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ABSTRACT Although microbial systems are well suited for studying concepts in
ecological theory, little is known about how microbial communities respond to long-
term periodic perturbations beyond diel oscillations. Taking advantage of an ongo-
ing microcosm experiment, we studied how methanotrophic microbial communities
adapted to disturbances in energy input over a 20-day cycle period. Sequencing of
bacterial 16S rRNA genes together with quantification of microbial abundance and
ecosystem function were used to explore the long-term dynamics (510 days) of
methanotrophic communities under continuous versus cyclic chemical energy sup-
ply. We observed that microbial communities appeared inherently well adapted to
disturbances in energy input and that changes in community structure in both treat-
ments were more dependent on internal dynamics than on external forcing. The re-
sults also showed that the rare biosphere was critical to seeding the internal com-
munity dynamics, perhaps due to cross-feeding or other strategies. We conclude
that in our experimental system, internal feedbacks were more important than exter-
nal drivers in shaping the community dynamics over time, suggesting that ecosys-
tems can maintain their function despite inherently unstable community dynamics.

IMPORTANCE Within the broader ecological context, biological communities are
often viewed as stable and as only experiencing succession or replacement when
subject to external perturbations, such as changes in food availability or the intro-
duction of exotic species. Our findings indicate that microbial communities can ex-
hibit strong internal dynamics that may be more important in shaping community
succession than external drivers. Dynamic “unstable” communities may be important
for ecosystem functional stability, with rare organisms playing an important role in
community restructuring. Understanding the mechanisms responsible for internal
community dynamics will certainly be required for understanding and manipulating
microbiomes in both host-associated and natural ecosystems.
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Microorganisms host a diverse repertoire of temporal strategies to maximize their
productivity under a variety of environmental settings that undergo periodic as

well as aperiodic change. Some strategies, such as circadian rhythms, require explicit
molecular clocks for proper execution (1, 2), but clocks may also be present in
nonphotosynthetic prokaryotes (3, 4). Bacteria can also exhibit anticipatory control (5),
in which they respond to external cues, such as changes in temperature and oxygen
concentration (6), to predict and adapt to environmental change before it occurs.
Bacteria that anticipate environmental change have an obvious fitness advantage, and
anticipatory strategies may stabilize ecosystems against perturbations (7, 8). Temporal
strategies that do not rely on internal clocks include resource storage (9), hibernation
and dormancy (10), and persister cells (11). Strategies organized over space can also
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increase fitness, such as diel vertical migration (12), luxury uptake (13), chemotaxis (14),
and spatially executed redox reactions via cell gliding (15) or bacterial cables (16).

Temporal and spatial strategies have largely been studied in the context of an
individual species’ or population’s fitness, even though such strategies can impart
signatures to entire communities (17, 18), alter resource gradients that affect commu-
nity function (19), and operate over a wide spectrum of scales (20). Our previous
theoretical work based on nonequilibrium thermodynamics (21, 22) indicates that
microbial systems capable of implementing temporal strategies (either actively or
passively) can consume more food (i.e., energy) than communities that lack such
strategies (23). Likewise, communities that can coordinate function over space can
increase food acquisition relative to that of noncooperative communities (24). Since
food acquired by a microorganism is ultimately respired by that organism or by a
predator that eats it, an ecosystem that is near steady state can be characterized by the
rate at which food (i.e., energy) is respired (i.e., energy dissipation). By accounting for
microbial strategies that operate over time and space, the thermodynamic analysis
provides a distinction between living and nonliving systems. Namely, nonliving systems
maximize instantaneous energy dissipation, like a rock rolling down a hill, while the
emergent behavior of living systems appears to maximize free energy dissipation when
averaged over time and space due to spatial and temporal strategies that have been
acquired by evolution. Temporal strategies allow living systems under certain condi-
tions to outperform inanimate processes, but both appear to follow the same objective;
they facilitate a systems race toward equilibrium (25).

To test our thermodynamic-based modeling approach and to explore how diverse
microbial communities respond to temporally varying environments, we implemented
a long-term microcosm experiment consisting of two control chemostats that received
continuous input of energy in the form of methane and air and two treatment
chemostats that received periodic energy inputs by cycling the feed gas between
methane plus air and just air. The modeling work based on results from this experi-
mental system was previously described in Vallino et al. (26), and the results indicated
that temporal strategies over time scales equal to or longer than the cycle period
resulted in greater energy. Furthermore, simulations using time scales shorter than the
cycle period were unable to match experimental observations. However, this thermo-
dynamic approach says little about the finer-scale community organization that gives
rise to the larger-scale processes of energy dissipation or about the nature of the
internal mechanisms that stabilize communities against external perturbations. These
subjects are associated with long-standing questions in ecology on the nature of
community structure versus ecosystem function and stability (27).

As recently reviewed by Song et al. (28), as well as by Shade et al. (29), there are
numerous definitions associated with the concept of stability that are derived from the
fields of physics and engineering that are used in ecology. However, even within a
single ecosystem, it is possible to have subsystems that appear unstable, while higher-
level components exhibit stability (30). Even the notion of stability itself is dependent
on the time scale over which a system is observed (31). For example, an unstable
system with a millennial time scale may appear stable if observed for only a year, but
an unstable system with a monthly time scale will be perceived as unstable if observed
for a year. The development of molecular tools has greatly improved observation of
microbial systems, and several studies have now shown that microbial populations
appear unstable, including populations in methanogenic communities (32), phyto-
plankton communities (33, 34), marine sediments (35), and nitrifying bioreactors (36,
37). Many of these systems exhibited functional stability even with unstable community
dynamics, while in others, ecosystem function responded to community alterations.
Functional complementarity (38, 39) can explain changes in the community composi-
tion for systems where external drivers were not or could not be held constant, but it
is still uncertain what drives changes in community composition when external drivers
are constant (40, 41).

Fernandez-Gonzalez et al.

Volume 1 Issue 5 e00117-16 msystems.asm.org 2

msystems.asm.org


To date, there has been limited research on the importance of internal dynamics
relative to external drivers for changes in community composition, but the use of
microbial microcosm experiments is well suited to address these questions, which can
be challenging to address in field studies (42, 43). In this work, we used 16S rRNA gene
sequencing together with quantification of microbial abundance and ecosystem func-
tion to explore the long-term dynamics (510 days) of a methanotrophic microbial
community under both continuous and periodic energy inputs. The results suggest that
microbial communities are inherently well adapted to disturbances in energy input,
with the rare biosphere being critical to seeding internal community dynamics.

RESULTS
Ecosystem function. The experiment was divided into four phases. Initially, the
methane-and-air mixture was kept constant during phases I and II. In phases III and IV,
the chemostats were separated into control and cycled treatments, and while the
control received a constant energy input, the cycled chemostats were subjected to
cycling inputs of methane-and-air and air-only mixtures with a 20-day periodicity. To
assess changes in ecosystem function across treatments, we characterized ecosystem
processes by measuring the NH4

�, NO3
�, and NO2

� concentrations (hereinafter re-
ferred to as NO3), pH, prokaryote and eukaryote cell densities (Fig. 1), CH4 and O2

consumption and CO2 production rates (Fig. 2), total dissolved nitrogen (TDN), dis-
solved organic carbon (DOC) and nitrogen (DON), and particulate organic carbon (POC)

FIG 1 Environmental variables in chemostats and cell concentrations during phases II, III, and IV. (a) Nitrate
and nitrite (NO3

�), (b) ammonium (NH4
�), (c) pH, and (d) prokaryotic and eukaryotic cell densities. Grey dashed

lines indicate the start of phases II, III, and IV. Grey plus signs at the top of the panels indicate the days of
microbial diversity measurements.
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and nitrogen (PON) (see Fig. S1 in the supplemental material). Gas consumption and
production rates were calculated from differences in input and output gas concentra-
tions (see Fig. S2) and flow rate.

Overall, most environmental variables in the cycled chemostats exhibited the influ-
ence of periodic energy inputs during experimental phases III and IV in the cycled
chemostats, during which the measured values during CH4-on periods were similar to
those in the control chemostats. For instance, nitrate and ammonia accumulated
during the CH4-off periods, but when CH4 was on, their values were drawn down
almost to 0 �M, close to the control measurements (Fig. 1a and b). In the last 100 days
of the experiment, periodic accumulation of ammonium was not observed even
though no changes in external drivers were made in phase IV (Fig. 1b).

The decreases in chemostat pH over phases I, II, and III (Fig. 1c) were likely caused
by the increase in carbon dioxide concentration (see Fig. S2 in the supplemental
material) and decrease in nitrate in the feed medium (Fig. 1a). In order to minimize
losses to microbial community diversity, a 10 mM, pH 6.5 phosphate buffer was added
to the feed medium on day 273, which defines the start of phase IV of the experiment.
All other variables, except for the CH4 feed in cycled chemostats, were maintained
constant during phase IV.

FIG 2 Gas production or consumption rates calculated from input and output gas concentrations and flow rate. (a)
Methane consumption, (b) carbon dioxide production, and (c) oxygen consumption. Grey dashed lines indicate the start
of phases II, III, and IV. Grey plus signs at the top of the panels indicate the days of microbial diversity measurements.
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The eukaryotic and prokaryotic relative cell abundances exhibited nearly parallel
behavior over the course of the entire experiment. Both cell densities fell when the pH
decreased in phase III but later recovered during the first 150 days of phase IV (Fig. 1d).
Biomass was present in the liquid and in biofilms inside all chemostats. To account for
variation in biomass that could be influenced by biofilm production or sedimentation,
samples were only taken after thorough homogenization of the chemostats via mixing
(see Materials and Methods). Comparing the values across treatments, no significant
loss of biomass was observed in the cycled chemostats even though they only received
half of the energy input that the controls did in phases III and IV, where microbial cell
abundances were similar within and between treatments.

Gas consumption and production rates in the control chemostats showed some
long-term minor fluctuations and a tendency to increase or decrease slowly in phases
III and IV but otherwise showed rather stable metabolic function (Fig. 2). In phases III
and IV, the gas consumption and production rates in cycled chemostats were similar,
although slightly lower or higher, to those observed in the controls during CH4-on
periods. In addition, the recovery of CO2 gas production rates at the beginning of
CH4-on periods was lagged compared to the CH4 and O2 rates due to carbonate
chemistry dynamics, which was not accounted for in the rate calculations. The changes
in gas rates observed during phases I and II were largely due to changes in operating
conditions to prepare the systems for gas-cycling phases.

Effects of energy input cycling on community richness and composition. A
total of 511,629 pyrosequencing sequences (7,984 to 17,288 per sample) spanning the
V4-V6 region of the 16S rRNA bacterial gene were clustered into 18,610 operational
taxonomic units (OTUs) at a 0.96 similarity cutoff (2,455 to 169 per sample). Overall, the
library coverage indicated that three-quarters of the diversity was captured (see
Table S1a in the supplemental material). We did not observe any treatment effect on
bacterial richness or evenness estimations, although the values varied through time
(see Table S1a). In particular, richness decreased and community unevenness increased
in all chemostats when pH levels dropped to acidic values from late phase II until the
beginning of phase IV (see Table S1a).

The Morisita-Horn (MH) dissimilarity index showed that communities shifted their
composition throughout the experiment with no indication of greater community
similarity within treatments than between treatments (Fig. 3). A permutational multi-

FIG 3 Community dissimilarities. Nonmetric multidimensional scaling (NMDS) ordination of the
Morisita-Horn dissimilarity matrix among all bacterial communities. Samples from the same chemo-
stat are connected with arrows indicating the timeline. Labels correspond to sampling times (days).
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variate analysis of variance (PERMANOVA) test was used to examine whether bacterial
community compositions within and between treatments were statistically different
while accounting for the temporal trend. During phase II when the chemostats were
being mixed, the communities changed in composition similarly, regardless of treat-
ment (Fig. 3; see also Table S1b in the supplemental material). During both cycling
phases, phases III and IV, the bacterial community composition was more dynamic and
communities changed less similarly over time (overall test, F � 1.635, P � 0.196) (Fig. 3;
see also Table S1b). The dynamic turnover of the microbial community was quite
apparent when community dissimilarity between successive time points was examined
in each chemostat separately (see Fig. S3). Except for the start (days 62 to 104) and
during the low-pH phase III (days 208 to 269), communities differed considerably
between two successive time points regardless of treatment.

The communities were dominated by the phylum Proteobacteria, which averaged
70.75 and 71.47% of the community in cycled and control chemostats, respectively (see
Fig. S4 in the supplemental material). The most abundant class within the phylum was
Gammaproteobacteria (44.90% in cycled chemostats and 45.94% in control chemo-
stats), although classes Alphaproteobacteria (9.76 and 11.80%) and Betaproteobacteria
(13.90 and 12.10%) and phyla Bacteroidetes (8.14 and 8.28%) and Verrucomicrobia (4.52
and 3.61%) represented substantial percentages of the communities as well.

The OTUs were divided into two groups: dominant OTUs, defined as those with
abundances equal to or over 1% in any of the samples analyzed in any chemostat, and
rare OTUs, whose abundances were always below 1%. The 150 dominant OTUs repre-
sented over 90% of the community at almost all times across all chemostats (Fig. 4; see
also Table S2 in the supplemental material). Most of the dominant OTUs (83%) were
part of the community in all 4 chemostats (see Fig. S5). Linear discriminant analysis
(LDA) effect size (LEfSe) was carried out between treatments for the cycling phases,
phases III and IV, and found only 18 dominant OTUs (12%), which were distributed
differentially across control and cycled treatments (see Fig. S6). In addition, microbial
co-occurrence assemblage patterns were examined using network inference to infer

FIG 4 Cumulative relative abundances of dominant OTUs and rare OTUs (dark grey). For dominant OTUs, the
relative abundances of one-carbon-degrading genera are indicated with colors other than grey. The “Other”
category includes the rest of the dominant OTUs; specifically, either the remaining 66 Bacteria genera (see
Table S2 in the supplemental material) or OTUs with unknown taxonomic classification. See the text for
definitions of dominant and rare OTUs.
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associations between dominant OTUs and environmental variables. No significant
correlations (Spearman’s � 0.6; P � 0.05) were found between OTUs and environmen-
tal variables. Only two large (over 5 nodes) clusters of co-occurring dominant OTUs
were found, corresponding to OTUs that were abundant during phase II and phase IV,
respectively (see Fig. S7).

One-carbon-degrading bacteria and the rare biosphere. One-carbon (C1)-
degrading bacteria, both methanotrophs and methanol-degrading bacteria (hereinafter
referred to as methylotrophs), were a large proportion of the community at most times
(Fig. 4). These metabolic types were distributed across diverse genera, mostly within the
type I methanotrophs of class Gammaproteobacteria (i.e., Methylosoma and Methylo-
bacter). In addition, Crenothrix and putative type II methanotrophs from class Alpha-
proteobacteria (Methylocystaceae and Beijerinkckiaceae groups) were also present. Other
C1 bacteria included putative methylotrophs from different families within class Beta-
proteobacteria, including Methylophilaceae (Methylophilus and Methylobacillus), but also
Bradyrhizobiaceae (Bradyrhizobium), Hyphomicrobiaceae (Hyphomicrobium and Ancylo-
bacter), and Comamonadaceae (Methylibium) (Fig. 4).

A succession of different OTUs belonging to genera in both methanotrophic and
methylotrophic groups was observed over the course of the experiment (Fig. 4 and 5).
The C1-degrading-genus successions were very similar across all chemostats during
experiment phases II and III, but some divergence was observed during pH-controlled
phase IV. Within the methanotrophs, we observed an initial dominance of Methylomo-
nas (mainly OTUs 13610 and 17899) during I and II, which was replaced by Methylosoma
(OTU 4859) when the pH was low at the end of phase II and phase III (Fig. 4 and 5).
During phase IV, the chemostats were characterized by a more diverse and even
distribution of methanotrophs, although overall, Methylobacter was the most dominant
genus. This phase is also characterized by a small increase in type II methanotrophs and
the appearance of Crenothrix (Fig. 4). The methylotrophs also changed with time. They
were initially stimulated during early phase II, particularly Methylophilus (mainly OTU
15599), which was the most abundant methylotrophic genus, and then replaced by
Methylobacillus under acidic conditions (Fig. 4 and 5). Later, in phase IV, the emergence
of Ancylobacter and unclassified Methylophilaceae OTUs reconfigured the assembly of
methylotrophs.

In all chemostats, each one of the abundant OTUs was also a member of the rare
biosphere at certain times during the course of the experiment (Fig. 5). In particular, the
changes in relative abundances were very large for the group of OTUs that represented
more than 5% of the community in any of the samples analyzed (Fig. 5). For instance,
Methylosoma difficile_4859 was a member of the rare biosphere on day 62 (�0.01%) in
all chemostats, and at day 269, it represented over 40% of gene sequences (64, 67, 41,
and 41% in chemostats cycled 1, cycled 2, control 1, and control 2, respectively). By day
399, it was back to �0.01% in all cases (Fig. 5). Other methanotrophs that were rare
bacteria at the beginning of phase II, like Methylobacter_13879 (�0.01% in cycled and
8 � 10�3% in control chemostats), were at relatively high abundances at different times
(50% at day 409 in cycled 1, 24% at day 309 in cycled 2, 26% at day 409 in control 1,
and 81% at day 399 in control 2). Later, this OTU behaved differently depending on the
chemostat: in some cases, Methylobacter_13879 stayed an abundant OTU for the rest of
the experiment but exhibited large changes in relative abundance over short periods
of time (9, 7, and 18% at days 409, 499, and 509, respectively, in control 2 and 4, 50, 2,
and 20% at days 399, 409, 499, and 509, respectively, in cycled 1). In other cases, it
dropped to the rare biosphere for almost or all the rest of the experiment (8 � 10�3%,
1%, 3 � 10�2%, and 0.4% at days 399, 409, 499, and 509 in cycled 2 and 0% at days
499 and 509 in control 1) (Fig. 5).

These types of changes were also observed for other highly abundant members of
the community that are not C1 bacteria. In particular, Aquicella siphonis_4769 was a rare
bacterium (0% in all chemostats from day 60 to 309) until day 399, when it represented
47, 6, and 37% of the community in control 1, control 2, and cycled 2, respectively.
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FIG 5 Temporal dynamics of highly dominant OTUs. Semilogarithmic plot of temporal changes in relative abundances of dominant OTUs whose
relative abundances were larger than 5% in any of the samples in control (a, control 1; b, control 2) and cycled (c, cycled 1; d, cycled 2) microcosms.
Solid lines identify the seven OTUs that were found at levels of 5% or greater in all four chemostats. Names correspond to the taxonomy and number
of each OTU. Note the break in the y axis scales to highlight the importance of the rare biosphere. Vertical grey dashed lines indicate the start of
phases II, III, and IV.
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Later, A. siphonis_4769 progressively dropped to the rare biosphere again in cycled 2 (3,
1, and 0.01% at days 409, 499, and 509, respectively) but bounced back and forth in
both control chemostats (18 to 4% in control 1 and 33 to 0.3% in control 2). In contrast,
A. siphonis_4769 remained rare (0.1 to 9 � 10�3%) at all times in cycled 1.

DISCUSSION

We used natural methanotrophic microbial microcosms to study how microbial com-
munities respond to periodic inputs of energy by cycling inputs of methane and air
mixtures. Overall, both the control and cycled chemostats were functionally stable.
Both the nitrate and ammonium concentrations increased relative to the concentra-
tions in the controls when methane was turned off, but the bacterial and protist cell
counts were relatively stable during the cycling phases, phases III and IV, and there was
no significant difference in cell counts between the control and cycled chemostats.
Similarly, the methane oxidation rates in the control chemostats during phases III and
IV were relatively constant, and while the methane oxidation rates in the cycled
chemostats varied as a function of the gas inputs, there were no significant changes
during phase IV. However, the bacterial community composition changed in both the
control and cycled chemostats during all phases of the experiment. The community
dynamics in the control chemostats were particularly striking during phase IV, given
that the external drivers were maintained constant during that phase, and yet, the
communities continued to show replacement of the dominant methanotroph at almost
every time point. The cycled chemostats showed replacement of the dominant metha-
notroph at almost every sample point as well. In both control and cycled chemostats,
the dominant OTU often originated from the rare biosphere (44) or was even unde-
tected in the preceding sample.

Perhaps the most interesting result from this long-term perturbation experiment
was the similarity in the community dynamics between the control and cycled che-
mostats. We expected that the cycled chemostats would develop a dramatically
different microbial community that would be better adapted to cyclic energy inputs,
but the results did not support this. Instead, we observed similarity in community
composition succession between the control and cycled chemostats. Considering only
the most abundant OTU at each sample point, seven of them were detected across all
four chemostats, and they were the most abundant OTUs in 29 of the 40 samples
examined. The speed at which the most abundant OTUs were replaced was most
evident in the samples taken over a cycle period at days 399 (methane on), 409
(methane off), 499 (methane on), and 509 (methane off). It may not be surprising that
the most abundant OTU was replaced between methane on (399 and 499) and
methane off (409 and 509) in the cycled chemostats, but the switching also occurred
in the controls even though the methane input was constant. Furthermore, the
succession in dominance was opposite in the two control chemostats at day 399 and
day 409, where dominance changed from OTU-4769 to OTU-13879 in control 1 and vice
versa in control 2. Both of these OTUs dominated in the cycled chemostats as well, with
OTU-13879 dominating at the end of methane off (day 409) and OTU-4769 dominating
at the end of methane on (day 399). From these results, it appears that the internal
feedbacks driving community dynamics were more important for shaping the commu-
nity composition than the external drivers. Even though the cycled chemostats were
significantly perturbed by periodic methane input, this external forcing was of minor
importance for community dynamics and composition when referenced to the control
chemostats.

Our observations are similar to those of others. Konopka et al. (45) studied 16
replicate microcosms subject to discrete pulses of gelatin every day and every 7 days
and observed very dynamic bacterial communities, although they observed greater
variability between their replicates than we did. Similar perturbation studies (46, 47)
concluded that internal dynamics seemed to dominate and external forcing was not a
strong selective pressure, which is consistent with our findings. Analysis of natural
marine communities during a phytoplankton bloom also displayed rapid replacement
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of the dominant organisms and the importance of internal feedbacks in shaping
communities (34). In pond microcosms, nutrient pulsing even stabilized ecosystem
properties relative to those of nonpulsed controls via compensatory dynamics (48).

The lack of importance of external drivers in community dynamics implies that the
microbial communities were inherently well adapted to periodic inputs of energy. If the
microbial communities were not well adapted to interruptions in energy availability,
then we would expect that the methane oxidation rates in the cycled chemostats
would increase over time as the community adapted and evolved to the periodic
availability of methane. This selection pressure, which was not present in the controls,
would be expected to select for those organisms with enhanced resource storage
capabilities that would allow growth and maintenance when methane was absent (9).
Differential selection between chemostat treatments would drive changes in commu-
nity composition and increases in methane oxidation rate over time. But neither of
these outcomes was observed, which leads us to conclude that the communities were
already well adapted to interruptions in energy input; there was little differential
selection between chemostats because effective temporal strategies were already
present in both treatments. Our previous modeling work (26) also supports the
conclusion that the communities were well adapted to periodic inputs of energy,
because the thermodynamically based optimal allocation model was only able to
accurately simulate the observed methane oxidation rates in the control and cycled
chemostats when the optimization interval (i.e., time scale of the implied temporal
strategies) was set to be equal to or greater than the 20-day methane cycle period.
When shorter optimization intervals were used, the model was unable to fit the
observations (see Table 18.2 in reference 26). The observations from near the end of the
experiment (day 1,242; data not shown) indicate that the temporal strategies were not
clock based, because oscillations in gas dynamics were not observed in the cycled
chemostats when the methane cycling was stopped. Such residual oscillations are
observed in clock-based circadian systems when external cycling is terminated (49). The
lack of residual oscillations when methane was left on indicates that the communities
probably implemented passive temporal strategies, such as resource storage, which
have been identified in methanotrophs that are known to store polyhydroxybutyrate
under cyclic inputs (50), as well as fatty acids (51). If the external drivers were not
responsible for the observed community dynamics in both the control and cycled
chemostats, what might explain the internal dynamics?

Changes in community composition are often associated with changes in external
drivers, as explained by functional complementarity (38) or compensatory dynamics in
response to press or pulse perturbations (39). These theories have been put forth to
explain the maintenance of biodiversity and why competitive exclusion (52) does not
lead to the “paradox of the plankton” in which limited resources support a wide range
of diversity (53). In complementarity, each species has evolved to grow maximally
under a narrow set of environmental conditions, such as pH, temperature, light level,
etc. As external drivers change the environment, such as by lowering the pH, succession
in community composition follows, where those organisms that optimally match the
new conditions are selected for, provided sufficient biodiversity exists within the
system or can be readily imported by transport processes. The rare biosphere can serve
as the reservoir for organisms whose traits are currently suboptimal under the prevail-
ing conditions (41). Functional complementarity and similar theories may indeed
explain the community succession we observed during phases I to III in both control
and cycled chemostats due to changes in pH and in nutrient concentrations, where the
ecosystem function of methane oxidation was maintained relatively stable by a suc-
cession of optimally adapted OTUs. Ideas derived from complementarity have also
been exploited by trait-based modeling approaches (54). However, neither comple-
mentarity nor compensatory dynamics explains the observed succession in OTUs
during phase IV of our experiment, where external drivers were constant.

Theories such as niche complementarity, niche construction, resource partitioning,
cross-feeding, and others have been proposed to explain internal dynamics that occur
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in the absence of external forcing (40). A basic premise in these theories is that
organisms modify their environment, thereby creating new niches that can be ex-
ploited by others, which can lead to a natural and perpetuating succession of organ-
isms that can occur rapidly in microbial systems (55–57). One type of niche creation is
known as cross-feeding, in which the waste products of one organism’s metabolism
become the food for another. In the original study by Rosenzweig et al. (58), cross-
feeding developed from a clonal population of Escherichia coli that oxidized glucose
completely to CO2, but after more than 700 generations, stable polymorphisms evolved
that produced and consumed acetate and glycerol intermediates (see also reference
59). Hence, the clonal population naturally evolved a type of distributed metabolism
(60). Syntrophy and resource partitioning are also examples of cross-feeding that
develop between species, phyla, and domains (61, 62), where differential production of
shared intermediates over time can give rise to asymmetric population dynamics that
can stabilize ecosystem function (63, 64). One mechanism that may drive evolution of
cross-feeding is the interplay between growth rate and growth efficiency.

Metabolic analysis in substrate-limited systems has shown that metabolic pathway
truncation, such as partial oxidation of glucose to acetate instead of CO2, can result in
faster energy extraction per unit of time, which can support higher growth rates but
leads to the excretion of by-products, such as acetate (65, 66). The accumulation of
intermediates can then foster adaptive gene loss that reinforces cross-feeding (67, 68).
Leaking substrates is in contrast to conventional wisdom that considers maximizing the
efficiency of substrate use a virtue. However, a recent modeling study by González-
Cabaleiro et al. (69) examined these tradeoffs and showed that maximizing the rate of
energy harvest from substrates, with its attendant by-product production, accurately
predicts the distribution of metabolic labor observed in multistep anaerobic fermen-
tation of glucose to methane and CO2, two-step aerobic autotrophic nitrification, and
single-step anaerobic denitrification. Furthermore, excreted substrates in communities
can drive the production of new metabolites that are otherwise not produced when
organisms are grown in isolation, via emergent biosynthetic capacity (70). Conse-
quently, we speculate that a potential driver of the rapid succession of dominant OTUs
observed in both the control and cycled chemostats may be continuous niche recon-
struction via the extracellular accumulation of metabolic intermediates. As intermediate
metabolites accumulate beyond certain thresholds, select members of the rare bio-
sphere may be freed from dormancy by competitive advantages that allow them to
achieve dominance, but only temporarily. New dominant OTUs might excrete new
intermediate metabolites that then eventually select for new replacements. With
sufficient biodiversity, intermediate metabolites come and go, but none accumulate
significantly, so ecosystem functions like the methane oxidation rate or primary pro-
duction proceed at maximum despite the continuous species turnover. Of course, in
some situations, violent perturbations can lead to excessive accumulation of metabo-
lites and cause system collapse (71).

Dynamic cross-feeding is not the only process shaping communities. Depending on the
characteristic time scales of internal and external forcing, generalists and specialists also
arise (72) and various types of chemical warfare are likely at play (73). Cooperation via
cross-feeding (74, 75), quorum sensing (76), stigmergy (77), horizontal gene transfer (78),
and other types of intercellular communication (79, 80) also contribute to internal feed-
backs that likely support the continuous succession of dominant OTUs we observed.
Indeed, the continual turnover of the community may be a significant mechanism in
producing and maintaining the rank abundance distribution of the rare biosphere (44).
Furthermore, the internal dynamics exhibited by microbial systems brings into question the
usefulness of stability criteria often used to assess and cull food web models. If microbial
community dynamics are fundamentally unstable (81), then predicting ecosystem function
based on maximizing dissipation of energy may be a more tractable approach for under-
standing how communities will change in response to external forcing (23).

Our results, as well as results from a previous modeling study (26), indicate that the
microbial communities in our methanotrophic microcosms are inherently well adapted
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to periodic inputs of energy, likely due to the implementation of temporal strategies
like resource storage. The 16S rRNA gene sequences were sampled deeply at 10 time
points during the 510-day experiment and show that the dominant OTU at any time
point often originated from the rare biosphere but was subsequently replaced by a new
competitor also derived from the rare biosphere at the next sample point. Even though
the control and cycled chemostats experienced significantly different external forcing
and the overall community composition changed as the experiment proceeded, the
patterns of succession of dominant OTUs in both treatments were more similar than
different. These results indicate that internal feedbacks were more important than
external drivers in shaping the community dynamics over time. Based on supportive
data in the literature, we speculate that dynamic cross-feeding may be the mechanism
producing the unstable community dynamics. Furthermore, our results, as well as those
of others, bring into question the usefulness of the concept of stability for understand-
ing microbial food webs. Because the ecosystem function measured here, the methane
oxidation rate, was insensitive to the community dynamics, our results support the
conjectures that microbial system organization results in a state that maximizes energy
dissipation and that many different food web configurations can support the same
function, as evidenced by the observed community succession but nearly constant
methane oxidation rate.

MATERIALS AND METHODS
Experiment setup and sampling. The experimental set up consisted of four 18-liter Bellco Glass
bioreactors housed in a dark Conviron environmental chamber controlled at 20°C. The microcosms were
previously inoculated with 1 liter of unfiltered water collected from a cedar bog in Falmouth, MA, and
sparged with a gas mix containing 4.9% methane in air at a gas flow rate of 20 ml · min�1 (for details
see Text S1 in the supplemental material). The experiment consisted of four phases (Fig. 6). In phase I
(days 0 to 62), the microcosms initially operated in batch mode, but all reactors were interconnected in
a closed loop at a flow rate of 10 ml · min�1 to ensure uniform community composition between
chemostats. In phase II (days 63 to 209), the microcosms operated independently in chemostat mode
with a defined mineral salt medium (70 �M K2HPO4, 700 �M KNO3, 100 �M MgSO4, 100 �M CaCl2,
100 �M NaCl) plus trace elements (final concentrations, 18.50 �M FeCl3 6H2O, 0.49 �M H3BO3, 0.13 �M
CoCl2 6H2O, 0.10 �M CuSO4 5H2O, 0.35 �M ZnSO4 7H2O, 0.16 �M MnSO4 H2O, 0.12 �M Na2MoO4 2H2O,
0.08 �M NiCl2 6H2O, and 0.1 mM HCl) at dilution rate of 0.1 day�1 (1.25 ml · min�1). The nitrate
concentration was adjusted decrementally from 700 �M to 50 �M to ensure N-limited rather than
CH4-limited growth. In phase III (days 210 to 273), duplicate chemostats were divided into control and
cycled treatments. The cycled chemostats were subjected to periodic energy input cycles by switching
the gas composition from a methane (4.9%)-plus-air mixture to solely air over a 20-day period (i.e.,
10 days CH4-on, 10 days CH4-off). The two control chemostats were maintained under a continuous input
of 4.9% methane in air (Fig. 6). In phase IV (days 274 to 510), gas cycling continued but passive pH control
was initiated by adding 10 mM potassium phosphate buffer to the feed medium. Liquid samples were
withdrawn periodically for analysis of nitrate plus nitrite (NO3

�), ammonia (NH4�), particulate organic
carbon (POC) and nitrogen (PON), dissolved organic carbon (DOC) and nitrogen (DON), and microbial cell
abundances (both eukaryotic and prokaryotic organisms). The CH4, O2, and CO2 gas concentrations in the
feed and headspace were automatically measured and recorded every 5 h, and the pH was recorded
every hour. For details on the analysis, see the supplemental material. Biomass samples for 16S rRNA
gene sequencing were taken on 10 different days, where all samples except those from days 399 and 499
corresponded to periods when CH4 was on in the cycled chemostats (Fig. 6). The chemostats were

FIG 6 Experiment timeline showing the different phases of the study, the presence or absence of methane in the gas feed for each treatment, the changes
in nitrate concentrations in the liquid feed, and the sampling dates for microbial community characterization. Phase I, batch mode; phase II, start-up;
phase III, cycling; phase IV, pH-controlled cycling.
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thoroughly resuspended via mixing before filtering; the resulting homogenized supernatant was filtered
through 0.22-�m Sterivex-GP membranes. Our target for filtration was a 600-ml volume or until the filter
clogged. Filters were immediately frozen at �80°C until DNA extractions.

DNA extraction, pyrosequencing, and sequence analysis. Total genomic DNA was extracted from
whole Sterivex filters that were thawed and cut into small pieces of similar size using the Sterivex internal
support as a guide, prior to the extraction of nucleic acids using the RNA PowerSoil total RNA isolation
kit, combined with the DNA elution accessory kit (MoBio, Carlsbad, CA), following the manufacturer’s
protocol. The DNA concentrations were determined with the Quant-iT PicoGreen double-stranded DNA
(dsDNA) assay kit (Life Technologies, Grand Island, NY, USA). Amplicon libraries for the V4-V6 region of
16S rRNA bacterial genes were prepared using fused primers and sequenced using Roche Titanium
technology as previously described (82). Three technical PCR replicates per DNA extraction were
performed, with 5 to 20 ng of DNA per PCR. The sequencing reads were quality filtered to remove any
reads that contained ambiguous bases, had average quality scores below Q30, or lacked exact primer
matches. Quality-filtered sequences were analyzed for chimera removal with UCHIME (83), combining
both de novo and reference database (ChimeraSlayer Gold) modes, and then clustered at 0.96 similarity
with UCLUST (84) to define OTUs. Taxonomy was assigned by global alignment for sequence taxonomy
(GAST [85]) with the SILVA database (86). Quality-filtered sequences are publicly available through the
VAMPS database (https://vamps.mbl.edu) under project number JAH_ENT_Bv6v4.

Statistical analysis of OTU abundances was performed with QIIME 1.8 (87), Primer 6, PERMANOVA�
(Primer-E Ltd., Plymouth, United Kingdom) (88), and R (89). To compare bacterial communities and
estimate community turnover, a distance matrix was calculated using the Morisita-Horn dissimilarity
index (MH) (90) of log-transformed rarefied data. Nonmetric multidimensional scaling (NMDS) analysis
was applied to explore distances among communities. Differences between treatments (control and
cycled) and time (sampling day) were tested with PERMANOVA tests (91) with 1,000 replications,
including pairwise comparisons between individual samples. Additional analyses are described in Text S1
in the supplemental material.

Accession number(s). All sequences produced in this study are available in the NCBI Short Read
Archive under accession number PRJNA322031.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00117-16.
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