labeled proportions
tested were 80, 60, 40, 20, 10, and 5 percent. These tests also included varied distributions
of the majority/minority classes, all to test the robustness of FixMatch. The algorithm
used in this study is the FixMatch algorithm, which utilizes consistency regularization
and pseudo-labeling techniques. An artificial label is produced for an image with weak
augmentation before the model is trained, and the model learns to predict the label with
a stronger augmentation of the same image. The FixMatch algorithm utilizes ResNet18
as the underlying model. The proposed methods achieved an accuracy of approximately
78% when the proportion of labeled data was between 80 and 20 percent. In comparison
to other CNNs and an ensemble approach, it was on par with the standard supervised
learning techniques. The ensemble approach achieved the highest accuracy of 81%, but
the proposed method is very effective with data and computational efficiency considered
as FixMatch only uses ResNet18. This data also suggests that FixMatch could be robust
to data imbalances. Table 2 presents a summary of the deep learning models that were
applied for COVID-19 diagnosis using CXR.

A deep learning model to diagnose COVID-19 through the identification of structural
abnormalities in CXR images was proposed in [69]. The model architecture uses two
convolutional 2D layers followed by a max pool 2d and a dropout layer. Then, three blocks
which consist of three convolutional 2D layers, a max pool 2D, and a dropout are used.
The model then uses a flattened layer, a dense layer, a dropout layer, and a final dense
classification layer. The final accuracy of the model is 97.67%. After data augmentation, the
CXR dataset contains 1000 COVID-19 positive images and 1000 normal images. Another
deep learning model proposing risk stratification was implemented in [70] using a patient’s
CXR images. A modified commercial deep learning model, M-qXR, was used. The model
performed well, with 98% of the total interpretations successfully compared to the ground
truth. A dataset containing 2.5 million CXR images was used, which contains many
pulmonary pathologies such as pneumonia and tuberculosis. The study in [71] provides
evidence that CNNs along with transfer learning can be used to train models which
can detect COVID-19 in CXR with high accuracy. A dataset of 300 normal images and
200 COVID-19 images was used, where 20 images of each class were set aside for validation,
and 50 images of each class were set aside for testing. Data augmentation techniques were
used to prevent overfitting and increase variation in the dataset, including a random flip
and rotation of 5 degrees (both clockwise and counterclockwise). The best performance
of a model used a CNN along with the VGG16 architecture using the transfer learning
technique. Not only was the accuracy of this model the highest at 99.3%, but it also had the
lowest loss at 0.03 and took the least time to train. This proposed architecture took only
two minutes to achieve these results, while the second-best accuracy of 96.6% took almost
ten minutes. The proposed combination of techniques provides a faster, more accurate, and
adaptable network to detect COVID-19 when compared to the current testing standards.
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Table 2. Machine learning approach summarized using CXR data.

Paper Year Model Goals Accuracy

[53] 2022 January CovNNet Image augmentation generating hybrid
deep learning model for classification. 80.90%

[54] 2022 January Join-fusion model
using EfficientNetB7

Combine clinical and CXR for binary
prediction 97%

[55] 2022 January DNN + CNN Model does binary classification
followed by segmentation 94.60%

[56] 2021 January

Hybrid model
developed from
11 different
CNN architectures

Binary prediction 98.54%

[57] 2021 December XR-CAPS Feature extraction and segmentation
by using foundations of UNet 93.20%

[41] 2020 November COVID-CheXNet Contrast enhancement on the CXR and noise
reduction techniques prior to classification 99.99%

[58] 2022 January Deep CP-CXR Binary classification as well as COVID-19,
normal, and pneumonia 98.57%

[59] 2022 May CapsNet Lower-level capsules reuse features for image
classification. 89.87% avg.

[60] 2022 May

Model comparison
with ResNet18
producing highest
accuracy

Classify healthy, COVID-19, or other
viral-induced pneumonia 97%

[61] 2022 May EfficientNet B5
transfer learning.

COVID-19, pneumonia, or normal
classification 86.67%

[62] 2022 May

Feature maps utilized
sequentially with
MobileNetV2,
EfficientNet0, and
DarkNet53.

COVID-19, viral pneumonia, or normal
classification 99.05%

[63] 2022 May Fusion-based CNN,
COVDC-Net

COVID-19, healthy, bacterial pneumonia,
and viral pneumonia classification 96.48%

[64] 2022 April Lightweight CNN
edge computing

Image augmentation using DCGAN
increase sample size for classification. 87%

[65] 2022 April Lightweight
CNN C-COVIDNet

COVID-19, pneumonia, or normal
classification using ROI extraction of lungs. 97.5%

[66] 2022 April
COVID-CXDNetV2
with YOLOv2
and ResNet

Normal, COVID-19, and pneumonia
classification 97.9%

[68] 2022 May Semi-supervised
deep learning.

Normal, bacterial pneumonia, COVID-19,
lung opacity, and viral pneumonia
classification

81%

[69] 2021 December Traditional CNN Identification of structural
abnormalities in CXR 97.67%

[70] 2022 January M-qXR commercial
model Risk stratification in COVID-19 diagnosis 98%
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Table 2. Cont.

Paper Year Model Goals Accuracy

[71] 2022 May VGG16 COVID-19 diagnosis by incorporating image
augmentations with fast timing. 99.3%

[72] 2022 April RESCOVIDTCNnet Model proposed after comparison with
InceptionV3, ResNet50, and ResNet50-TCN 99%

[67] 2022 February LSTM
Using LSTM architecture for
classification of COVID-19 and
Influenza from CXR

98%

Data used in deep learning goes through preprocessing, which ensures that the data
can fit the input size requirement for the model. It is a common practice to include other
preprocessing steps to clean the data, such as the removal of bad samples. A bad sample of
an X-ray used in COVID detection could have labels written over the data or be extremely
noisy. Preprocessing can also include steps that increase the size and quality of the dataset.
Image augmentation uses one image to create multiple versions which slightly deviate from
the original by methods such as zoom, rotation, and cropping. This prepares the model
for these types of deviations and increases the performance on diverse data. There are
additional techniques that actually generate new images to match existing data, often with
the goal of balancing a mismatched dataset. Synthetic Minority Over-Sampling Technique,
or SMOTE, is used to increase the number of images or balance data pertaining to different
classes. These techniques are often used when a large dataset is not available for training,
which was an extremely common setback at the beginning of the COVID-19 pandemic as
there was little data collected, and it was often private. If CXR images are insufficient for
the deep learning task, more data can be included in the form of clinical variables. With the
increase in relevant data, deep learning models can give more accurate predictions.

The study in [72] proposed novel architecture using convolutional and temporal
neural networks to detect COVID-19 in CXR. For the study, some datasets were combined
for a total of 1670 COVID-19 images, 1672 normal images, and 1670 pneumonia images.
These images were preprocessed using the empirical wavelet transform, which is useful
for removing noise and increasing the resolution of the CXR images. Four models were
tested alongside the proposed model, including InceptionV3, ResNet50, and ResNet50-
TCN. In the proposed RESCOVIDTCNnet, features are extracted from these images using
ResNet50, which are then passed to TCN. ResNet50-TCN is the proposed architecture,
the difference being that RESCOVIDTCNnet includes the Empirical Wavelet Transform
(EWT) preprocessing. Classification is then performed by either SVM or MLP, with MLP
performing the best. In both cases, RESCOVIDTCNnet achieved an accuracy of over 99%.
The paper reports that the proposed model outperforms the other models with a correlation
coefficient of 0.999, and a standard deviation of 0.1.

4.2. Diagnosis Using Primarily CT Imaging

In [73], the authors talk about generic background information and human processes
for a diagnosis via deep learning. Other models are brought up with their accuracies,
with an emphasis on the models the research team recreated themselves. Dataset used
had 349 COVID-19 images from 216 patients and 463 from non-COVID-19 patients. The
researchers found VGG-19 worked best in their studies, at 94.52% accuracy. Research in [74]
creates an argument for utilizing the VGG19 model while comparing Alexnet, Googlenet,
Inception v3, VGG16&19, Shufflenet, Mobilenet v2, Resnet 18, 50 & 101. VGG19 showed
the best performance across “covid”, “normal” and “pneumonia” case datasets. COVID-19
datasets used were large, open-source verified sets.

Authors in [75] used both chest X-rays (CXR) and CT scans to propose a CNN model
named CoroDet. This model is able to perform a 2-class, 3-class and 4-class classification
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using a 22-layer sequential CNN which consists of convolutional, max pooling, dense
layer, flatten layer, and three activation functions, namely Sigmoid, ReLU, and Leaky
ReLU. Training on a dataset called COVID-R containing 7390 total CXR, 2843 COVID-19,
3108 Normal, and 1439 Pneumonia (Viral + Bacteria) the researchers ended with an average
accuracy of 91.2%. Research in [76] used CT and CXR images to evaluate pre-trained deep
neural networks in their ability to detect COVID-19. Data augmentation is used to increase
the size of the training dataset to avoid overfitting and increase model performance. Among
the tested models—ResNet50, InceptionV3, VGGNet-19, and Xception—it was found that
VGGNet-19 performs the best on the CT dataset with 88.5% precision, 86% recall, 86.5%
F1-score, and 87% accuracy. Xception performed the best on the CXR dataset with precision,
recall, F1-score, and accuracy equalling 98%. Notably, the VGG-19 model performs the best
across the two datasets with an average of 90.5% accuracy. The dataset used contained
3000 healthy scans and 623 COVID-19 positive CT scans.

Eight CNN CovNet models were compared in [77] in their ability to diagnose COVID-
19 in CT scans as well as CXR images. A ninth model was proposed, which consists
of four blocks of a 2D convolutional layer followed by a dropout layer, an activation
layer, and a max pooling 2D layer. After these four blocks, there is a flattened layer, a
dense layer, a dropout layer, and finally a dense classification layer. This proposed model
achieved the highest accuracy at 98%, a precision and F1-score of 96%, and a recall of
95%. Their CXR dataset contains a total of 4107 COVID-19 positive images and more than
4105 healthy images. Their CT dataset contains a total of 1605 COVID-19 positive images
and 1626 healthy images. Hybrid models were also implemented with success. Research in
this domain was targeted toward rapid real-time COVID-19 detection. In [78], the authors
highlight how computed tomography (CT) or CXR have become a significant tool for quick
diagnoses. Thus, it is essential to develop an online and real-time computer-aided diagnosis
(CAD) approach to support physicians and avoid further spreading of the disease. Using
the ResNet50 model it was able to achieve a 98% accuracy with the CXR dataset. This
paper highlights how CXR can get great accuracy and be a lot easier to get from patients.
CT images can effectively complement reverse transcription-polymerase chain reaction
testing. Using the COVIDx-CT dataset containing 104,009 CT images from 1489 patients
and putting them through the COVID-Net CT-2 and ResNet-v2 models, research in [79]
was able to achieve an accuracy of 98.7% which is comparable to CXR showing how CT
and CXR can get the same accuracy.

In [80], a self-named DREnet model comprised of a pretrained ResNet 50 model using
a Feature Pyramid Network to extract top-K details, before being passed into a multi-
layer perceptron to make predictions. The goal of the model was the accurate diagnosis of
COVID-19 in patients. The model was run on a dataset of 88 COVID-19 patients, 100 patient
cases of bacterial pneumonia, and 86 healthy people. In [81], used a ResNet(50) model, with
a proposed accuracy of 98.8%, with a dataset of 2267 CT scans, including 1357 COVID-19
patients and 1235 CT scans from non-COVID-19 patients. The paper confirmed that no
image augmentation is necessary for diagnosing COVID-19 and it can be done using highly
compressed JPEG files as well. Pre-trained models of ResNet 18,50, and 101 alongside
SqueezeNet were used in [82] to detect COVID-19 from CT scans. Using the familiar
349 COVID-19 images from 216 patients, with 463 from non-COVID-19 patients, their
findings showed that ResNet18 worked best for their dataset, with a validation accuracy of
97.32%, training 99.82%, and testing 99.4%.

In [39], the authors used 48,260 CT scan images from 282 normal patients and 15,589 im-
ages from 95 patients with COVID-19 infections. The researchers used an image pre-
processing and filtering algorithm to remove CT image slices that did not represent the
region of interest associated with COVID-19 detection. Much of this filtering approach
was based on removing CT slices from the top and the bottom of the scan, and also im-
plementing a threshold for the Hounsfield Units that is suitable for lung tissue analysis.
Using this scheme, lead to higher accuracy and less false detection. When ResNet50V2
model was used on the modified dataset, the researchers were able to achieve an accuracy
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of 98.49% using a single image classification stage. In [83], the authors created an effective
deep learning algorithm to screen for COVID-19. The dataset included 1065 images from
259 patients. As a pre-processing stage, the authors delineated tissue in CT images using
Region of Interest (ROI) for the training and validation step. This patch-based method
allowed the model to focus on features that are evident during the early stages of COVID-19
prognosis compared to viral pneumonia. Proposing an Inception-v3 model with these
patch-based ROI, they achieved an accuracy range of 79.3–89.5% through their tests.

In [84], the authors compared pre-trained models to detect COVID-19 in CT scan images,
with the attempt to offer a model to perform autonomous prediction. Among the models
tested are InceptionV3, ResNet50, VGG16, and VGG19. ResNet performed the best, with an
accuracy of 98.86%. The research used a CT dataset of 7395 COVID-19 positive images and
6018 suspicious case images, while most models proposed earlier require a lot of computing
resources, researchers in [85] made an effort to diagnose COVID-19 with limited resources. With
the use of a fine-tuned MobileNet-V2 model being fit on a real-world dataset consisting of
2482 CT scan images, the authors were able to achieve an accuracy of 85.6%. The proposed
model was significantly smaller at around 8.45 MB compared to the similarly sized VGG16
model at 512 MB, DenseNet 201 at 70.9 MB and VGG19 at 532 MB. The average classification
time on test data images was also less at 21.3 s with 43 msec/image compared to 315 s for
VGG-19. In [86], the authors proposed COVID-AL, a weakly-supervised COVID-19 detection
module using a pre-trained UNet model for transfer learning. Their model is described as a
“tailor-designed 2D U-Net”, cropping images to 352 × 320 before input. The significance of
this research was that the authors were able to train and test the model on separate datasets.
The model began by segmenting the lung region from 402 CT scans using the Non-Small Cell
Lung Cancer (NSCLC) dataset. This objective of this stage is similar to [83], however, instead of
extracting ROIs, the UNet was creating a segmented mask of the lung from an entire CT scan
which could have several slices. The UNet segmentation is then used on 617,775 CT scan slices
from 4154 patients in the China Consortium of Chest CT Image Investigation (CC-CCII) dataset.
Through their model, they attained an accuracy of between 96.2 and 96.8%.

Research in [87], examines the problem with deep learning models requiring labeled
training datasets. It takes pre-trained models ResNet18, ResNet50, and ResNet101 and
uses them for the automatic detection of COVID-19. ResNet50 performed the best with
a recall of 98.8% and an F-1 score of 98.41%. Different layers of the model are explored
through support vector machine, logistic regression and K-nearest neighbor classifiers.
A fusion of the classifiers was deployed as a strategy and the recall score increased to
99.2% while the F-1 score increased to 99.4%. Research in [88], examines the challenge
of diagnosing patients with COVID-19 and differentiating it from pulmonary edema. A
machine learning model EDECOVID-net was used to differentiate using lung Computed
Tomography radiomic features. The model was able to distinguish between COVID-19 and
pulmonary edema with an accuracy of 0.98. Research in [89], examines early diagnosis of
COVID-19 through a deep learning model approach combined with CT image analysis. The
model is based on convolutional long short term memory and was tested on CXR images.
The performance of the model had an accuracy of 97.3% at 50 epochs. This [90] paper
proposes using a CNN model for the diagnosis of COVID-19 patients using CT images.
This predictive model was used for binary classification of other pulmonary diseases. The
binary classification had an accuracy of 98.79%, a precision of 94.98%, and a sensitivity of
98.85%.

The researchers in [91] address the need for quick and automated detection of COVID-
19 by proposing a transfer-learning deep CNN to classify images as normal, COVID-19, and
pneumonia. The transfer learning is performed using pre-trained DensNet121, in which
the model is given images augmented with random flips, rotation up to 10 degrees, zoom
up to 5%, and changes to brightness and contrast. The model weights are adjusted to fit the
new inputs and outputs. Data preprocessing occurs before images are passed to the model
during testing, which includes a resize to 224 × 224 × 3 and normalization. DensNet121
is pretrained on the popular ImageNet dataset, which contains over 1.2 million images
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belonging to 1000 classes. A publicly available dataset was then used for transfer learning,
consisting of 180 images per class. In total, 80% of images were used to train, and 20% of
images were used to validate the model. In experiments, the proposed model showed an
accuracy of 96.52% across the three classes. Compared to other popular architectures, this
was the highest performing model with at least 2% higher accuracy than other models.

Research in [92], utilizes preprocessing techniques and a bidirectional LSTM to clas-
sify images as normal, viral pneumonia, lung opacity, or COVID-19. The image dataset
used contains 3616 COVID-19 images, 10,192 normal images, 6012 Lung opacity images,
and 1345 viral pneumonia images. The first step of preprocessing was to use modified
histogram equalization to enhance contrast. The equation was modified to change the
level of the histogram based on the contrast level of the input image. Preprocessing also
included an extended dual-tree complex wavelet transform with trigonometric transform
to extract effective features. A custom optimization technique was used to avoid overfit-
ting by selecting features with reduced dimensionality. These preprocessing techniques
increased the final accuracy of the model from 97.34% to 99.07%, proving their effectiveness.
Classification was performed by the adaptive dual-stage horse herd BiLSTM architecture.
This model uses an embedding layer, followed by a bidirectional LSTM (forward and back),
then a concatenation layer. This concatenation layer leads to another bidirectional LSTM
and concatenation layer, which is passed to an optimized attention layer, which gives an
output class. When compared to ResNet50 and AlexNet models, the proposed model
obtained the highest accuracy at 99.07%. The accuracy per class was always greater than
other models by at least 1.73%.

The study in [93] proposed a data-efficient deep neural network to account for the lack
of data available during a pandemic situation. Two datasets were employed, and a general
adversarial network was utilized to increase the number of samples while creating different
types of lung deformations. This novel approach was added to the methods because while
data augmentation increases accuracy in varied datasets, it is ultimately using data with the
same exact deformation in the augmented images. The first dataset—COVID-19-CT—has
324 train and 40 test COVID-19 images, and for normal images, there are 293 training
sets and 37 test sets. The second dataset—MosMed—has 168 train and 20 test images
for both COVID-19 and normal images. After augmentation and GAN implementation,
the COVID-19-CT dataset contains 2172 train and 37 test normal images, along with 1893
train and 37 test COVID-19 images. The MosMed dataset ends up with approximately
1200 images for both COVID-19 and normal. The highest AUC value of 0.89 was achieved
using ResNet18 on the first dataset along with augmentation and GAN. Without the GAN
implementation, the AUC value is only 0.77, which proves the utility of GAN for synthetic
image generation. The study in [94] proposed a deep learning model to segment COVID-19
infection in lung CT scans using the UNet architecture. For this purpose, a dataset of
3138 lung CT images belonging to 20 patient scans was used, each with a respective label
and segmentation verified by expert radiologists. A training/validation split of 70/30 was
used to verify the accuracy of the model during training. The proposed diagnosis system
consists of four separate phases—lung segmentation, infection segmentation, COVID-19
classification, and 3D reconstruction. The lung segmentation phase utilizes contrast-limited
adaptive histogram equalization (CLAHE) as a preprocessing step and cropped away any
background slices. The U-Net architecture is then used to segment the lungs. The infection
segmentation phase performs the same preprocessing of CLAHE and background slice
removal, segmenting only the infection. The COVID-19 classification phase uses a three-
layer CNN with fully connected layers and softmax activation to then classify the infection
segmentation as either COVID-19 or normal. The final phase gave a 3D reconstruction
which was used to identify the rate of infection, quantified by the ratio of the infected
lung to the healthy lung. For the final classification, an accuracy of 98% was achieved. By
using these techniques, the model was able to achieve high performance with a limited
training dataset.
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The study in [95] utilizes lung segmentation to increase the accuracy of a CNN in
the classification of COVID-19 in CT images. A Kaggle dataset is used, which contains
a total of 1834 images along with masks. To segment the lungs, the techniques of canny
edge detection, thresholding, and UNet are compared. The Intersect over Union scores
indicate that UNet greatly outperforms the other techniques. A CNN is then used to
classify the lung as either COVID-19 positive or negative. The final accuracy achieved
through these techniques is 95%. The inclusion of segmentation both increased the accuracy
and decreased the loss, proving the utility of the technique. The study in [96] proposes a
novel CNN model named DCML to detect COVID-19 in CT and CXR images. A binary
classification occurs, labeling images as either COVID-19 positive or negative. For this
research, three total datasets were used to train and test the models. Each dataset provided
separate characteristics—the first dataset had less than 600 total images to train on, the
second dataset was overall fair, and the third dataset had a large data imbalance. In total,
70% of each dataset was used for training, while 30% was reserved for testing. Each
training dataset is augmented using the Fast AutoAugment method. Deep mutual learning
is then employed, and the models are strongly fused. Contrastive learning is included in
the knowledge transfer during the mutual learning phase, which increases the model’s
performance in distinguishing between classes. The final proposition of this research is the
adaptive model fusion strategy, which utilizes the correlation between the heterogeneous
networks to better mimic the learning and decision-making processes of trained radiologists.
The feature maps from two separate networks are combined using a feature fusion model,
which creates a new fused feature map. This is then passed to the fully connected layers
and a SoftMax classification. Across each of the datasets, the proposed DCML using Fast
AutoAugment provided the highest accuracy when compared to a variety of fine-tuned
popular CNN architectures.

The study in [97] proposed the novel DMDF-Net for the segmentation of COVID-19-related
lesions in CT scans. For this deep learning model, two datasets were used—the first contains
2049 images with a COVID-19 infection ground truth, and the second contains 3520 images
with masks for the left and right lungs along with the COVID-19 infection mask. Before images
are passed to the model, a preprocessing step occurs where the color and contrast are adjusted.
The DMDF-Net model uses dual multiscale feature fusion in both the encoding and decoding
phases, which increases the accuracy of the segmentation. The encoding phase is based from
MobileNetV2. Postprocessing is also implemented, in which the lung mask ROI is applied to
the original CT image for further processing the data and segmenting the infected regions. This
technique was observed to increase the accuracy of the model. The final model—including all
pre- and post-processing techniques—was able to outperform other state-of-the-art models with
a DICE score of 75.7% and an IOU of 67.22%.

Research in [98] aimed to contribute a decision-aiding tool that can detect COVID-19
in CT images. The images are preprocessed first by a random window level between
−500 and −600 HU, and a window width of 1200 HU. The randomness of the window
level is chosen to account for the discrepancies between CT scans taken with different
machines. The second step in preprocessing includes a normalization to between 0 and 255,
and the removal of unrelated features or noise in the image. The model architecture is an
end-to-end segmentation model based on the UNet architecture, which utilizes an encoder
and a decoder along with the SoftMax activation to generate a predicted mask. To tackle
the imbalanced class problem where the infection is always between 0 and 20 percent of the
image, a custom loss function is used. The loss is a class-balanced cross-loss function, which
was observed to effectively handle the imbalance. The DICE score of the proposed model,
including preprocessing, was 83.3 and 83.4 percent for datasets one and two, respectively.
Compared to the performance of popular baseline architectures, this model achieved the
highest DICE score. The study in [99] fine-tuned existing models VGG16 and miniVGGNet
for the prediction of COVID-19 on CT imaging. In total, 6368 CT images were used from
the Corona Hack-Chest X-Ray dataset of which 3184 were COVID-19 positive and 3184
were normal. The efficiency of each model was evaluated with VGG16 having a precision
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of 0.98, recall of 0.81 and F1 score of 0.89 for COVID-19 while miniVGGNet had a precision
of 0.97, recall of 0.89 and F1 score of 0.93 for COVID-19. Both models performed best with
data augmentation with VGG16 achieving an accuracy of 89% while miniVGGNet had an
accuracy of 93%.

In [100], the authors proposed using a deep learning model for quantitative assess-
ment of COVID-19 CT imaging. A total of 14 patients were reviewed with both initial and
follow-up CT. The deep learning model was based on the CNN VB-Net, which was used
for automatic segmentation and delineation of affected regions. The results showed the
percentage of infection was 3.4% for the entire lung, with a percentage of infection decrease
in the follow-up period for all 14 patients. The study in [101] developed a model called
Deep Covix-net that used image segmentation along with a machine learning algorithm
to accurately predict and diagnose COVID-19. The dataset that was utilized in this study
was an open-source Kaggle and GitHub repository that contained 9000 CXR images, of
which 3000 are COVID-19 positive, 3000 are normal, and 3000 have pneumonia. It also
contains 6000 CT images, of which 3000 are COVID-19 and 3000 are normal. Feature
extraction and selection involved using advanced image segmentation techniques such as
texture, grey-level co-occurrence matrix (GLCM), grey-level difference method (GLDM),
fast Fourier transform (FFT) and discrete wavelet transform (DWT). The statistical features
were combined into the Deep Covix-net model and a random forest classifier for classifica-
tion. The CXR dataset had an accuracy of 96.8% while the chest CT images had an accuracy
of 97%. Table 3 presents a summary of the deep learning models that were applied for
COVID-19 diagnosis using CT.

Table 3. Machine learning approach summarized using primarily CT data.

Paper Year Model Goals Accuracy

[73] 2021 February Multiple model comparison
with VGG-19 having
best classification accuracy

Classification of covid, normal,
and pneumonia across open-source datasets

94.52%

[74] 2021 September 98.87%

[76] 2022 January 90.50%

[75] 2020 November CoroDet Used CT and CXR to perform multiple
class-wise predictions 91.20%

[77] 2022 February
Developed a hybrid 4-layer
CNN after testing eight
different models

Proposed rapid real time COVID-19
detection using hybrid approach on CXR
and CT

98%

[78] 2021 August ResNet50 Application on CXR 98%

[79] 2021 July COVID-Net CT-2 and
ResNet-v2 models

Research on both CT and CXR
using COVIDx-CT dataset 98.7%

[80] 2021 March DREnet Pretrained ResNet 50 model 79% precision

[81] 2021 February ResNet50
Verified that image augmentation
not necessary for COVID-19 detection
and utilized compressed JPEG files.

98.8%

[82] 2020 August ResNet 18,50, and 101
alongside SqueezeNet

Tested model on CT images showed
ResNet 18 to have best results. 99.4%

[39] 2021 March ResNet50V2 Image preprocessing and removal of CT
slices not relevant to ROI. 98.49%

[83] 2021 February Inception-v3 model with
patch-based ROI Tissue delineation using ROI for classification 89.5%

[84] 2022 January
Model comparison
InceptionV3, ResNet50,
VGG16, and VGG19

Best performance using ResNet for CT scan
classification. 98.86%
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Table 3. Cont.

Paper Year Model Goals Accuracy

[85] 2021 June MobileNet-V2 Purpose was to demonstrate the feasibility of
light weight models in analyzing CT scans. 85.6%

[86] 2020 November COVID-AL Weakly-supervised COVID-19 detection
module based on UNet for segmentation. 96.8%

[87] 2022 January Pretrained ResNet18,
ResNet50, and ResNet101

Explores the feasibility of pre-trained models
without providing labelled training data. 99.4% F1

[88] 2021 December EDECOVID-net Uses radiomic features to differential between
COVID-19 and pulmonary edema 98%

[89] 2021 December LSTM Applies LSTM on both CXR and CT images
for classification 97.3%

[90] 2021 December CNN-based approach Performed binary as well as ternary
classification, using CT images 98.79%

[91] 2022 June DensNet121 (pre-trained) Transfer-learning deep CNN with image
augmentation. 96.52%

[92] 2022 May Bidirectional LSTM Classification using CT for normal,
viral pneumonia,lung opacity, or COVID-19 99.07%

[93] 2022 May GAN Combination of GAN and deep learning
increased image data for training 89% AUC

[94] 2022 May UNet
Segmentation of lung by utilizing contrast
limited adaptive histogram equalization
(CLAHE)

98%

[95] 2022 May UNet Edge detection, thresholding, and UNet are
compared using IoU metric for segmentation. 95%

[96] 2022 May DCML Multiple preprocessing using Fast AutoAugment,
data balancing steps prior to binary classification. 98.7%

[97] 2022 May DMDF-Net CT scan segmentation for COVID-19. Fusion of
UNet and MobileNetV2. 0.75 DICE

[98] 2022 April UNet with
cross-loss function

Segmentation using image preprocessing with
random window width and levelling. 0.83 DICE

[100] 2021 May VB-Net automatic segmentation and delineation of
affected regions with COVID-19 from CT scans. -

[101] 2021 July Deep Covix-net Image segmentation with texture analysis
using GLCM, GLDM, FFT, DWT on CT and CXR. 97%

[99] 2021 February VGG style CNN
Evaluation of multiple deep learning model
using two public and two
private datasets.

93%

4.3. Diagnosis Using Ensemble Techniques

An ensemble approach to combining results from multiple deep learning models was
also reported in [102]. Here authors used VGG-16, ResNet50, and Xception models and
then combined their results to generate a final prediction on 2482 CT-scan images, 1252 of
which are scans with positive COVID-19 cases. With a 98.79% accuracy, these models have
proven themselves very useful. Another stacked ensemble approach was explained in [103]
which looked at the predictions of VGG19, ResNet101, DenseNet169, and WideResNet
50-2. Five datasets were used to verify the proposed approach with 15,286 CT scans and
3120 CXRs. The proposed model was compared with 11 existing models from previous
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research. The proposed model outperformed in all five datasets with accuracy values of
85.45%, 93%, 99%, 99.75% and 91.5%.

Research in [104] combines the use of Stacking and Weighted Average Ensemble
(WAE) on popular models (VGG19, ResNet50, and DenseNet201) in an ensemble learning
approach to diagnosing COVID-19. The input is passed to the fine-tuned popular models
mentioned before, and the output is passed to Random Forest and Extra Trees classifiers.
That output is passed to a Logistic Regression level, which then produces an output of
either positive or negative. The F1 scores of the WAE model were the highest, at 98.65%
and 94.93% respectively for the two CT datasets. Two separate CT scan datasets were
employed—the first contains 1252 COVID-19 positive images and 1230 healthy images.
The second contains 349 COVID-19 positive images and 463 healthy images. Researchers
in [105] made an effort to create a generalized detection model that can look at unknown
datasets and detect COVID-19 with significant accuracy. A meta-classifier-based approach
along with EfficentNet-based pretrained model was used to extract significant features
from datasets. These features were then reduced using Principal Component Analysis
(PCA). The final classification layer was a 2-stage approach. In the first stage, Random
Forest and Support Vector machines were used to bag the prediction results followed by a
logistic regression classifier to delineate the final outcome of COVID-19 or not. The authors
tested the model on 8055 CT images and 9544 CXR. Seven variants of EfficentNet were
trained based on image scaling along with 18 variants of deep learning models used by
previous researchers. The proposed approach reported a precision and recall of 0.99 for
COVID-19 images and 1 for Non-COVID-19 images.

The excerpt from [106] used a binary classification IKONOS-CT to differentiate COVID-
19 patients from non-COVID-19 using CT images. The classifiers that were used were
multilayer perceptron, SVM, random tree, random forest, and Bayesian networks. The best
feature extractor was Haralick and SVM which had an accuracy of 96.994% and recall of
0.952. Research in [107], uses machine learning techniques to identify COVID-19 through
extracted feature fusion. Curvelet Transform, Gabor Wavelet Transform and Local Gradient
Increasing Pattern were used for fusion and then used to classify CXR images. The machine
learning classifiers used were Discriminant Analysis, Ensemble, Random Forest, and SVM.
The model had an overall accuracy of 96.18%, a precision of 95.46%, a sensitivity of 96.98%
and an F-1 score of 96.21% with SVM. Research in [108], classifies the severity of COVID-19
positive CT images through feature extraction. The text features are then classified using
Random Forest. The images are then placed into four levels of severity of COVID-19, which
had an accuracy of 90.95%.

Research in [109], develops a machine learning-assisted model for the detection of
severe COVID-19. They use blood tests clinical variables along with quantitative CT
parameters such as volume, percentage, and ground glass opacities. Correlation between
the variables was first done using a Pearson test, then features were selected through an
independent t-test and least absolute shrinkage and selection operator regression. Support
vector machines, Gaussian Naïve Bayes, K-nearest neighbor, decision tree, random forest
and multi-layer perceptron algorithms were all used as classifiers. For the selected features,
lesion percentage contributed the most to classification. Random forest had the highest
accuracy for the identification of severe COVID-19 cases at 91.38%. Research in [110]
used a hybrid of deep transfer learning and machine learning to classify CT scans as
either COVID-19 or normal. For this study, a dataset of 1252 COVID-19 images and
1230 normal images was collected from a hospital in Brazil. The approach uses a popular
CNN architecture to extract the hidden features of the images, which are then passed to one
of two machine learning algorithms—support vector machines and k-nearest neighbors
(KNN). The transfer learning approach was chosen to account for the small dataset, as
the model only needs to adapt the existing weights to fit the new data. The final layer of
each tested deep learning architecture was a pooling layer, which consisted of the extracted
features. This was then passed to the chosen machine learning algorithm, which performed
the final classification. A final accuracy of 98.2% was achieved using the features extracted
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by the ResNet50 architecture and the SVM classification. The ResNet50 architecture also
returned the highest accuracy when used with the KNN classification at 97.5%. Both
proposed approaches outperformed other studies which utilized the same dataset.

The study in [111] proposes a feature fusion deep learning architecture to extract
features, then classify them as either being COVID-19, pneumonia, or normal. A dataset of
6518 CXR images was used for this study, with 20% of this being devoted to testing. As a
part of preprocessing, a ResNet34 architecture was used to segment the lungs in the image.
In the proposed architecture, the original CXR image (without preprocessing) is passed to
DenseNet while the ResNet34 segmented output is sent to VGG16. Both DenseNet and
VGG16 extract features and using the ensemble learning technique they are concatenated
and passed to the attention layer for classification. This attention layer includes a global
then category attention block, which allows the model to overcome data imbalance and
obtain more detailed information on smaller lesions. After a global average pool and dense
layers, a softmax activation is used to classify the image. Multiple aspects of the model
were fine-tuned, which resulted in a testing accuracy of 97.3%, higher than the popular
model architectures used for comparison. The second-best model was DenseNet169, which
obtained a testing accuracy of 94.7%. The study done in [112] uses deep learning to classify
patients as COVID-19 positive or negative from their CT scan images. The Basrah Dataset
was used, which has 1181 positive cases and 242 negative images from a total of 50 patients.
In total, 818 images were used for training the model, 694 of which being COVID-19
positive. In total, 605 of the images were used to test the model, with 487 of those being
COVID-19 positive cases. Images would first go through preprocessing, in which the
image was converted to grayscale and resized. Then, feature extraction is performed by the
popular VGG16 CNN architecture which ends in a max pooling to decrease the feature map
resolution. The image feature map is then passed to the fully connected layers, which use
SVM for classification. Through testing the model, a reported 99% F1 score was achieved.

The study in [113] proposed a novel lung segmentation technique and a classification
CNN to classify the COVID-19 disease in CT images. The COVID-19 CT dataset was utilized
for training, which includes 349 positive and 397 negative CT scans. Image augmentation,
such as rotating the image by 90, 180, and 270 degrees was used to increase the amount of
data available for the model. Before being given to the model, images are segmented using
the thresholding technique to create an initial mask. After this, the GrabCut technique is
utilized to ensure that unnecessary information was not removed or included in this mask.
For the proposed classification methods, the popular model architectures of a convolutional
deep belief network (CDBN), HRNet, and VGGNet are fused in the fully connected layer to
create an ensemble learning voting system. This provides efficiency along with accuracy—
the proposed model achieved an accuracy of 95%, which outperforms all the state-of-the-art
models which used the COVID-19 CT dataset. A deep learning method is proposed by the
study in [114], which uses ensemble transfer learning to detect COVID-19 in CXR images.
For this, a dataset was used which consists of an equal 1000 images for both positive and
negative cases. A split of 60/20/20 percent was used for training, validation, and testing,
respectively. Images were resized to fit various popular architectures, which the study
compared for transfer learning, and determined that ResNet50, DenseNet201, InceptionV3,
VGG16, VGG19, Xception, and MobileNetV2 performed the best. Each of these models
was then used in an ensemble approach—after every model gives an output, they are
combined in the ensemble learning step which performs a weighted classification based on
those inputs. MobileNetV2 was the fastest performing model, but the ensemble approach
achieved a precision of 100% with slightly more time to run.

Research in [115] used Light Gradient Boosting machines as a primary model to predict
COVID-19 infection, development of Acute Respiratory Distress Syndrome, Intensive Care
Unit admission, and risk of mortality. It used clinical variables along with CT images in its
analysis. The results showed COVID-19 infection AUC of 0.790, development of ARDS at
0.781, ICU admission at 0.675, and risk of mortality at 0.759. Finally, the authors in [116]
explored the role that CT imaging plays in the prognosis of COVID-19 using machine
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learning algorithms. A mixture of clinical and laboratory features along with CT imaging
was used and reduced to seven predictors. Decisions trees, k-nearest neighbors, SVM
and ensemble learning were used as classifiers. The results showed SVM with the best
classification at 73.7% accuracy and 0.69 AUC score.

4.4. Diagnosis Using Additional Data

Research in [117] utilized the approach of lung ultrasound (LUS) images to diagnose
COVID-19 in patients. A mixture of a CNN and regularized spatial transformer network
(RSTN) were used. Binary and quaternary labeling was used on the videos—a binary label
would describe a video as pathological or normal. A quaternary label would describe a
video based on the percentage of frames containing signs of pathology. The quaternary
labeling made predictions much more efficient than a frame-based predictor without much
sacrifice of accuracy. The frame-based and quaternary-based accuracies were 90.18% and
88.73% respectively. The dataset consisted of videos, each contributing to the total number
of frames for each category. After the criteria were met, researchers were left with 507 right
anterior, 2071 right posterior lower, and 1249 left posterior lower images or frames—each
referring to a separate section of the chest that was scanned. Research in [118], uses a deep
learning model to diagnose COVID-19-related pneumonia via Ultrasound. The goal was to
classify three categories of normal, interstitial abnormalities, and confluent abnormalities.
The neural network used a two-stream approach that used red–green-blue channels and
velocity information. The results showed that determining interstitial abnormalities had an
F-1 score of 0.86. Research in [119] used multiple deep learning architectures on the POCUS
dataset which contains 3326 LUS of three classes namely COVID, normal, and pneumonia.
Results indicated that InceptionV3 produced the best outcome at about 89.1% accuracy and
97.1% ROC.

Most of the research revolving around CT images was binary classification. Few
models were also developed to predict the severity of the disease in patients. In [120],
the authors explored the severity of COVID-19 via a CT scan. A novel VB-Net model
was created and achieved 91.6% severity detection accuracy in tests across a dataset of
249 COVID-19 images for training, and 300 for testing. In [121], the authors used an AI-
severity score to identify the severity of the COVID-19 patient based on age, sex, oxygen
saturation, urea, and platelet counts. This multivariate model used logistic regression
and cross-validation folds. EfficientNet-B0 pre-trained on the ImageNet public database
and ResNet50 pre-trained with MoCo v2 on one million CT scan slices from both Deep
Lesion and The Lung Image Database Consortium (LIDC) as a base for their model. Their
research identified that elderly people and the male population are at more risk. Clinical
variables associated with disease severity included oxygen saturation, respiratory rate,
and diastolic pressure. The proposed model outperformed 11 of the previously published
similar research such as COVID-GRAM, the NEWS2 score, and the 4C mortality score.
The initial training dataset had a total of 1003 patients from Kremlin-Bicêtre hospital and
Institut Gustave Roussy hospital. Almost 506,341 CT images were analyzed where each
patient had almost 517 slices per scan. The proposed severity model also reported high
AUC for 150 left-over patients from these two hospitals. Table 4 summarizes the results
from these two sections.

Table 4. Machine learning approach summarized using other datasets and ensemble techniques.

Paper Year Model Goals Accuracy

[102] 2021 July VGG-16, ResNet50,
and Xception

Grouped results for prediction of COVID-19
using CT scans 98.79%

[103] 2021 June
VGG19, ResNet101,
DenseNet169, and
WideResNet 50-2

Looked at CT and CXRs and compared results
with existing models on 5 datasets 99.75%
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Table 4. Cont.

Paper Year Model Goals Accuracy

[104] 2022 January
VGG19, ResNet50,
DenseNet201, Random
Forest and Extra Trees

Used a Stacking and Weighted Average
Ensemble (WAE) approach with these algorithms
on two separate datasets

96.65% F1

[105] 2021 July
Meta-classifer,
Efficient-Net, PCA, SVM
and Random Forest

Model tested on 8055 CT images and 9544
CXR for prediction of COVID-19 and normal 99% precision

[106] 2021 June Haralick and
SVM feature extractor Binary classification on IKONOS-CT images. 96.99%

[107] 2022 April

Discriminant
Analysis, Ensemble,
Random Forest, and
SVM

Combined ensemble approach with
feature fusion for classification. 96.18%

[108] 2021 November
Using Random Forest
with first and second
order texture analysis.

Four levels of severity of COVID-19 90.95%

[109] 2021 November Random Forest
Combination of ML and Neural Network
algorithms tested using multiple features along
with CT images.

91.38%

[110] 2022 May ResNet-50 and
SVM.

Binary classification of COVID-19 in a hospital
in Brazil. 98.20%

[111] 2022 May
Feature fusion with
DenseNet, ResNet34
and VGG16

Classification of COVID-19, pneumonia,
or normal using a dataset of 6518 CXR images 97.3%

[112] 2022 April VGG16 and SVM Binary classification using Basrah dataset 99% F1

[113] 2022 May CDBN, HRNet and
VGGNet feature fusion Lung segmentation and classification. 95%

[114] 2022 April
Ensemble approach
by fitting multiple
deep learning models

Transfer learning to detect COVID-19 in
1000 CXR images 100% precision

[115] 2021 December Light Gradient
Boosting Predict COVID-19 ARDS, ICU, mortality risk 79% AUC

[116] 2021 December SVM Feature reduction from clinical factors + CT images
using multiple machine learning techniques. 73.7%

[117] 2022 April CNN and RSTN Binary classification of COVID-19 using lung
ultrasound 90.18%

[118] 2021 November Two-Stream Inflated
3D ConvNet (I3D)

Classify three categories of normal, interstitial
abnormalities, and confluent abnormalities using
lung ultrasound

86% F1

[119] 2021 August InceptionV3 Classification of COVID, normal, and pneumonia. 89.1%

[120] 2020 November VB-Net COVID-19 severity detection from CT scan. 91.6%

[121] 2021 January Pretrained EfficientNet
-B0 & ResNet50

COVID-19 severity detection based on
clinical factors and CT scans 76% AUC

5. COVID-19 Prognostic and Longitudinal Models

In this section, we focus on how machine learning was utilized for longitudinal study
in COVID-19 diagnosis, while diagnostic studies are relevant for detecting the importance
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of COVID-19 detection, longitudinal studies are more applicable for real-time monitoring
and prediction. However, these studies present unique challenges as data needs to be
collected over a longer timeframe. Figure 11 shows the number of papers that were
reviewed in this article with significant results for real-world application. Results indicate
a stark contrast to the number of papers reviewed for diagnostic purposes which further
support the claim above.

Figure 11. Papers reviewed in this research presented based on the three primary objectives.

5.1. Prognostic Models

One of the early research surveys on prognostic models was reported in [122]. The
purpose of this paper was to critically review the value of published or preprint reports of
prediction models used for diagnosing potential COVID-19 infected patients, the prognosis
of patients with COVID-19, detecting the risk of people being infected by COVID-19, and
the likelihood of hospital admissions. The significance of research towards the COVID-19
pandemic is to help alleviate the burden on the health care system while providing the
best care for patients through accurate diagnosis and information on prognosis. Predic-
tion models using variables and features to estimate or predict such things could be of
huge assistance to medical staff and help with the strategic allocation of healthcare re-
sources. However, the review also indicated that several models were poorly reported
with optimism, and high risk of bias, and concluded with the prediction models not being
recommended for application in the healthcare systems yet. The paper reviewed a total
of 51 studies that described 66 prediction models. The 66 models can be divided into
three main categories; 47 models were for detecting COVID-19 of which 34 were based
on medical imaging. In total, 16 were prognostic models that were used for predicting
mortality risk, progression to severe disease and length of hospital stay. The remaining
three models were used for predicting hospital admission from pneumonia or other events
in the general population. Methods of machine learning, artificial intelligence, score, deep
learning, and regression were used in the prediction models. A model’s predictive per-
formance was evaluated using measures used in the publications, but a C-index is used
to summarize discrimination (the extent to which predicted risks discriminate between
participants with and without the outcome). Calibration intercept is another metric used
to quantify calibration (the extent to which predicted risks correspond to observed risks).
Nearly half of the predictive models used data on patients with COVID-19 from China.
The rest used data on patients from Singapore, internationally or simulated data. As these
studies mainly used case-control sampling or an unclear method of data collection, the
diagnostic studies might not be representative of the targeted population the models were
being developed for. All features used in the data include medical information regarding
the person, such as personal information (sex, age), medical history and metrics used
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for diagnosing COVID-19. When applied, mortality risk was often too low for high-risk
patients and too high for low-risk patients, resulting in a low calibration score. The models
also had a risk of bias and discrimination with 4 of the 16 having a high C index of 0.9–0.98.

COVID-19 severity assessment (COSA) score was developed in [123] where data
was collected from 198 COVID-19 positive patients at the Insel Hospital Group in Bern
Switzerland. Demographic data, medical history and lab values were used from the patients
to train machine learning models to predict the outcomes of death or ICU admission. They
also used the data from 459 patients who tested positive for COVID-19 at the hospital as
a validation dataset. Researchers developed the COSA score ranging from 0 to 10, with a
higher score meaning a higher probability of a severe outcome with COVID-19. For the lab
tests, thresholds of whether the score points would be added were calculated by looking at
graphs of the parameters against severity using the LOESS function and using Decision
trees. They determined how many score points should be added for a given variable using
logistic regression. The score had an AUROC of 0.934 on the training dataset. When the
score was used to predict severe outcomes on the validation set it received an AUROC of
0.85. In the study, they also used several machine learning models to predict the outcome
of severe hospitalization. Of the machine learning algorithms, support vector machines
performed the best in predicting severe outcomes with an AUROC of 0.96. The median
AUROC scores over the cross-validation folds for the different machine learning models
ranged from 0.86 to 0.96.

In order to predict ICU admissions, the authors in [124] used data from the Mass
General Brigham Healthcare Database which included demographic, data, comorbidities,
and clinical lab data of COVID-19 patients admitted to emergency departments at Mas-
sachusetts General Brigham hospitals. The training dataset consisted of 3597 patients. The
study evaluated 18 machine learning algorithms in predicting the negative outcomes of ICU
admission within five days and mortality within 28 days and found that ensemble-based
models performed the best. Models had mean F1 scores > 0.81, and ICU admission where
all models had F1 scores > 0.83. When predicting ICU admission, the Linear Discrimi-
nant Analysis, MLPClassifier and Logistic Regression models performed similarly to the
ensemble-based models. When predicting mortality, they found GaussianNB and Linear
Discriminant Analysis models performed similarly to the ensemble-based models. Finally,
when predicting ICU, they also found that the ensemble-based models had lower Brier
scores than the other models when predicting ICU admission which indicates more accurate
predictions. When tested on a validation data set, the performance of all models dropped
but the ensemble methods performed the best overall in predicting ICU and mortality with
F1 > 0.4 and PR AUC > 0.5.

A research study in [125] evaluated several machine learning models like the random
forest, extreme gradient boosting and neural networks to predict several outcomes includ-
ing death, ICU admission and the need for mechanical ventilation. This research took place
at a Hospital in Sao Paulo, Brazil. The dataset was formed from 1040 COVID-19 positive
patients using their demographic and clinical lab data. Each algorithm was trained and
tested on the individual outcomes. The authors also investigated a combination outcome
to verify the predictive performances of the model. All models had an AUROC over 0.91
and the models not trained on the predicted outcome were within the 95% confidence
intervals of the results on the ones that were trained. This is significant in that the model is
predicting with high accuracy an outcome it was never trained on. In addition, they found
that Random Forest was the best algorithm when training on the ICU and Ventilation Out-
comes, as well as when training on the ventilation and death outcomes. Extreme Gradient
boosting was the best algorithm when training on ICU and death outcomes.

A prognostic model was developed in [126] that utilized deep CNN with CT scans
along with a gradient boosting model while using clinical data to predict the risk of
deterioration in patients. The model had an AUC score of 0.758 in predicting deterioration
within 96 h for patients. The AI deterioration model used three separate algorithms to
generate predictions. It consisted of two deep neural networks based on Globally-Aware
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Multiple Instance Classifier (GMIC) and the gradient boosting model which takes into
account clinical data. One of the neural networks(COVID-GMIC) and the gradient boosting
model is used to predict the overall risk of deterioration whereas the other neural network
(COVID-GMIC-DRC) predicted how the risk of deterioration will change over time by
calculating deterioration risk curves. These models were trained on 3661 patients. The
combined model approach consistently performed better than the GMIC baseline over
all prediction time windows. The authors also compared their COVID-GMIC model to
radiologists at New York University (NYU) Langon Health and found their model to be
comparable to the radiologist’s in terms of AUC and PR AUC scores. A simplified version
of their model that analyzed chest radiographs was deployed in NYU Langon hospital
which processed the images quickly without the use of GPUs. In total, 375 exams were
collected at the hospital and the model deployed achieved an AUC of 0.717 and a PR AUC
of 0.289.

Research in [127] presented a model that can be used as an early warning system for
the detection of COVID-19 progression within a patient. The model had an optimized
solution for getting a diagnosis for potential treatment, better increasing the allocation of
medical resources, improving emergency response capacity and decreasing mortality rates.
The model used clinical data and sequences of CXR scans. The model could automatically
identify indicators that contributed to the malignant progression of COVID-19 based on
several factors. Other similar models that this model was compared to were based on
linear discriminant analysis, support vector machine and multi-layer perceptron. The
data was obtained using patients from two hospitals in Wuhan. In total, 1040 patients
who had mild COVID-19 pneumonia symptoms upon admission to the hospital were
included in this study. In total, 336 (32.3%) of the patients were considered to have a
malignant progression that was severe, or critical and the remaining 704 (67.7%) patients
were considered noncritical. Data were divided into three different cohorts, where two
of the cohorts were used for the multicenter study and the remaining one was used for
the single-center study. The CT scans (taken before and after being classified to be in
a severe/critical state and after) were all down-sampled to 64 × 64 × 64 image tensors
and the image values clamped to the range [−1250, 250]. They were also put through
data augmentation such as random horizontal flips and rotations. Each CT scan was then
encoded into a 128-dimensional feature vector by 3D ResNet. Clinical data for the patients
were put into a 61-dimensional vector which is processed by a multilayer perceptron with
identity connections. Long Short-Term Memory (LSTM) was used for its high capacity
in modeling large amounts of information and combining clinical features and CT scan
features using concatenation. The LSTM was built by a single-layer network with an
embedding dimension of 189 and 378 hidden features. The output was a 378 × 7 tensor
normalized with a SoftMax layer which can be interpreted as the probability of the patient
being classified as severe/critical. For single center experiments, the model was trained
with a learning rate of 0.05, a batch size of 32 and 100 epochs all using the Adam optimizer.
For multicenter experiments, the model was also trained on an Adam optimized but at a
fixed learning rate of 0.01 for 50 epochs. On comparing seven different models, the authors
reported the highest accuracy for their proposed model at 87.7%.

The purpose of the research in [128] was to introduce a machine learning algorithm to
predict future intubation durations of patients who were diagnosed or suspected to have
COVID-19. The need for this model is due to the scarcity of ventilators and intubation
machines, so physicians in emergency departments and the medical industry can better
allocate resources based on the likelihood of patients needing them for survival. Data
was collected from 4078 COVID-19 patients. The mean age was 58.6 years old. In total,
65.4% of the patients were female and 11.03% were intubated. Of the patients, 24.9%
died. As the model was used for predicting intubations, positive labels for intubation
for patients were placed after a patient was intubated for 72 h from the end of a 24-h
sampling window. Patients who were deceased within the 72-h period after the first 24-h
sampling were also listed with positive labels. Data was sampled to a 30 min resolution
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using feed-forward imputation. In total, 451 patients were intubated for a stay of 6.7–
8.4 days. Using 24-h sampling windows, the prediction status was trained using 72 h
from the end of the sampling window with continuous risk predictions every 12 h from
admission. Comorbidity and time series data were used in a random forest classifier. The
class weight balancing was optimized based on the training and validation datasets. The
model predictions were defined as positive alert prior to intubation, positive alert with
no intubation, no alert with intubation, and no alert with no intubation. Risk assessments
were done with the model every 12 h and newly generated risks were used to update risk
assessments for the patients. Model performance was compared to the ROX index, which is
a ratio for measuring oxygen saturation, respiratory rate, and a fraction of inspired oxygen
to predict progression to intubation. The AUC for the ROX index was 0.64 whereas the
AUC for the model was 0.84, which is significantly better.

A study that evaluates laboratory data and mortality from patients who tested positive
for COVID-19 was reported in [129]. A machine learning model using five serum chemistry
parameters to predict death up to 48 h prior to patient death was developed with the
objective to identify which prognostic serum biomarkers contributed to the greatest risk
of mortality. It also examined the impacts of features that are combined to form different
models and their predictions and showed the values that have the highest impact on
predictions. The dataset was obtained from a total of 398 patients of which 43 patients
were deceased. A total of 26 serum chemistry and blood gas laboratory parameters were
collected from patients who had the values captured within 48 h of their death. From
the 26 values, the multivariate feature imputation handled missing values and identified
potential weights from the features. It then categorized the features into the five most
significant features. The five serum chemistry laboratory parameters that were identified
by logistic regression were c-reactive protein, blood urea nitrogen, serum calcium, serum
albumin, and lactic acid. Using these five main features, an SVM was trained and Shapley
values were calculated for the features used in profiling the influence of the features in the
model’s prediction. The model was then compared to other prognostic models such as
APACHE II, SOFA and CURB65 which have AUCs of 0.84–0.96. The proposed SVM model
had a 91% sensitivity and 91% specificity and an AUC of 0.93 and an AUPRC of 0.76. The
positive predictive value of predicting the risk of mortality in COVID-19 patients at least
48 h before death was 62.5%. It was discovered using the Shapley values that the model
has three main influencing features: C-reactive protein, lactic acid and serum calcium.

A model developed for predicting the outcomes of COVID-19 patients who had cancer-
specific risk factors was presented in [130]. The model predicted the level of oxygen needed
in cancer patients who tested positive for COVID-19 using clinical variables from both
pre- and post-positive diagnoses. The dataset consisted of 348 patients, of which, there
were 71 severe-early and severe-late patients, and the remaining 206 were considered
non-severe. For each patient, 267 clinical variables were extracted. In total, 26 of them were
cancer-related variables, 195 were preexisting diagnosis-related variables, 27 were clinical
laboratory variables, 13 were radiology variables, and 6 were basic patient variables. The
top variables from these categories were identified to reduce overfitting and minimize bias
within the models. Several models were developed with different variable combinations
for getting the highest accuracy. Clinical variables used in the model were those that were
collected before or at the time of the patient being diagnosed with COVID-19. A random
forest ensemble machine learning algorithm, consisting of multiple independent classifiers
was used for training the model. Each classifier was trained using a different subset of
training variables. The random forest model consisted of 500 decision trees and each with
a maximum depth of 10 nodes and a minimum of 1 sample per leaf. The model was
evaluated using 10-fold stratified cross-validation, with 10% of the data being used for the
validation and the remaining 90% used for training. The process of training and validation
was repeated 10 times and each subject was assigned to the test set only once. The model
was able to predict the severity of COVID-19 symptoms in cancer patients well with an
AUC of 70 to 85%. It had a particularly high performance in identifying patients who were
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at high risk and needed oxygen within the next three days. Table 5 summarizes the results
from these prognostic models identified in this research.

Table 5. Machine learning approach summarized for developing prognostic models in COVID-19.

Paper Year Model Goals Accuracy

[122] 2020 April Survey on prognostic models which identified 51 relevant studies

[123] 2021 February Development of COVID-19
severity assessment (COSA) score

Clinical variables used to predict
several COVID-19 outcomes 0.96 AUC

[124] 2021 May Evaluated 18 machine learning
algorithms

Negative outcomes prediction of
ICU admission and mortality rates. >0.80 F1

[125] 2021 February Random forest, extreme gradient
boosting and neural networks

Outcome prediction: Death, ICU
admission and ventilation 0.92 AUC

[126] 2021 May CNN with CT scans and gradient
boosting COVID-GMIC-DRC

Clinical data used to predict the
risk of deterioration 0.786 AUC

[127] 2020 September 3-D ResNet and LSTM Used clinical data and clinical data
and sequences of CXR scans 0.92 AUC

[128] 2020 November Random-forest classifier Predict future intubation durations
of patients 0.84 AUC

[129] 2021 March SVM and logistic regression
Identify serum biomarkers that
contribute to the greatest risk of
mortality.

0.93 AUC

[130] 2021 May Random Forest
Predicting outcomes of COVID-19
patients who had cancer-specific
risk factors

0.829 AUC

5.2. Longitudinal Models

The study conducted in [131] used lung opacification as a quantitative measurement
of CT imaging to monitor COVID-19 disease progression. A commercially available deep
learning model was used for initial CT image analysis and compared to follow-up CT
scans. Patients were split into four different clinical types based on disease severity which
were mild, moderate, severe, and critical. The lung opacification percentages showed
significant differences between the initial clinical types at the baseline CT imaging and
lung opacification percentages increased at the first follow-up. Research in [132] showed
a small case study to examine the use of a deep learning model for CT segmentation
and quantification of lung opacities in COVID-19. A CNN based on U-Net architecture
was used to monitor disease progression in two cases over a period of time. In [133],
the study proposed a deep learning model capable of incorporating longitudinal CXR
imaging for time-to-event analysis. A convolutional LSTM and RNN-LSTM were used
for image feature extraction, which was then concatenated with time-fixed variables. This
vector was then passed through a set of fully connected layers to give a prediction of
risk. A concordance error of 20% was found for the prediction of hospital admission
assessment. The study in [134] used a longitudinal dataset to enhance their deep learning
model for better disease segmentation and progression tracking for COVID-19 patients.
The dataset had CT imaging from 38 patients with multiple CT scans that could be used
for the longitudinal model. Results showed that the proposed longitudinal network had
higher Dice Similarity Coefficients than the static network.

Research in [135] compared a deep learning model used for the quantification of serial
CT imaging with a standard quantitative CT scoring system for the assessment of COVID-
19 patients. A total of 95 patients with 465 serial CT scans were scored and a correlation
was examined between the two different methods. Results showed a Spearman Coefficient
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of 0.920 between the groups thus confirming the potential for disease severity assessment
of COVID-19. In [136], the goal of the study was to develop a deep learning model to
quantify lung infiltrates in COVID-19 CT imaging. In total, 24 patients were used along
with 72 serial CT scans to test the model. The proposed deep learning model was based on
the UNet framework for automatic segmentation, elastic registration between the two serial
scans, identification of affected lung regions, and quantification of disease progression. The
results showed between model detection and manual identification a Dice coefficient of
81%. For the detection of pneumonia regions, the model had a sensitivity of 95% with a
specificity of 84%. The study in [137] developed a deep learning model whose primary
goal was to track the disease progression of COVID-19 through the use of longitudinal CT
imaging. FC-DenseNet56 was used to process slices and a 2.5D model was for the two scan
time points. This was compared to a static version of their model that did not incorporate
previous scan input data. The results showed that the new proposed longitudinal model
had a superior performance for the segmentation of CT scans.

The study in [138] proposed a model that uses Tchebichef moments to develop an
objective quantification assessment for COVID-19 CT imaging. Blur change observations
were captured using the Tchebichef model. Subjective scores were obtained on the CT
imaging from radiologists and compared to the Tchebichef model’s objective score. The
results showed a correlation between the two groups. The study in [139] used machine
learning to assess COVID-19 disease progression based on longitudinal measurements of
eleven clinical features. A total of 144 patients were used along with 3065 readings for
124 different types of measurements over a period of 52 days. These were used to construct
a classifier for COVID-19 severity prediction. The results for the model showed a sensitivity
of 0.70, a specificity of 0.99, a positive predictive value of 0.93, and a negative predictive
value of 0.93.

The study in [140], examined the challenges associated with acquiring training data for
deep learning methods for longitudinal studies. They proposed a new self-supervised learn-
ing method to overcome this in the quantification of COVID-19 infections in CT imaging.
Fully convolutional DenseNet was used as a framework for their longitudinal model and
concatenation of 2D CT slices was used as input. Two different data augmentation meth-
ods were utilized which included context disordering and black patches. An independent
dataset was used for training and validation that consisted of 37 COVID-19 positive patients
while the testing dataset consisted of 25 COVID-19 positive patients with 50 longitudinal
CTs. The longitudinal classification was conducted to predict the presence of ground glass
opacities and consolidation. The results showed Dice scores of 62.3%, 63.5% and 63.6% for
static segmentation with no pretraining, black patches, and context disordering, respec-
tively. For longitudinal segmentation, the Dice scores were 64.4%, 65.2% and 65.9% for
no pretraining, black patches, and context disordering, respectively. Context disordering
performed best for longitudinal classification with an AUC of 0.844 and an accuracy of
0.755. The study in [141] analyzed the longitudinal comparisons between COVID-19 and
mycoplasma pneumonia CT imaging using a deep learning model. The dataset included
10 patients positive for COVID-19 and 13 patients with mycoplasma pneumonia with CT
imaging and clinical information available. The Pneumonia-CT-LKM-PP deep learning
model was deployed for analysis of the number, volume and involvement of lobes for
pulmonary lesions. The changes over time were then assessed in three subsequent CTs.
The results showed no difference in lymphocytes, but C-reactive protein was significantly
higher in those with mycoplasma pneumonia. In terms of CT imaging, the number, volume
and involvement of lobes peaked for COVID-19 around 7–14 days after infection while for
mycoplasma pneumonia there was no peak or declining trend over time.

Researchers in [142] developed multiple deep learning models based on longitudinal
CXR imaging and clinical variables to predict COVID-19 patient mortality using a longitu-
dinal transformer-based network (LTBN). The dataset consisted of 654 COVID-19 patients
with 5645 total CXR images. One institution was used for training the models while the
other institution was used for testing the models and pairwise comparison for performance.
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Five models were evaluated which included longitudinal CXR before ICU admission, lon-
gitudinal CXR during ICU admission, all longitudinal CXR, clinical and laboratory data
at ICU admission, and a combination of longitudinal and clinical variables. One of the
models based on all longitudinal CXR had an AUC of 0.702 and an accuracy of 0.694 while
only clinical data had an AUC of 0.653 and an accuracy of 0.657. A combination of both
longitudinal and clinical data yielded a performance increase to an AUC of 0.727 and an
accuracy of 0.732. The study in [143] examined the progression of COVID-19 severity over
time using longitudinal CT and clinical data. The data set consisted of 119 COVID-19
patients with 341 longitudinal CT scans from the Shanghai Public Health Clinical Center.
This group was subdivided into 90 patients with 273 CT scans who were discharged and
29 patients with 68 CT scans who developed more severe COVID-19 symptoms or died. A
deep learning model called BCL-Net was used to extract features from CT imaging which
utilized four additional multicenter datasets in order to develop the image segmentation
model. An ensemble learning method was used to predict COVID-19 severity based on
CT imaging and clinical features. The combination had an AUC of 0.900 in the five-fold
cross-validation compared to an AUC of 0.857 and 0.844 for CT and clinical variables only,
respectively. The longitudinal model was divided into six groups separated by three days
and had AUCs of 0.688, 0.833, 0.901, 0.942, and 0.946 for a combination of CT and clinical
data which again outperformed both CT and clinical data alone.

This study [144] used a deep learning model for CT image segmentation and prog-
nosis analysis. The dataset that was utilized was from 369 non-contrast CT examinations
that were positive for COVID-19. CT image segmentation was conducted, and specific
biomarkers were extracted for prognostic analysis, which were the total opacity ratio (TOR)
and consolidation ratio (CR) based on network predictions. Three of the five datasets were
selected for prognosis in which both TOR and CR, along with patient demographic and
laboratory test information were used. For Institute-1 and Institute-2, the adverse outcome
was ICU admission or death, while Institute-3 was mechanical ventilation (MV) usage or
death. A generalized linear model was applied for each dataset group and the following
AUC with 95% CI was found. Institute-1 had an AUC value of 0.85(0.77, 0.92), Institute-2
had an AUC value of 0.93(0.87, 0.98) and Institute-3 had an AUC value of 0.86(0.75, 0.94).
The chosen predictors were age, white blood cells, and platelets for two groups, while
oxygen saturation was the chosen predictor for another group. Authors in [145] developed
a convolutional neural network to classify CT images from COVID-19 positive vs. non-
COVID-19 pneumonia. The dataset to train, validate and test the model was obtained from
13 different international institutions. The model was then used on follow-up scans to track
features over time and predict COVID-19 severity over time. The results showed AUCs
and accuracies above 0.80 for 7 of the 13 institutions.

The study in [146] analyzed the prognostic capabilities of radiomics modeling in CT-
based imaging. A dataset of CT scans was curated from 24,478 patients and was reduced to
14,339 patients. A deep learning model was deployed for whole lung segmentation and
107 radiomic features were extracted. A combination of four feature selection algorithms
and seven classifiers was applied to determine which model performed best. Ten different
strategies were then used to test the model’s prediction for patient survivability. The
highest performing combination was ANOVA feature selector with Random Forest classifier
with an AUC, sensitivity and specificity of 0.83, 0.81, and 0.72, respectively, in the CT
+ RT-PCR COVID-19 positive cases. In the ComBat harmonization dataset, the relief
feature selector and random forest classifier were the highest performing with an AUC,
sensitivity and specificity of 0.83, 0.77 and 0.74. Authors in [121] developed a deep learning
model that combined both clinical and biological variables along with CT imaging to
predict COVID-19 severity. The dataset was taken from two French hospitals consisting of
1003 patients. Clinical and biological features were assessed to determine their significance
in severity which included age, sex, oxygen, saturation, diastolic pressure, respiratory rate,
chronic kidney disease, hypertension, lactate dehydrogenase and urea, C-reactive protein,
polynuclear neutrophil and leukocytes. Three significant features were found to have
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predictive value in CT imaging which included crazy-paving lesions and extent of disease,
and peripheral distribution of lesions. An AI-severity score was constructed using age,
sex, oxygen saturation, urea, and platelet counts to supplement the CT imaging prognostic
modeling and was found to outperform 11 previously published mortality scoring systems
with a mean difference in the AUC between 0.05 and 0.16.

The study in [147], deployed a hybrid model approach for mortality prediction that
included a 3D-ResNet10-based deep learning model along with a 3D radiomics model. The
dataset that was utilized was from four institutions that included 400 patients, 346 dis-
charged and 54 deceased that had underlying health conditions such as diabetes, hyperten-
sion and cardiovascular diseases. The hybrid model achieved an AUC value of 0.876 in
the test set and 0.864 for an external test set. Additional prognostic modeling capabilities
were tested through risk stratification ability through classification into a high-risk group
with a mean survival time of 13.5 days or a low-risk group with a mean survival time of
23 days. Authors in [148] utilized a CNN model to assess COVID-19 severity in patients.
The dataset that was used was MosMed which contained 1110 CT scans. A severity score
was used going from 0, 0.25, 0.50, 0.75, and 1.00 which corresponds to absent, mild, moder-
ate, severe and critical COVID-19 infection corresponding to the percentage of pulmonary
parenchymal involvement for each patient. K-Fold cross-validation was used to evaluate
the model’s performance on the five-fold framework. The average R2 score was 0.843 and
a mean absolute error of 0.133. The model was further evaluated for each of the severity
classes excluding critical with a recall score of 94%, 96%, 92% and 88% for absent, mild,
moderate and severe, respectively. Infection localization was also analyzed and precision
of 84.8% with a recall of 75.9% was reported. This study [149] focused on the development
of a deep learning model that can extract features from CT imaging in COVID-19 patients
and assess disease severity. The dataset was from multiple sources that consisted of 349 CT
images from 216 COVID-19 positive patients and 397 COVID-19 negative CT images. The
proposed model for COVID-19 detection achieved an AUC of 95.6% with an accuracy of
89.3% and an F1 score of 88.7%. For the prognostic model, the total accuracy was 47%.

Authors in [150] developed a deep learning model to quantify COVID-19 pulmonary
lesions from CT imaging. The dataset consisted of only one institution with 144 patients
for training and 30 patients for testing the model. Manual ground-truth segmentation was
done to assess the accuracy of the automatic segmentation of the model. The prognostic
value of the model was also assessed using multivariable logistic regression on several
outcomes which include ICU admission, death, hospitalization greater than 10 days, or
oxygen therapy. The results for the segmentation showed a Dice coefficient of 0.75 for
lesion segmentation. Three different models were explored for assessing the prognosis
where model A included clinical variables, model B treated their CT severity score as an
independent variable and model C included the lesion quantification from their segmen-
tation model. The C-statistic outcome was 0.82 for model A, 0.89 for model B, and 0.90
for model C. Authors in [151] developed a deep learning model that combines clinical
variables with CT segmentation for diagnosis and prognosis of COVID-19 patients. The
dataset that was examined included 839 COVID-19 positive patients, 874 patients with viral
pneumonia, and 758 normal patients. Further analysis of their prognostic model was done
on another dataset from Stony Brook University on 288 COVID-19 positive patients. The
first method included using an intensity map projection to create a 2D representation from
the CT imaging. This was compared with the multitask segmentation model that extracted
four different pulmonary lesion types. Combinations of these methods were analyzed on
both datasets for predicting patient mortality. For the first dataset, the top performing
model was a combination of the patient demographics, top three PCA features from the CT
classifier and the segmentation features for an AUC of 0.80. For the Stony Brook dataset,
the same combination model was the highest performing with an AUC score of 0.81.

The study in [152] developed a framework for the detection of COVID-19 and predic-
tion of ICU admission for patients. The method involves two phases called Early Diagnostic
Phase (EDP) and Early Prognostic Phase (EPP). The dataset that was used contained 159
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COVID-19 positive patients and 376 normal patient CT image. For the EDP, seven different
CNNs were trained on the dataset, and data augmentation techniques along with genera-
tive adversarial networks were used to prevent overfitting. The highest performing model
with no augmentation was EfficientNetB7 with an accuracy of 99.61%. With augmentation,
the highest performing models were MobileNetV1 and VGG-16 with 99.57% and 99.14%
respectively. For the EPP, lab results were extracted from patients and 25 different machine
learning algorithms were applied to these variables. The highest performing algorithms
were Ensemble Bagged Trees and Tree (Fine, Medium, and Coarse) with 98.70% and 97.40%
respectively. The study in [116] used machine learning algorithms to analyze clinical and
laboratory variables along with a CT severity score to predict patient prognosis for COVID-
19. The primary goal was to determine the role that this CT severity score has for prognostic
value in patient assessment. The dataset included 57 COVID-19 positive patients and
21 clinical and laboratory features were selected. The top 10 predictors were selected which
included neutrophil-lymphocyte ratio, fever, prothrombin time, procalcitonin, cough, fibrin
degradation products, hemoglobin, differential neutrophil count, differential lymphocyte
count, and ferritin. Five features were manually chosen to train the models with the best
performance coming from linear SVM with an AUC of 0.69 and 73.7% accuracy.

This study [153] used a deep learning model to extract features from CT images
to predict specific outcomes for COVID-19 patients. Two datasets were used for deep
learning feature extraction which included the publicly available data from the Lung CT
Segmentation challenge on the Cancer Imaging Archive and the National Health Service
UK High-Resolution CT images. The dataset that was used to test patient outcomes was
from ChelWest hospitals which included 2710 patients. Nine different image features were
extracted along with using patient age and sex which were used as inputs for machine
learning classifiers. Logistic regression, SVM, random forest, ada-boost, and XGboost were
all used to model patient outcomes. The results showed that SVM and random forest
performed best for predicting ICU admission with an AUC of 0.77. Logistic regression
performed best for predicting mortality with an AUC of 0.73. The study in [154] examined
different machine learning techniques to predict COVID-19 severity. The dataset consisted
of 287 patients of which 36.6% were classified as severe and 63.4% as non-severe based on a
previous literature’s severity assessment. In total, 23 features were selected including one
clinical, one CT, and 21 laboratories which were then used in three models that included a
support vector machine, random forest, and logistic regression. Random forest performed
the best with an AUC of 0.97 for predicting COVID-19 severity compared to 0.948 for
SVM and 0.928 for logistic regression. Feature importance was further analyzed and the
top three were reported to be the CT feature, neutrophil to lymphocyte ratio and lactate
dehydrogenase. The study in [155] developed a machine learning model that utilized
clinical variables along with CT features to predict the need for mechanical ventilation
in COVID-19 patients. The dataset that was used to train their segmentation models
was the COVID-19 Lung CT Lesion Segmentation challenge. CT Lung segmentation was
performed with Bi-directional Conv-LSTM UNet with Densely Connected Convolutions
and was measured with the dice coefficient. The dataset that was used for developing the
predictive model was from a hospital institution in India that consisted of 302 COVID-19
patients. The two machine learning techniques that were utilized were random forest
and XGboost. Three models were created that included clinical parameters alone, clinical
parameters with manually derived CT severity scores from a radiologist, and clinical
parameters from automated segmentation with the results showing AUC scores of 0.87,
0.89, and 0.91, respectively.

In [156], the authors, used a CNN with autoencoders (AE) for data augmentation to
predict COVID-19 patient survival from clinical information and CT images. The dataset
contained 320 patients of which 300 were recovered and 20 were deceased from the Tehran
Omid hospital. The imbalanced dataset utilized the autoencoder to build reconstructed
deceased samples. The results showed that the CNN-AE had an accuracy of 96.05% which
was higher than the CNN alone at 92.49%. This was compared with previous existing mortality
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prediction models that were trained on the same dataset. Research in [157], developed a deep
learning convolutional neural network to accurately predict COVID-19 infection. The model
included three convolutional layers, three max-pooling layers, and one fully connected layer
with an RMSprop optimizer to analyze CT imaging. Data preprocessing was conducted
through image resizing, image normalization, and data augmentation. The dataset that was
utilized was an open source COVID-19 dataset from Kaggle that contained 1252 COVID-19
positive CT images and 1240 normal CT images. The proposed model had a precision score of
0.96, recall of 0.96, and F1 score of 0.96 which outperformed other pretrained models such as
VGG-16, DenseNet121, etc. The accuracy of the model was 95.78%, with a sensitivity of 96%
and a specificity of 95.56%.

Another longitudinal study took place at Charité University Hospital, Berlin, Ger-
many [158] in which 86 different diagnostic variables over 687 sample points were collected
from 139 COVID-19 patients. The authors used machine learning in conjunction with their
data order to determine therapeutic needs for patients and to predict recovery time as well
as the risk of deterioration for patients. The algorithm was based on gradient-boosted trees
to build a predictive model which leveraged proteome and other clinical data to predict
whether a ventilator would be necessary for treatment. The models that incorporated
the proteomic and clinical data had much higher predictive scores (AUROC = 0.99) than
predictive models based on typical COVID-19 risk factors or molecular predictors. To test
the model further, it was deployed on an independent sample of patients from another
hospital with COVID-19. When applied to these patients, the model also performed well
in predicting (AUROC = 0.97) the need for ventilation. The machine learning models also
predicted the WHO severity grade based on proteomic and clinical data. The research team
was also able to identify 11 proteins and nine clinical lab markers as predictors (FDR < 0.05)
that the patient’s condition would decline, as well as proteins and other variables that were
predictive of the remaining time in the hospital. The authors also developed a machine
learning model that predicted WHO grade severity based just on the first time point data.
They found that the predictions from this model correlated with the time remaining in the
hospital. A summary of this section is shown in Table 6.

Table 6. Machine learning approach summarized for developing longitudinal models in COVID-19.

Paper Year Model Goals Accuracy

[131] 2020 March QCT-PLO Used lung opacification-based segmentation
for monitor COVID-19 progression.

-
[132] 2020 March UNet -

[133] 2021 August LSTM and
RNN-LSTM Time-to-event analysis using CXR data. 20% Conc.

Error

[134] 2021 September Hybrid UNet Used longitudinal segmentation to identify
COVID-19 progression from 38 patients CT scans. 0.837 Dice

[135] 2021 January COVID-Lesion
Net

Serial CT for COVID-19 scoring system to
identify disease severity

0.920
Spearman

[136] 2020 August UNet Assessment of serial CT scans for disease
progression and pneumonitis region identification 0.81 Dice

[137] 2021 October FC-DenseNet56 Disease progression and interactive
segmentation of lungs for COVID-19 0.59 Dice

[138] 2021 April Tchebichef
moments (TM)

COVID-19 progression monitoring using CT blur
correction with TM

0.7983
Spearman

[139] 2021 June SVM Severity prediction using time-series CT imaging +
clinical variables from 841 patients 0.89 AUC
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Table 6. Cont.

Paper Year Model Goals Accuracy

[140] 2022 March DenseNet
Applied image augmentation techniques
like context disordering for longitudinal
classification of CT images

0.844 AUC

[141] 2022 February Pneumonia-CT-
LKM-PP

Identify number of lobes that had pulmonary
lesions from 10 patients -

[142] 2022 March LTBN Longitudinal CXRs used to assess patient mortality
from 654 patients 0.727 AUC

[143] 2022 April BCL-Net and
BC-LSTM Module

Extraction of CT features from longitudinal scans
followed by clinical data fusion. 0.900 AUC

[144] 2021 February Dense 3D network with
GLM + Feature selection

Total opacity ratio (TOR) and consolidation ratio (CR)
for CT and HER for ICU admission 0.93 AUC

[145] 2021 January Deep COVID
DeteCT

3D deep learning classification across 13 institutions
to track disease progression 97.4%

[146] 2022 March
Deep learning with
feature selection and
texture analysis

Lung segmentation using 107 intensity and texture
features from 14,339 CT patients 0.83 AUC

[121] 2021 January
Deep learning with
clinical feature
correlation

Used multiple features with CT for COVID-19
disease progression in two French hospitals 0.88 AUC

[147] 2021 April 3D-ResNet10 Risk stratification for 400 patients in four institutions 0.876 AUC

[148] 2022 March Cross-channel attention
based deep learning

Diagnosing criticality of patients medical condition
from CT scans. CNN has a multi-stage analyzer 0.84 R2

[149] 2022 March Siamese Neural
Network (SNN)

Severity scores identified using bounding boxes
and used for providing future clinical assistance 87.6%

[150] 2022 March UNet Used LDCT for predicting death,
hospitalization, ICU, and oxygen therapy 0.75 Dice

[151] 2022 February InceptionResnetV2
+ PCA

Prediction of mortality using CT data with clinical
variables using CC-CCII dataset 0.80 AUC

[152] 2022 January EfcientNetB7
+ GAN variants

Early detection and early prognosis using CT
and lab data from 15 patients 98.7%

[116] 2021 December Decision tree, SVM, KNN
and ensemble classifiers

ML models for prognostic study using
CT scans and 21 clinical features of 1431 patients 73.7%

[153] 2022 May
SVM, random
forest, and logistic
regression

ICU admission and mortality prediction from two
datasets and one hospital 0.77 AUC

[154] 2022 February SVM COVID-19 severity prediction from 287 patients 0.97 AUC

[155] 2022 January

Bi-directional
Conv-LSTM UNet,
Random forest and
XGboost

Estimating the need for mechanical ventilation
in COVID-19 patients 0.91 AUC

[156] 2021 July CNN-AE Autoencoders used to address data imbalance and
predict patient survival from 320 patients. 96.05%

[157] 2021 February Covid CT-net Used a light weight CNN for COVID-19 prognosis 95.78%

[158] 2021 June
Linear regression,
XGBoost 1.2.0 and
MaxLFQ

Predict therapeutic needs, recovery time and risk of
deterioration from 86 diagnostic variables. 0.99 AUC
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6. Conclusions

In this review paper, a summary of research pertaining to COVID-19 diagnosis has
been presented with the goal of assessing the importance of machine learning in this domain.
Several open-source datasets used for analysis were also presented which mostly consisted
of CT and CXR. It is evident that machine learning algorithms especially deep learning
has made a tremendous contribution to all aspects of patient outcome. Furthermore, in the
majority of the papers, CT imaging proved to be extremely crucial in the decision-making
process. As with preceding review papers, there was also a concern about the applicability
of some diagnostic models due to the complexity of the proposed approach and some
research provided counter-intuitive evidence of light-weight models being as accurate
in diagnosing COVID-19. Several research papers presenting multiple deep learning
models appeared to be focused on model comparison lacking the feasibility of deployment
in the form of a web-based API to facilitate information exchange. Prognostic factors
identified in longitudinal studies were focused mostly on hospitals and institutions. As
a result, they were very crucial to enhancing patient care and managing already stressed
hospital resources. These studies mostly presented simpler machine learning models with
significant accuracy. However, the majority of the datasets used in their research were not
freely available due to restrictions unlike CT scans used for diagnostic purposes. There was
no centralized repository to rapidly share developed models with other hospitals. COVID-
19 has identified the need for an integrated infrastructure that not only allows clinicians
to share research findings but also provides an avenue to share their deployed machine
learning model, while hospital infrastructure may vary significantly, patient bio-markers
are similar making this globalized solution achievable.
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