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Abstract: A series of 11-substituted 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-
2,5,10-triones were obtained via hetero-Diels-Alder reaction of 5-alkyl/arylallylidene/-4-thioxo-2-thiaz-
olidinones and 1,4-naphthoquinones. The structures of newly synthesized compounds were estab-
lished by spectral data and a single-crystal X-ray diffraction analysis. According to U.S. NCI proto-
cols, compounds 3.5 and 3.6 were screened for their anticancer activity; 11-Phenethyl-3,11-dihydro-
2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.6) showed pronounced cytotoxic effect on
leukemia (Jurkat, THP-1), epidermoid (KB3-1, KBC-1), and colon (HCT116wt, HCT116 p53-/-) cell
lines. The cytotoxic action of 3.6 on p53-deficient colon carcinoma cells was two times weaker than on
HCT116wt, and it may be an interesting feature of the mechanism action.

Keywords: 1,4-naphthoquinones; hetero-Diels-Alder reaction; thiopyrano[2,3-d]thiazoles; X-ray;
anticancer activity; cytotoxicity; DNA intercalation

1. Introduction

1,4-Naphthoquinones are a large group of biologically active molecules found in
various higher plants (plant families Juglandaceae, Plumbaginaceae, Boraginaceae, Ebenaceae,
Droseraceae, Lythraceae, Rubiaceae, Balsaminaceae, Bignoniaceae, and Ulmaceae), lichens, bacte-
ria, and invertebrates (especially in arthropods and echinoderms) [1]. In natural sources,
1,4-naphthoquinones often exist in a reduced form or as glycosides [2]. Some drugs,
products used in cosmetology, and biologically active additives contain naphthoquinone
derivatives as an active component. In particular, vitamin K1 and menadione, as their
synthetic analogs, are well-known drugs used as hemostatic agents, causing an increase in
the synthesis of prothrombin and proconvertin [3,4]. Atovaquone is a synthetic antipro-
tozoal agent for the prevention and treatment of Pneumocystis jirovecii pneumonia (PCP)
and malaria [5,6]. Menatetrenone is a form of vitamin K2 for the treatment of osteoporosis
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to stimulate osteogenesis. Currently, several 1,4-naphthoquinones (i.e., phylloquinone
for regulation of blood coagulation, bone metabolism, and vascular biology), lawsone
(natural dye), naphthazarin (natural dye), and atovaquone (antineumococcal), are used
both parenterally and externally [7].

In general, 1,4-naphthoquinone derivatives, similarly to other quinones, manifest
their pharmacological potential via two mechanisms [1]. The first is related to the redox
properties of naphthoquinones, which are easily reduced and re-oxidized under physiolog-
ical conditions. Thus, naphthoquinone derivatives in the presence of molecular oxygen
and appropriate reducing agents catalyze the transfer of electrons from NADPH or thiols,
which leads to the generation of various reactive oxygen species (ROS); in particular, su-
peroxide anion, hydroxyl radicals, and hydrogen peroxide [8,9]. The second mechanism is
based on the high electrophilicity of 1,4-naphthoquinone derivatives. This property allows
1,4-naphthoquinones to form covalent bonds with nucleophilic agents and interact with
thiol groups of proteins, glutathione, and nucleophilic amino acid groups; for example,
with the terminal amino group of lysine [1]. Accordingly, this complex of properties made
it possible to identify several highly active anticancer [10–12], antibacterial [13], antifun-
gal [14], anti-inflammatory [15,16], and antiparasitic agents [17–20] (Figure 1). Furthermore,
some 1,4-naphthoquinone derivatives were found as efficient inhibitors of proteasomes [21],
N-acetyltransferase [11], cyclin-cyclin-dependent kinase [22], aldose reductase [16], topoi-
somerases I and II [23,24], heat shock proteins [25], DNA gyrase [26], phosphatidylinositol
3-kinase [27], and inhibitors of Stat3 [28] and cancer stem cell cascades [11].
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Figure 1. Structures of biologically active 1,4-naphthoquinone derivatives [12–15,17,19]. 

Additionally, 1,4-naphthoquinone derivatives are an interesting scaffold for various 
types of chemical transformations. Thus, being active dienophiles, they undergo Diels-
Alder reactions, which are often accompanied by variability in regio- and diastereoselec-
tivity processes depending on the selected heterodienes and substituents in the naphtho-
quinone fragment providing various types of polycyclic systems [29–34] (Figure 2). It is 
also worth noting that Diels-Alder reactions of naphthoquinone derivatives as dieno-
philes make it possible to obtain some biologically active natural quinones, particularly 
angucyclinone antibiotics, which undergo stages of clinical trials [35]. Accordingly, the 
purpose of this work was to apply 1,4-naphthoquinone as the dienophile in hetero-Diels–

Figure 1. Structures of biologically active 1,4-naphthoquinone derivatives [12–15,17,19].

Additionally, 1,4-naphthoquinone derivatives are an interesting scaffold for various
types of chemical transformations. Thus, being active dienophiles, they undergo Diels-
Alder reactions, which are often accompanied by variability in regio- and diastereoselec-
tivity processes depending on the selected heterodienes and substituents in the naphtho-
quinone fragment providing various types of polycyclic systems [29–34] (Figure 2). It is also
worth noting that Diels-Alder reactions of naphthoquinone derivatives as dienophiles make
it possible to obtain some biologically active natural quinones, particularly angucyclinone
antibiotics, which undergo stages of clinical trials [35]. Accordingly, the purpose of this
work was to apply 1,4-naphthoquinone as the dienophile in hetero-Diels–Alder reactions
for the synthesis of novel thiopyrano[2,3-d]thiazole derivatives. It is worth noting that
thiopyrano[2,3-d]thiazole derivatives have shown a broad range of biological activities,
such as anticancer [36–38], antioxidant [39], antitrypanosomal [40], anti-inflammatory [41],
etc. The synthesized compounds were also evaluated for their primary anticancer activity,
cytotoxicity, and DNA intercalation in vitro.
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2. Results
2.1. Chemistry

The starting 5-arylallylidene- and 5-(cyclo)alkylidene-4-thioxo-2-thiazolidinones, as
heterodienes in the synthesis of target thiopyranothiazole derivatives, were synthesized via
the Knoevenagel condensation of 4-thioxo-2-thiazolidinone (isorhodanine) and appropriate
aldehydes or ketones using ethylenediammonium diacetate (EDDA) as the catalyst in
ethanol medium. The hetero-Diels–Alder reaction was carried out in boiling acetic acid in
the presence of a catalytic amount of hydroquinone as a side polymerization inhibitor, and
target 11-substituted-3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-
2,5,10-triones 3.1–3.6 were obtained with good yields (Scheme 1). It should be noted
that aliphatic aldehydes with isorhodanine react less actively with low yields, and the
resulting 5-alkylidene-4-thioxo-2-thiazolidinones are quite difficult to isolate [42]. Accord-
ingly, a three-component reaction of isorhodanine, aliphatic aldehyde, and dienophile
was used to synthesize target thiopyrano[2,3-d]thiazoles. The reaction of isorhodanine,
3-phenylpropionaldehyde, and 1,4-naphthoquinone in acetonitrile in the presence of EDDA
as catalyst afforded pure target derivative 3.6. It is worth noting that during the hetero-
Diels-Alder reaction, the products of [4+2]-cycloaddition undergo spontaneous oxidation
(dehydrogenation) by excess naphthoquinone, which has been reported previously [38].

The structures of the synthesized compounds were elucidated by spectral data. Thus,
protons of the naphthoquinone moiety in the 1H NMR spectra of synthesized thiopyranoids
showed characteristic signals at δ ∼ 7.02–8.49 ppm. The signal of the CH proton in the
C-16 position appeared as a singlet or multiplet at 4.42–6.77 ppm. Protons attributed to
the phenylpropionyl residue of 3.6 showed two multiplets at δ 1.94–2.62 ppm. Low field
1H NMR spectra gave signals in a range of 10.80–11.89 ppm, which were assigned to
the signal of the amide proton. In the 13C NMR spectra of the synthesized compounds,
the signals observed at δ 166.9–185.3 were assigned to the carbonyl group (C=O) of the
naphthoquinone fragment (Figures S1–S12).

The structure of the synthesized 11-phenethyl-3,11-dihydro-2H-benzo[6,7]thiochr-
omeno[2,3-d]thiazole-2,5,10-trione (3.6) was confirmed by X-ray diffraction analysis. The
molecular structure and the atom-labeling Scheme are illustrated in Figure 3.
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Scheme 1. Synthesis of thiopyrano[2,3-d]thiazoles containing a naphthoquinone moiety. Reagents
and conditions: (i) isorhodanine 1 (10 mmol), appropriate aldenyde (10 mmol), EDDA (10 µmol),
methanol (10 mL), reflux, 10 min; r.t. 12 h, 77–80%; (ii) isorhodanine 1 (1.0 equiv), approprite
ketone (15–20 equiv), ethanolamine (2–3 drops), r.t., 1 h; 74–90%; (iii) comp. 2.1–2.5 (1.0 equiv),
1,4-naphthoquinone (2.0 equiv), hydroquinone, AcOH, reflux, 1 h, 69–81%; (iv) isorhodanine 1
(5.0 mmol), phenylpropionaldehyde (5.5 mol), 1,4-naphthoquinone (10.0 mmol), EDDA (5 µmol),
MeCN (10 mL), reflux, 2 h, 70%.
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Figure 3. ORTEP view of the molecule of 3.6 showing the atomic labeling Scheme. Non-H atoms
are drawn as 30% probability displacement ellipsoids and H atoms are drawn as spheres of an
arbitrary radius.

The compound has a rigid tetracyclic system of 3,11-dihydro-2H-benzo[6,7]thiochro-
meno[2,3-d]thiazole-2,5,10-trione with the planar or approximately planar thiazolin-2-one
and naphthalene-1,4-dione ring moieties (r.m.s. deviation 0.0041 and 0.0209 Å, respectively),
and the slightly puckered 4H-thiopyran ring (r.m.s. deviation 0.0846 Å).



Molecules 2022, 27, 7575 5 of 18

Within the thiazolin-2-one system, the presence of a secondary amide group was
noted. The position of the hydrogen atom bound to the N-3 atom was determined from
the difference Fourier map and freely refined. Its location in the mentioned position was
confirmed by the hydrogen bond N3–H3· · ·O18i [Donor–H: 0.89(4) Å, H· · ·Acceptor: 1.89(4)
Å, Donor· · ·Acceptor: 2.744(4) Å, Donor–H· · ·Acceptor: 160(4)◦], in which the carbonyl
oxygen atom plays the role of the proton acceptor.

Our studies have shown that in the 3,11-dihydro-2H-benzo[6,7]-thiochromeno[2,3-
d]thiazole-2,5,10-trione ring system there are double bonds between the nodal C-4/C-17
and C-6/C-15 atoms. The found interatomic distances C4–C17 [1.339 (4) Å] and C6–C15
[1.349(4) Å] are close to the literature length of the double C–C bond [1.331(1) Å] [43].

Structural investigations have shown that in the crystal, the phenyl ring of the
phenethyl residue at the stereogenic atom C-16 occupies two alternative positions, marked
a and b, as a result of swing motion and simultaneous rotation of the ring around the
C23–C26 axis. The angle C23a−C22−C23b and the dihedral angle Ph_a−Ph_b found are
17.2(4) and 26.9(3)◦, respectively. Occupancy factors for alternative positions a and b of the
phenyl ring are 0.5.

The arrangement of the phenethyl residue is described with torsion angles C4–C17–
C16–C21, C17–C16–C21–C22, and C16–C21–C22–C23a/23b, which reveal values of 104.1(3),
−67.7(3), and−170.3(4)/171.9(4)◦. Moreover, the alternative phenyl rings a and b belonging
to phenethyl moiety form with the mean plane of 4H-thiopyran ring the dihedral angles of
68.8(2) and 60.8(2)◦, respectively.

2.2. Biological Evaluation
2.2.1. Cytotoxicity Activity Screening

Considering the results of previous studies of fused thiazolidinones and their analogs,
a series of thiopyrano[2,3-d]thiazoles with naphthoquinone fragments in the structure were
studied for their anticancer activity. Thus, synthesized thiopyranothiazole derivatives 3.5
and 3.6 were selected by the National Cancer Institute (NCI), U.S., for their anticancer
activity at 10 µM concentration toward a panel of sixty cancer cell lines representing
nine different types (leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate,
and breast cancers) (Figures S13–S14). Selection for screening based on new derivatives’
ability to add diversity to the NCI small molecules collection and anticancer assays were
performed according to the NCI guidelines and protocols previously described [44–46].
The compounds were added at the mentioned concentration, and the cell cultures were
incubated for 48 h. The results for each compound were reported as the growth percent
(GP%) of treated cells compared with untreated control cells. The screening results are
shown in Table 1.

Table 1. Anticancer Screening Data in Concentration of 10 µM.

Compound
NSC

Mean
Growth, %

Range of
Growth, %

Most Sensitive Cell Line Growth, %
(Cancer Line/Type)

3.5
748457 88.33 51.21 to 126.93

53.82 (RPMI-8226/Leukemia)
59.89 (SR/Leukemia)

54.98 (EKVX/Non-Small Cell
Lung Cancer)

55.15 (IGROV1/Ovarian Cancer)
55.54 (UO-31/Renal Cancer)
51.21 (T-47D/Breast Cancer)

3.6
831850 90.58 45.25 to 130.11

57.17 (LOX IMVI/Melanoma)
45.25 (MALME-3M/Melanoma)

52.87 (MDA-MB-435/Melanoma)
51.76 (UO-31/Renal Cancer)
58.83 (MCF7/Breast Cancer)
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Table 1. Cont.

Compound
NSC

Mean
Growth, %

Range of
Growth, %

Most Sensitive Cell Line Growth, %
(Cancer Line/Type)

Doxorubicin
759155 −20.30 −86.40 to 72.90

−81.60 (COLO-205/ Colon Cancer)
−76.10 (SNB-75/ Central Nervous

System Cancer)
−71.60 (M14/ADR-RES/ Melanoma)
−82.60 (MDA-MB-435/Melanoma)
−82.60 (SK-MEL-2/Melanoma)
−86.40 (SK-MEL-5/Melanoma)
−75.10 (A498/ Renal Cancer)

The studied naphthoquinone-substituted thiopyrano[2,3-d]thiazoles demonstrated
inhibition of tested cancer cell lines growth in the in vitro screening. The GP of breast cancer
T-47D cells was 51.21% under treatment with compound 3.5, and the GP of melanoma
MALME-3M cells was 45.25% under treatment with compound 3.6.

We continued the cytotoxicity study of synthesized derivatives 3.1–3.6 toward tumor
and pseudo-normal cells in vitro. The MTT cell viability assay was performed 72 h after
cells treatment with various concentrations of studied compounds and doxorubicin, a
reference drug. The cell viability and the IC50 values are shown in Figure 4 and Table 2.
The most active was compound 3.6, and leukemic cell lines were the most sensitive to
its action. It was cytotoxic to Jurkat T-leukemia cells at all tested concentrations with
the half-maximal inhibitory concentration (IC50) of 0.76 µM. The THP-1 cells, monocytes
isolated from peripheral blood from an acute monocytic leukemia patient [47], were also
sensitive to the 3.6 treatment. The IC50 of this compound was 7.94 µM. The 3.6 inhibited the
viability of epidermoid carcinoma (KB3-1 and its ABCB1-overexpressing subline KBC-1)
and colon carcinoma (HCT116wt and its p53 knockdown subline HCT116 p53-/-) cells. It
is known that ABCB1 (P-glycoprotein), MRP1/ABCC1 (multidrug resistance protein 1),
and BCRP/BCG2 (breast cancer resistance protein) have been reported to be key players in
resistance to chemotherapy [48]. It should be noted that the 3.6 demonstrated a pronounced
growth inhibition effect on KBC-1 (IC50 = 12.81 µM). The IC50 of 3.6 was 27.66 µM for KB3-1
cells. We found significantly lower IC50 values of 3.2, 3.4, and 3.6 for HCT116wt compared
with those for the HCT116 p53-/- cell line. The IC50 ranged from 5.54 to 6.81µM and from
12.34 to >50 µM, respectively. Thus, the p53 status of colon carcinoma cells influenced
the anti-tumor effects of the studied 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-
d][1,3]thiazole-2,5,10-trione. The p53 has diverse mutations in almost all human tumors,
stimulating their hyper-proliferation, invasion/metastasis, and thus, influencing the po-
tency of various chemotherapeutics (i.e., platins and anti-metabolites). The p53-deficient or
p53-mutant tumors often possessed a more aggressive phenotype and more pronounced
chemo- and radio-resistance [49]. Based on our findings, one can assume a p53-dependent
mode of action for 3.6 toward colon cancer cells.

Table 2. Influence of Compounds and 1,4-NQ on the Growth of Individual Tumor Cell Lines.

Cell Line
IC50, µM

3.1 3.2 3.3 3.4 3.5 3.6 1,4-NQ Dox

KB3-1 36.99 39.22 28.81 26.01 >50 27.66 20.74 0.73
KBC-1 ND ND ND ND ND 12.81 8.33 1.97
Jurkat ND ND ND ND ND 0.76 ND 0.67
THP-1 ND ND ND ND ND 7.94 ND 13.97

HCT116wt 29.19 6.81 15.84 5.54 43.55 6.37 ND 0.07
HCT116 p53-/- 40.34 >50 11.09 25.22 >50 12.34 ND 0.58

MCF-7 9.19 8.47 26.75 34.34 >50 8.94 ND 0.63
HaCaT ND ND ND ND ND >100 ND 0.80
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Table 2. Cont.

Cell Line
IC50, µM

3.1 3.2 3.3 3.4 3.5 3.6 1,4-NQ Dox

J774.2 24.44 0.74 30.52 11.07 >50 9.57 ND 0.97
Isolated

lymphocytes ND ND ND ND ND 58.66 62.93 1.00

K562 43.72 26.00 13.00 7.11 >50 25.67 ND 0.62
ND—not determined.
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Figure 4. The viability curves of epidermoid (KB3-1, KBC-1) and colon (HCT116wt, HCT116 p53-/-)
cells under derivative 3.6 and doxorubicin treatment. The anti-proliferative activity of studied
compounds was analyzed by MTT assay after 72 h of cell exposure. Data presented as M ± SD, n = 3.

Derivatives 3.1, 3.2, and 3.6 possessed an anti-proliferative effect on MCF-7 (hormone-
dependent, estrogen, and progesterone receptor positive) cells with a similar IC50 of 9.19,
8.47, and 8.94 µM, respectively [50]. K562 cells were sensitive to compounds 3.3 and
3.4, with an IC50 of 13.00 and 7.11 µM, respectively. Doxorubicin was more cytotoxic for
epidermoid, colon, breast carcinoma, and melanoma cells (Figure 4, Table 2). Compound
3.5 showed weak activity on cell lines used in our work. A reference compound was also
used, 1,4-naphthoquinone (1,4-NQ), with weak activity towards KB3-1 and KBC-1 cell lines
(IC50 20.74 and 8.33 µM, respectively).

The 3.6 showed low toxicity in human keratinocytes of the HaCaT line. The IC50 of 3.6
was >100 µM for HaCaT cells. The isolated normal human peripheral blood lymphocytes
and murine macrophages of the J774.2 line were more sensitive to 3.6 treatment. It induced
a 50% reduction in the viability of isolated normal human lymphocytes at 58.66 µM. The
3.6 reached the IC50 value at 9.57 µM for the J774.2 macrophage cell line. The 3.6 derivative
caused a moderate reduction in the viability of HaCaT, J774.2 cell lines, and isolated normal
human lymphocytes. The blood-derived cells were more sensitive to the 3.6 treatment.
Doxorubicin reduced the survival of pseudo-normal cells and isolated normal lymphocytes
at the IC50 value of 0.8–1.0 µM (Figure 5, Table 2).

Compound 3.6 possessed a high anti-proliferative effect on selected tumor cells and
moderate toxicity on pseudo-normal ones. Thus, it was chosen for further experimental
research in vitro.
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Figure 5. The viability of human keratinocytes of HaCaT line, murine macrophages of J774.2 line, and
isolated normal human peripheral blood lymphocytes upon exposure to different concentrations of
compound 3.6 and doxorubicin (Dox) for 72 h. The anti-proliferative activity of studied compounds
was analyzed by MTT assay after 72 h of cells exposure. Data presented as M ± SD, n = 3.

2.2.2. Reactivity with Reduced Glutathione (GSH)

The reactivity of unmetabolized compound 3.6 was assessed in the test with the model
soft nucleophile reduced glutathione (GSH). It has been found that after incubation with
3.6, the level of GSH decreases and does not increase with adding sodium borohydride,
which suggests the formation of covalent GS-adducts that are not reduced to GSH with
sodium borohydride, unlike oxidized glutathione GSSG (Figure 6).
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2.2.3. Cellular Morphology of KB3-1 Cells Induced by Compound 3.6

To elucidate the primary death mechanisms in the treated cells with the 3.6 deriva-
tive, we assessed apoptosis by DNA laddering assay, fluorescent microscopy after cell
staining with Hoechst-33342, DNA interacting spectroscopic, and DNA/methyl green
replacement assays.

The 3.6 caused significant cytomorphological alterations in KB3-1 cells, which were
found to be shrunk, with condensed chromatin and membrane blabbing (Figure 7B) com-
pared to the control (Figure 7A). One can also see giant KB3-1 cells with abnormal nuclei and
looser chromatin (Figure 7B). The mitotic catastrophe may occur during or after aberrant
mitosis. Mitotic catastrophe has been reported as a special example of apoptosis affecting
mitochondrial membrane permeabilization and caspase activation [51]. The control KB3-1
cells exhibited properly shaped intact nuclei. Doxorubicin caused chromatin condensation
and membrane blabbing (Figure 7C). Thus, compound 3.6 induced pro-apoptotic cytomor-
phological changes in treated KB3-1 cells. As shown in Figure 7B, compound 3.6 was able
to red fluorescence (DIC + Red channel) in the cells, similar to doxorubicin (Figure 7C), and
was more concentrated in the nucleus area.
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2.2.4. DNA Laddering under Treatment of 3.6

In the presence of compound 3.6, we did not detect a typical apoptotic laddering in
Jurkat cells (Figure 8). One can see that compound 3.6 at 1 µM induced slight laddering of
DNA. The 3.6 at 2.5 µM and 5 µM induced necrotic degradation of DNA. We assumed that
the 3.6 at 10 µM and 25 µM induced extreme DNA fragmentation that could not be seen on
the gel.
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Compound 3.6 induced both apoptotic and necrotic death of KB3-1 cells. Doxoru-
bicin at 0.5 µM induced more necrotic changes in treated Jurkat cells than apoptotic ones
(Figure 8).

2.2.5. DNA Interacting Ability of Compound 3.6

The method investigates conformational changes in the DNA; for example, when
DNA is exposed to an intercalating, alkylation, or other classes of DNA-binding agents.
It is based on the oxidative reaction of potassium permanganate with pyrimidine bases.
Compounds that interact with DNA distort its duplex structure, thus exposing pyrimi-
dine bases for oxidation by KMnO4, which generates products that can be detected by
spectrophotometry [52]. Different classes of DNA-binding compounds can be studied in
such a way. Data obtained from samples with DNA incubated with the tested compound
3.6 showed a strong time and concentration-dependent increase in the oxidation level
compared with control DNA (without the studied compound). Net A405 ranged from
0.00 to 0.50 in the presence of the compound, and Net A405 ranged from 0.02 to 0.045 in
the control case (Figure 9). The obtained results indicated that compound 3.6 interacts in
some way with DNA.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 19 
 

 

that the 3.6 at 10 µМ and 25 µМ induced extreme DNA fragmentation that could not be 
seen on the gel. 

 
Figure 8. DNA ladder in KB3-1 cells following 24 h exposure to the compound 3.6 and doxorubicin 
(Dox, 1 µМ). 

Compound 3.6 induced both apoptotic and necrotic death of KB3-1 cells. Doxorubi-
cin at 0.5 µM induced more necrotic changes in treated Jurkat cells than apoptotic ones 
(Figure 8). 

2.2.5. DNA Interacting Ability of Compound 3.6 
The method investigates conformational changes in the DNA; for example, when 

DNA is exposed to an intercalating, alkylation, or other classes of DNA-binding agents. It 
is based on the oxidative reaction of potassium permanganate with pyrimidine bases. 
Compounds that interact with DNA distort its duplex structure, thus exposing pyrimidine 
bases for oxidation by KMnO4, which generates products that can be detected by spectro-
photometry [52]. Different classes of DNA-binding compounds can be studied in such a 
way. Data obtained from samples with DNA incubated with the tested compound 3.6 
showed a strong time and concentration-dependent increase in the oxidation level com-
pared with control DNA (without the studied compound). Net A405 ranged from 0.00 to 
0.50 in the presence of the compound, and Net A405 ranged from 0.02 to 0.045 in the con-
trol case (Figure 9). The obtained results indicated that compound 3.6 interacts in some 
way with DNA. 

Control DNA

Concentration, μM

le
ve

l o
f o

xi
da

tio
n

ne
t A

40
5 

nm

1h 2h 3h

-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25

3.6+DNA

Concentration, μM

le
ve

l o
f o

xi
da

tio
n

ne
t A

40
5 

nm

10 20 30
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

1h
2h
3h

 
Figure 9. Variation in the net change of absorbance with increasing concentration of studied com-
pound at different time periods. The control solution includes DNA, water, and KMnO4. The stud-
ied sample included DNA, compound 3.6, and KMnO4. 

2.2.6. DNA/Methyl Green Replacement Assay 
In addition, we used DNA/methyl green colorimetric assay to study the possible in-

teraction of compound 3.6 in DNA. Methyl green is found to be a DNA major-groove 

Concentration of 3.6, µM 

Figure 9. Variation in the net change of absorbance with increasing concentration of studied com-
pound at different time periods. The control solution includes DNA, water, and KMnO4. The studied
sample included DNA, compound 3.6, and KMnO4.

2.2.6. DNA/Methyl Green Replacement Assay

In addition, we used DNA/methyl green colorimetric assay to study the possible
interaction of compound 3.6 in DNA. Methyl green is found to be a DNA major-groove
binding compound [53] and reversibly binds polymerized DNA. This assay was used to
measure the displacement of methyl green from DNA by compounds with the ability to
intercalate DNA [54]. Tested compound 3.6 could intercalate between two complementary
base pairs in double-stranded DNA, and, dependent on concentration, the percentage of
methyl green replacement ranged from 35.00 to 39.64% (Figure 10). Indeed, 1,4-NQ showed
a stronger ability to methyl green replacement; in concentration 1µM it displaced 65% of
methyl green. Doxorubicin, which was used as a positive control, in concentration 1µM,
had a similar effect to compound 3.6, but in concentration 10 µM replaced methyl green
as being two times more effective. Together with data obtained in through spectroscopic
assay, and red fluorescence in the nucleus area (morphology data), this result indicated that
one of the possible mechanisms of action of compound 3.6 is DNA intercalation.
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3. Materials and Methods 
3.1. General Information 

All materials were purchased from commercial sources and used without purifica-
tion. Melting points were measured in open capillary tubes and were uncorrected. The 
elemental analyses were performed using a Thermo Scientific FlashSmart Elemental An-
alyzer. The 1H and 13C NMR spectra were recorded on a Varian Gemini (1H at 400 and 13C 
at 100 MHz) instrument in DMSO-d6. Chemical shifts (δ) were given in ppm units relative 
to tetramethylsilane as reference (0.00). The purity of all obtained compounds was 
checked by TLC on Silufol-254 plates (Eluent EtOAc/ Benzene 1:2). The starting 5-ylidene-
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Figure 10. Replacement of methyl green, intercalated to salmon sperm DNA, by the compound 3.6,
1,4-NQ, and doxorubicin (positive control).

3. Materials and Methods
3.1. General Information

All materials were purchased from commercial sources and used without purification.
Melting points were measured in open capillary tubes and were uncorrected. The elemen-
tal analyses were performed using a Thermo Scientific FlashSmart Elemental Analyzer.
The 1H and 13C NMR spectra were recorded on a Varian Gemini (1H at 400 and 13C at
100 MHz) instrument in DMSO-d6. Chemical shifts (δ) were given in ppm units relative to
tetramethylsilane as reference (0.00). The purity of all obtained compounds was checked by
TLC on Silufol-254 plates (Eluent EtOAc/ Benzene 1:2). The starting 5-ylidene-4-thioxo-2-
thiazolidinones 2.1–2.5 were obtained according to the method previously described [41,55].

Human colon carcinoma HCT116 cells, human breast adenocarcinoma cells of MCF-7
line, human T-leukemia Jurkat cells, human chronic myelogenous leukemia K562 cells,
and human keratinocytes of HaCaT line were from the Cell Collection of R.E. Kavetsky
Institute of Experimental Pathology, Oncology and Radiobiology (Kyiv, Ukraine). Murine
macrophages of J774.2 line were a generous gift from Professor Sir John Vane (William
Harvey Research Institute, London, UK) via Professor Janusz Marcinkiewicz (Jagiellonian
University Medical College, Krakow, Poland). Human colon carcinoma HCT116 p53-/- cells
with knockdown of P53 gene, as well as human epidermoid cervix carcinoma KB3-1 cells
and its ABCB1-overexpressing subline KBC-1, were kindly provided by Professor W. Berger
(Institute of Cancer Research, Medical University of Vienna, Austria). The phenotype of this
cell line was stable, as periodically determined by Western blot analysis. Human leukemia
monocytic THP-1 cells were kindly provided by Professor M. Herrmann (Department of
Internal Medicine, Institute for Clinical Immunology and Rheumatology, University of
Erlangen-Nuremberg, Germany). Cells were cultured in DMEM or RPMI-1640 medium
supplemented with 10% fetal bovine serum (all were purchased from Biowest, Nuaille,
France) at 37 ◦C in a humidified atmosphere containing 5% CO2.

3.2. Synthesis of 3,11-Dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-triones 3.1–3.5

A mixture of appropriate 5-alkyl/arylallylidene/-4-thioxo-2-thiazolidinone (10 mmol)
and 1,4-naphthoquinone (20 mmol) was refluxed for 1 h with a catalytic amount of hydro-
quinone (2–3 mg) in glacial acetic acid (10 mL), and then left overnight at room temperature.
The precipitated crystals were filtered off, washed with methanol (5–10 mL), and recrystal-
lized from the appropriate solvent.

11-Styryl-3,11-dihydro-2H-benzo [6,7]thiochromeno [2,3-d]thiazole-2,5,10-trione (3.1). Yield
70%, mp 338–340 ◦C (DMF:EtOH). 1H NMR (400 MHz, DMSO-d6): δ 6.77 (s, 1H, CH),
7.53–7.63 (m, 6H, CH, arom.), 7.69 (t, 1H, J = 7.8 Hz, arom.), 7.73 (t, 1H, J = 8.2 Hz, arom.),
8.12 (d, 1H, J = 16.4 Hz, CH), 8.24 (d, 1H, J = 8.4 Hz, arom.), 8.39 (d, 1H, J = 8.4 Hz, arom.),
11.04 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ 36.2, 95.8, 118.7, 119.6, 122.4, 123.5,
126.6, 127.7, 128.1, 129.1, 129.2, 129.9, 131.4, 131.8, 147.8, 156.2, 175.2, 177.2, 179.7 ESI-MS
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m/z 404 (M + H)+. Anal.Calcd for C22H13NO3S2: C, 65.49; H, 3.25; N, 3.47. Found: C, 65.64;
H, 3.08; N, 3.63.

11-(2-Nitrostyryl)-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.2).
Yield 69%, mp 330–332 ◦C (DMF:EtOH). 1H NMR (400 MHz, DMSO-d6): δ 6.02–6.08 (m,
1H, CH), 7.66 (t, 2H, J = 8.4 Hz, arom.), 7.74–7.77 (m, 2H, arom.), 7.89–7.93 (m, 1H, arom.),
8.10 (dd, 2H, J = 8.2,16.0 Hz, 2CH), 8.18 (d, 1H, J = 8.4 Hz, arom.), 8.29 (d, 2H, J = 8.2 Hz,
arom.), 11.83 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ 31.6, 98.1, 114.4, 118.8, 122.6,
125.1, 130.3, 132.6, 134.4, 134.9, 137.1, 139.1, 141.9, 144.2, 146.6, 149.7, 173.5, 174.9, 178.5.
ESI-MS m/z 449 (M + H)+. Anal.Calcd for C22H12N2O5S2: C, 58.92; H, 2.70; N, 6.25. Found:
C, 59.07; H, 2.82; N, 6.12.

11-(2-Phenylprop-1-en-1-yl)-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-
trione (3.3). Yield 80%, mp > 350 ◦C (DMF:EtOH). 1H NMR (400 MHz, DMSO-d6): δ 0.96
(s, 3H, CH3), 5.77 (s, 1H, CH), 7.41–7.44 (m, 1H, arom.), 7.50–7.56 (m, 2H, CH, arom.),
7.60–7.65 (m, 1H, arom.), 7.69–7.73 (m, 3H, arom.), 7.79–7.82 (m, 1H, arom.), 8.28–8.32 (m,
1H, arom.), 8.46–8.49 (m, 1H, arom.), 10.80 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ
17.1, 29.2, 86.1, 108.6, 122.4, 122.6, 125.4, 125.7, 126.2, 126.3, 126.4, 127.4, 128.0, 128.5, 144.4,
146.7, 164.2, 166.9, 177.6. ESI-MS m/z 418 (M + H)+. Anal.Calcd for C23H15NO3S2: C, 66.17;
H, 3.62; N, 3.35. Found: C, 66.27; H, 3.40; N, 3.49.

11,11-Dimethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.4).
Yield 81%, mp 230–232 ◦C (DMF:EtOH). 1H NMR (400 MHz, DMSO-d6): δ 1.73 (s, 3H,
CH3), 1.89 (s, 3H, CH3), 7.82 (t, 1H, J = 7.6 Hz, arom.), 7.88 (d, 1H, J = 7.3 Hz, arom.),
7.94–8.02 (m, 2H, arom.), 11.65 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ 21.0, 29.7,
106.3, 114.6, 125.8, 126.9, 135.1, 142.8, 146.2, 170.0, 172.0, 180.7. ESI-MS m/z 330 (M + H)+.
Anal.Calcd for C22H15NO3S2: C, 65.17; H, 3.73; N, 3.45. Found: C, 65.24; H, 3.61; N, 3.62.

Spiro[benzo[6,7]thiochromeno[2,3-d]thiazole-11,1’-cyclopentane]-2,5,10(3H)-trione (3.5). Yield
72%, mp 231–233 ◦C (AcOH). 1H NMR (400 MHz, DMSO-d6): δ 2.14 (br.s, 2H, CH2), 2.39 (br.s,
2H, CH2), 2.81 (m, 4H, 2*CH2), 7.84 (m, 2H, arom.), 8.05 (m, 2H, arom.), 11.70 (s, 1H, NH).
13C NMR (100 MHz, DMSO-d6): δ 21.7, 31.2, 45.5, 106.5, 122.3, 127.8, 134.6, 136.3, 138.3, 143.3,
150.3, 176.0, 177.7, 185.3. ESI-MS m/z 356 (M + H)+. Anal.Calcd for C16H11NO3S2: C, 58.34; H,
3.37; N, 4.25. Found: C, 58.21; H, 3.52; N, 4.16.

3.3. Synthesis of
11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione 3.6

A mixture of isorhodanine (5 mmol), phenylpropionaldehyde (5.5 mmol), and 1,4-
naphthoquinone (10 mmol) was heated at reflux for 2 h in MeCN (10 mL) in the presence
of the catalytic amount of ethylenediaminediacetic acid. After cooling, the precipitate
was filtered off, washed, and recrystallized from the appropriate solvent. Yield 70%, mp
200–202 ◦C (DMF:EtOH). 1H NMR (400 MHz, DMSO-d6): δ 1.94 (m, 2H, CH2), 2.62 (m, 2H,
CH2), 4.42 (m, 1H, CH), 7.02 (m, 1H, arom.), 7.07–7.14 (m, 4H, arom.), 7.78–7.93 (m, 2H,
arom.), 7.94–8.06 (m, 2H, arom.), 11.89 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): δ 31.6,
34.3, 36.5, 107.0, 117.1, 126.2, 126.5, 127.1, 128.5, 128.6, 131.4, 131.9, 134.3, 135.3, 137.0, 141.5,
143.7, 171.3, 180.3, 180.8. ESI-MS m/z 406 (M + H)+. Anal.Calcd for C16H11NO4S2: C, 55.64;
H, 3.21; N, 4.06. Found: C, 55.51; H, 3.09; N, 4.19.

3.4. Crystal Structure Determination of
11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione
Dimethylaminoformamide Hemisolvate (3.6·1/2DMF)

Compound 3.6 was recrystallized from DMF by slow evaporation at room temperature.
Crystal data of compound 3.6 C22H15NO3S2, 0.5(C3H7NO), Mr = 442.02, monoclinic,

space group C2/c, a = 19.9599(5), b = 8.08330(10), c = 26.8363(6) Å, β = 111.649(3)◦,
V = 4024.40(16) Å3, Z = 8 (Z’ = 1), Dcalc = 1.459 g/cm3, µ = 2.661 mm−1, T = 130.0(1) K.

Data collection of compound 3.6. A brown lath crystal (DMF) of 0.45 × 0.12 × 0.08 mm
was used to record 9137 (Cu Kα-radiation, θmax = 76.22◦) intensities on a Rigaku SuperNova
Dual Atlas diffractometer [56] using mirror monochromatized Cu Kα-radiation from a
high-flux microfocus source (λ = 1.54184 Å). Accurate unit cell parameters were determined
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by least-squares techniques from the θ values of 7380 reflections, θ range 4.42–75.95◦. The
data were corrected for Lorentz, polarization, and for absorption effects [56]. The 4126 total
unique reflections (Rint = 0.0146) were used for structure determination.

Structure solution and refinement of compound 3.6. The structure was solved by a dual
space algorithm (SHELXT) [57] and refined against F2 for all data (SHELXL) [58]. The
position of the H atom bonded to N atom was obtained from the difference Fourier map and
was freely refined. The remaining H atoms were positioned geometrically and were refined
within the riding model approximation: C−H = 0.99 Å (CH2), 1.00 Å (Csp3H), 0.95 Å
(Csp2H) and Uiso(H) = 1.2Ueq(C). Final refinement converged with R = 0.0584 (for 4079 data
with F2 > 4σ(F2), wR = 0.1319 (on F2 for all data), and S = 1.144 (on F2 for all data). The
largest difference peak and hole was 0.378 and −0.421 eÅ3. The solvent masks procedure
implemented in OLEX2 [59] was employed to remove disordered solvent molecules that
could not be reliably modeled. The solvent radius was set to 1.2 Å; calculated total potential
solvent-accessible void volume and electron counts per unit-cell were: 484 Å3 and 148.

The molecular illustration was drawn using ORTEP-3 for Windows [60]. Software
used to prepare material for publication was OLEX2 [59] and PLATON [61].

The supplementary crystallographic data were deposited at the Cambridge Crystal-
lographic Data Centre (CCDC), 12 Union Road, Cambridge, CB2 1EZ (UK) [phone, (+44)
1223/336-408; fax, (+44) 1223/336-033; e-mail, deposit@ccdc.cam.ac.uk; World Wide Web,
http://www.ccdc.cam.ac.uk, accessed on 2 October 2022 (deposition no. CCDC 2210721)].

3.5. Cytotoxic Activity against Malignant Human Tumor Cells According to the DTP
NCI Protocol

Anticancer in vitro assay was performed on the human tumor cell lines panel derived
from nine neoplastic diseases by the protocol of the Drug Evaluation Branch, National
Cancer Institute, Bethesda, MD, USA [44–46]. Tested compounds were added to the culture
at a single concentration (10−5 M), and the cultures were incubated for 48 h. Endpoint
determinations were made with a protein binding dye, sulforhodamine B. Results for each
tested compound were reported as the GP% of the treated cells compared to untreated
control cells. GP% was spectrophotometrically evaluated vs. controls not treated with
test agents.

3.6. MTT Cell Viability Assay

MTT assay was used to examine the viability of tumor and pseudo-normal cells after
their treatment with studied thiopyrano[2,3-d]thiazole derivatives and doxorubicin (Actavis
S.R.L., Bucharest, Romania). Cells were seeded in 96-well plates at a density of 3–5 × 103.
After 24 h, cells were treated with compound 3.10, 1,4-NQ (0.1–100 µM), and doxorubicin
(0.1–100 µM). After incubation for 72 h, MTT reagent (Sigma-Aldrich, St. Louis, MO, USA)
was added to each well, according to the Sigma-Aldrich protocol. An absorbance Reader
BioTek ELx800 (BioTek Instruments, Inc., Winooski, VT, USA) was used to measure the
reaction product.

3.7. Reduced Glutathione (GSH) Level Assay

In model experiments, 1 mM of GSH and 1 mM of compounds in 0.1 M phosphate
buffer (pH 7.4) were incubated for 1 h at 37 ◦C, and then the level of GSH was determined
spectrophotometrically at 412 nm based on the reduction of 5,5′-dithio-bis(2-nitrobenzoic
acid) to form the yellow derivative 5′-thio-2-nitrobenzoic acid. Oxidized glutathione GSSG
in samples was reduced to GSH with sodium borohydride [62].

3.8. Spectroscopic DNA Interaction Assay

A spectroscopic DNA interaction study was performed as previously described [63].
salmon sperm DNA (Sigma-Aldrich, USA) was diluted in Milli-Q water at 4 ◦C for 24 h at
1.65 mg/mL. Tested compounds were dissolved in acetone. After 1 h of incubation of DNA
and compound, KMnO4 was added to a final concentration of 0.3 mM and the absorbance

http://www.ccdc.cam.ac.uk
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at 405 nm was measured (Absorbance Reader BioTek ELx800) (BioTek Instruments, Inc.,
Winooski, VT, USA) in different periods up to 3 h. Appropriate controls of DNA alone and
compound alone were included, and these Abs values were subtracted from the test sample
to provide the net change in absorbance (NetAbs). DNA-binding compounds were defined
as such where the net change in absorbance was >0.05 or <−0.05, and DNA non-binding
compounds ranged from 0.05 to −0.05.

3.9. DNA/Methyl Green Colorimetric Assay

The capacity of the tested compounds to intercalate into salmon sperm DNA was
determined using the methyl green assay. Briefly, salmon sperm DNA (10 mg/mL) was
incubated for 1 h at 37 ◦C with 15 µL of methyl green solution (1 mg/mL in H2O). The
compounds were added at concentrations 1 and 10 µM/mL and incubated at 37 ◦C in the
dark for 2 h. Reduction of the absorbance of methyl green at 642 nm induced by the test
compounds was measured with a multiplate reader, Plate Reader BioTek Lx80 ( BioTek
Instruments, Inc., Winooski, VT, USA). Doxorubicin, a well-known intercalating agent, was
used as a positive control.

3.10. DNA Extraction and Gel Electrophoresis

DNA extraction and gel electrophoresis were performed as described by Herrmann
and others. Jurkat cells were collected by centrifugation; lysed in a lysis buffer (1% NP-40
in 20 mM EDTA, 50 mM Tris-HCl, pH 7.5; 10 µL per 10 6 cells, minimum 50 µL). After
centrifugation for 5 min at 1600× g, the supernatant was collected and the extraction
was repeated with the same amount of lysis buffer. Supernatants were brought to 1%
SDS and treated for 2 h with RNase A (final concentration 5 µg/mL) at 56 ◦C. Then,
proteinase K was added (final concentration 2.5, µg/mL) and incubated for 2 h at 37 ◦C.
After adding 1/2 volume of 10 M ammonium acetate, the DNA was precipitated with
2.5 vol. Ethanol, dissolved in gel loading buffer, and separated by electrophoresis in 1%
agarose gels containing Ethidium bromide (at 70 V) [64].

3.11. The Fluorescence Microscopy of Cells

The KB3-1 cells were seeded in 24-well plates at 5 × 105/mL and then treated for an
additional 24 h with compound 3.10 (1 µM) and doxorubicin (1 µM). Cells were stained
with 0.2–0.5 µg/mL of Hoechst-33342 and incubated for 20–30 min before the cell examina-
tion. A Zeiss fluorescent microscope (Carl Zeiss, Jena, Germany), AxioImager A1 camera
(at 400×magnification), and AxioVision image analysis software Release 4.6.3.0 for Carl
Zeis microscopy (Imaging Associates Ltd., Cork, Ireland, UK) were used for cells examina-
tion. All microphotographs were additionally analyzed using ImagePro7 software (Media
Cybernetics, Rockville, MD, USA) [65].

3.12. Statistical Data Analysis

The obtained results were analyzed and illustrated with GraphPad Prism (version 8.0.1;
GraphPad Software, San Diego, CA, USA). The data were presented as the mean (M) ± standard
deviation (SD), n = 3–4. Statistical analyses were performed using two-way ANOVA with Dun-
nett multiple comparisons test. A p-value of <0.05 was considered statistically significant.

4. Conclusions

This study developed an efficient method for the synthesis of thiopyrano[2,3-d]thiazoles
containing a naphthoquinone moiety via hetero-Diels-Alder reaction using 5-alkyl/
arylallylidene-4-thioxo-2-thiazolidinones and 1,4-naphthoquinone. The synthesized com-
pounds were assessed for their antitumor properties according to the DTP NCI proto-
col. Two synthesized compounds were tested and displayed moderate antitumor activity
against leukemia, non-small cell lung cancer, ovarian, breast, prostate cancer, and melanoma
cell lines. The 11-phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-
trione (3.6) displayed prominent cytotoxicity effects on leukemia (Jurkat, THP-1), epider-
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moid (KB3-1, KBC-1), colon (HCT116wt, HCT116 p53-/-), breast (MCF-7), and carcinoma
cells. The p53 status of colon carcinoma cells influenced the anti-tumor effects of the studied
3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-trione. We sug-
gest a p53-dependent mode of action for 3.6 towards colon cancer cells. The 3.6 derivative
possessed moderate toxicity towards HaCaT, J774.2 cell lines, and isolated normal human
lymphocytes. It induced pro-apoptotic cytomorphological changes (chromatin condensa-
tion and membrane blabbing) and mitotic catastrophe in treated KB3-1 cells. Compound
3.6 also induced a necrotic death of KB3-1 cells and interacted with DNA. The obtained
data revealed the necessity for further investigations among these derivatives in modern
anticancer drug therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217575/s1, Figures S1–S12: copies of 1H and 13C
NMR spectra; Figures S13 and S14: NCI protocols of anticancer activity for compound 3.5 and 3.6.
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