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Abstract: Magnesium hydride (MgH2) has become popular to study in hydrogen storage materials
research due to its high theoretical capacity and low cost. However, the high hydrogen
desorption temperature and enthalpy as well as the depressed kinetics, have severely blocked
its actual utilizations. Hence, our work introduced Ni@C materials with a core-shell structure to
synthesize MgH2-x wt.% Ni@C composites for improving the hydrogen desorption characteristics.
The influences of the Ni@C addition on the hydrogen desorption performances and micro-structure
of MgH2 have been well investigated. The addition of Ni@C can effectively improve the
dehydrogenation kinetics. It is interesting found that: i) the hydrogen desorption kinetics of MgH2

were enhanced with the increased Ni@C additive amount; and ii) the dehydrogenation amount
decreased with a rather larger Ni@C additive amount. The additive amount of 4 wt.% Ni@C has been
chosen in this study for a balance of kinetics and amount. The MgH2-4 wt.% Ni@C composites release
5.9 wt.% of hydrogen in 5 min and 6.6 wt.% of hydrogen in 20 min. It reflects that the enhanced
hydrogen desorption is much faster than the pure MgH2 materials (0.3 wt.% hydrogen in 20 min).
More significantly, the activation energy (EA) of the MgH2-4 wt.% Ni@C composites is 112 kJ mol−1,
implying excellent dehydrogenation kinetics.

Keywords: magnesium hydride; dehydrogenation kinetics; Ni@C core-shell nanostructure;
hydrogen storage materials; catalytic effect

1. Introduction

With the approximate exhaustion of traditional fossil fuel and increasing environment concerns,
seeking clean renewable energy has become one of the top priorities for scientific researchers [1,2].
Hydrogen energy is deemed to be a promising candidate to supersede conventional energy due to its
non-polluting and reproducible features [3–6]. After Bogdanović and Schwichardi’s breakthrough,
solid-state hydrogen storage materials, especially magnesium hydride (MgH2), have become popular
to study because of their excellent reversibility, high theoretical capacity (7.6 wt.%) and low
cost [7–13]. Nevertheless, the presence of some obstacles such as high decomposition enthalpy and
dehydrogenation temperature, and sluggish kinetics, have definitely hindered further development on
the actual utilizations.

Until now, numerous tactics have been put forward and pullulated, aiming at ameliorating
the hydrogen storage performances of MgH2, including nanocrystallization, alloying and adding
catalysts [14–19]. In fact, plentiful literatures have shown that introducing suitable catalysts is one
of the most effective strategies for decreasing the dehydrogenation temperature and enhancing
dehydrogenation kinetics [20–22]. Thus, many kinds of catalysts have been characterized for
the dehydrogenation of MgH2, including transition metals (Ti, V, Fe, Co and Ni, etc.) and their
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composites [23–26]. Reports have shown that Ni-based complexes have displayed effective catalytic
activity for hydrogen escape from MgH2. The composite of MgH2 + 5 wt.% Ni/TiO2 is reported to
desorb 5.24 wt.% H2 in 30 min at 250 ◦C temperature [27]. Recently, Zhang et al. systematically studied
the influence of Ni morphology (including shape and size) on the hydrogen storage performances
of MgH2, and provided a guideline for designing nanostructured catalysts with high activity [28].
Moreover, the novel carbon structure is more favorable for further improving its catalytic activity
of Ni/C compounds [29–32]. The amount of released hydrogen from the MgH2@1Ni-CMK-3 was
pointed out by Jia et al. to be as high as 5.8 wt.% within 60 min at 300 ◦C [33].This could be attributed
to the porous nanostructures which provide more transfer channels for the desorption of hydrogen
from the bulk of the MgH2 materials. Hence, in the present work, the prepared one-dimensional Ni@C
nanorods are served as additive and the influences of the additive amount on the dehydrogenation
performances of MgH2-Ni@C composites are investigated comprehensively.

2. Results and Discussion

Differential scanning calorimetry (DSC) measurements were conducted to discuss the thermal
decomposition properties of MgH2-x wt.% Ni@C composites (x = 0, 1, 2, 4 and 6) and the corresponding
DSC curves in the temperature range from 200 ◦C to 450 ◦C (5 ◦C min−1 heating rate) are shown in
Figure 1. It is evident that both the onset dehydrogenation temperature and dehydrogenation peak
temperature gradually decrease with the increased Ni@C additive amount. Table 1 presents the exact
values of the onset and peak temperatures which are shown in Figure 1. The exact values of the onset
temperature in Table 1 are chosen at the intersection between the DSC plot and the baseline.
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Figure 1. Differential scanning calorimetry (DSC) plots of various MgH2-x wt.% Ni@C composites
(x = 0, 1, 2, 4 and 6).

Table 1. The dehydrogenation onset and peak temperatures of DSC plots for various MgH2-x wt.%
Ni@C composites (x = 0, 1, 2, 4 and 6).

Sample Tonset (◦C) Tpeak (◦C)

pure MgH2 343 358
MgH2-1 wt.% Ni@C 336 349
MgH2-2 wt.% Ni@C 314 325
MgH2-4 wt.% Ni@C 289 311
MgH2-6 wt.% Ni@C 286 307

The broad dehydrogenation peaks in Figure 1 of the thermal decomposition process could
be attributed to the nonuniformity of the particle sizes in MgH2. One interesting finding is
that the dehydrogenation temperature of the MgH2-Ni@C composites is lower than that of pure
MgH2 materials. This phenomenon indicates that the addition of Ni@C materials can enhance the
hydrogenation dynamic properties of MgH2.
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Temperature-programmed desorption system (TPD) tests were then carried out to further
investigate the influence of Ni@C additives on the hydrogen desorption performances of MgH2.
The TPD plots of various additive amounts of MgH2-Ni@C composites are reported in Figure 2a.
Obviously, there are two hydrogen desorption peaks without Ni@C in the pyrolysis procedure, which is
induced by uneven particle distribution. Moreover, the onset and peak temperatures of MgH2-Ni@C
composite accordingly reduce with increasing Ni@C additive dosage, which is consistent with the
DSC results. The onset temperatures of the 4 wt.% and 6 wt.% Ni@C additive dosage reduce to
182 and 191 ◦C, respectively, which is much lower than that of pure MgH2 (302 ◦C). The peak
temperatures with Ni@C additives correspondingly decrease. The dehydrogenation capacities of
the pure MgH2 and various MgH2-x wt.% Ni@C (x = 1, 2, 4 and 6) composites are 6.8%, 6.7%, 6.6%,
6.4% and 6.3%, respectively. Although the addition of Ni@C materials has distinctly decreased the
dehydrogenation temperature and enhanced the hydrogen desorption performances, the amount of
hydrogen desorption capacity for MgH2-Ni@C composites decreased due to its hydrogen nonabsorbent
activities. By comparison, it was found that the dehydrogenation temperatures of composites
with 4 wt.% and 6 wt.% Ni@C additive amounts are approximately the same, while the 6 wt.%
Ni@C additive amounts exhibited a lower hydrogen desorption capacity. Therefore, MgH2-4 wt.%
Ni@C composites have been chosen to further survey the micro-structural variation and hydrogen
desorption properties.
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Figure 2. The temperature-programmed desorption (TPD) plots (a) and the corresponding
thermally programmed H2 desorption capacity curves (b) of various MgH2-x wt.% Ni@C composites
(x = 0, 1, 2, 4 and 6).

The morphology and micro-structural features of MgH2-4 wt.% Ni@C composites before and after
dehydrogenation were characterized by transmission electron microscopy (TEM) analysis (Figure 3).
Initially, the Ni@C materials depicted a core-shell microstructure with approximately a 10 nm Ni core
and 5 nm carbon shell (Figure 3a). The size distribution (inset of Figure 3a) reflects a relatively uniform
distribution. The carbon shell possesses many porous channels which are beneficial to diffusing
hydrogen in the composites. In Figure 3b, the MgH2-4 wt.% Ni@C composites are assembled by
irregular nanoparticles, up to a hundred nm in diameter with numerous Ni@C nanoparticles on it.
After five working cycles, the MgH2-4 wt.% Ni@C composites maintain the same irregular morphology
but the particle size becomes distinctly large (Figure 3c).
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Figure 3. Transmission electron microscopy (TEM) images of Ni@C (a) (inset of size distribution),
MgH2-4 wt.% Ni@C after dehydrogenation (b), MgH2-4 wt.% Ni@C after five adsorbed-desorbed
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This is because the MgH2-4 wt.% Ni@C composites have passed through the dissociation,
diffusion, nucleation, growth and re-dissociation process of the hydrogen during the cycle. There is
interface migration, decomposition and combination of various phases in the above processes.
Lastly, these decomposition and re-combination reaction to generate magnesium hydride result in an
increase of particle size.

To better understand the hydrogen desorption kinetics of pure MgH2 materials and MgH2-4 wt.%
Ni@C composites, we now discuss the isothermal dehydrogenation curves at 300 ◦C (Figure 4).
Compared to pure MgH2, the hydrogen desorption kinetics of MgH2-4 wt.% Ni@C composites
were raised at the same temperature (300 ◦C). The MgH2-4 wt.% Ni@C composites can release
5.9 wt.% hydrogen in 5 min and 6.6 wt.% hydrogen in 20 min whereas the pure MgH2 can only
release 0.3 wt.% hydrogen in 20 min and 2.7 wt.% hydrogen in an even longer time of 120 min.
Thus, the addition of Ni@C has indeed enhanced the hydrogen desorption kinetic. Meanwhile,
the hydrogen desorption kinetics of MgH2-4 wt.% Ni@C composites at different temperatures are
evaluated in Figure 4. The dehydrogenation kinetics of MgH2-4 wt.% Ni@C composites appear to
have weakened with the temperature decrease. More specifically, the MgH2-4 wt.% Ni@C composites
can release 5.8 wt.% of hydrogen in 120 min at 230 ◦C while 5.98 wt.% of hydrogen is released in
15 min at 270 ◦C. All experimental data verify that the Ni@C materials exhibit catalytic properties for
magnesium hydride.
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composites at 230 ◦C (b), MgH2-4 wt.% Ni@C composites at 270 ◦C (c), MgH2-4 wt.% Ni@C composites
at 300 ◦C (d).
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The enhanced hydrogen desorption kinetics were then verified using the DSC measurements at
various heating rates to calculate the activation energy of MgH2-4 wt.% Ni@C composites. The DSC
plots of MgH2-4 wt.% Ni@C composites at heating rates of 2, 5, 10 and 15 ◦C min−1 are shown in
Figure 5a. There is a broad peak at different heating rates corresponding to the decomposition of
MgH2. The dehydrogenation peak temperatures, as recorded in Table 2, rise from 315 ◦C to 361 ◦C
with the increase of the heating rate. For the MgH2 thermal decomposition reaction, the following
equation can be used to calculate the activation energy [34]:

d
[

ln
(

β

T2
P

)]
d
(

1
TP

) = −EA
R

(1)

where β is the heating rate, TP is the dehydrogenation peak temperature, EA is the activation energy,
R is the gas constant. In our work, the linear relationship between ln(β/TP

2) and 1/TP has been
presented, which is well-known as the Kissinger plot (Figure 5b). Hence, the EA of the thermal
decomposition for MgH2-4 wt.% composites is calculated approximately as 112 ± 2.1 kJ mol−1

using the value of the gas constant and the slope value (–13.48 ± 0.25) from the best linear fit of
the Kissinger plot. The value of EA is lower than the reported value of MgH2/-Ni2P/GNS (157 kJ
mol−1) [35], MgH2-Ni2P (132.5 kJ mol−1) [36], MgH2-NiO (119.7 kJ mol−1) [36], and MgH2-MC10
(136 kJ mol−1) [37], which hints at the influence of the Ni@C materials on improving the hydrogen
desorption kinetics of pure MgH2 materials.
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Table 2. The dehydrogenation peak temperatures of DSC plots for MgH2-4 wt.% Ni@C composites at
various heating rates.

Heating Rate (◦C min−1) Dehydrogenation Peak (◦C)

2 315
5 331

10 345
15 361

3. Materials and Methods

Firstly, one-dimensional Ni@C nanorod materials were prepared following our initial work [38].
And commercial MgH2 powder (98 %) was bought from Alfa Aesar. Then the MgH2-x wt.% Ni@C
composites (x = 0, 1, 2, 4 and 6) were manufactured through ball-milling. The specific ball-milling
procedure was as follows: The big or small balls and the powders of MgH2 and Ni@C composites
(with weight ratio of 40:1) were put into a steel jar. The steel jar was then fixed on the planetary ball
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mill and milled for 5 h at 450 rpm at the ambient temperature. The manipulations were conducted in a
glovebox (O2 < 10 ppm; H2O < 10 ppm) to prevent moisture and oxygen.

The chemical constitution and fine structure of the MgH2-x wt.% Ni@C composites were
carried out by X-ray diffraction (XRD, Rigaku D/Max-2500, Tokyo, Japan) and transmission electron
microscopy (TEM, FEI Tecnai, Eindhoven, The Netherlands). The thermal decomposition properties of
the composites were conducted by differential scanning calorimetry at 2, 5, 10 and 10 ◦C min−1 heating
rates (DSC, Q20P, TA, Wilmington, DE, USA) and temperature-programmed desorption system with a
0.5 ◦C min−1 heating rate (TPD, PX200, Tianjin Golden Eagle Technology Co., Ltd., Tianjin, China).
The high-purity Ar was used as a protective and sweeping gas during the DSC measurement. The Ar
gas flow rate (30 mL min−1), the temperature range (50–450 ◦C) and the sample mass (7.5 ± 0.5 mg)
were used for the DSC measurement. As for the TPD tests, the Ar gas flow rate was 35.1 mL min−1

and the temperature range was set at 50–500 ◦C. The sample mass was approximately 69 ± 2 mg in
the TPD tests. The hydrogen absorption–desorption tests were characterized at different temperatures
on a self-constructed Sievert’s device.

4. Conclusions

In brief, the MgH2-x wt.% Ni@C (x = 0, 1, 2, 4 and 6) composites were prepared by ball-milling
means. The hydrogen desorption properties of the MgH2-x wt.% Ni@C (x = 0, 1, 2, 4 and 6)
composites were systematically investigated and the exact effects of the Ni@C materials addition
on it have been discussed in this work. The experimental data suggest that the addition of the
Ni@C materials can positively enhance the dehydrogenation kinetics of MgH2-Ni@C composites.
Moreover, the optimized additive amount of the Ni@C materials was 4 wt.%, which is beneficial
to decreasing the dehydrogenation temperature and maintaining an adequate hydrogen desorption
amount. The MgH2-4 wt.% Ni@C composites can release 5.9 wt.% hydrogen in 5 min and 6.6 wt.%
hydrogen in 20 min, whereas the pure MgH2 can only release 0.3 wt.% hydrogen in 20 min and
2.7 wt.% hydrogen in an even longer time of 120 min. The activation energy EA of the MgH2-4 wt.%
Ni@C composites was determined to be 112 kJ mol−1, which further demonstrates that the Ni@C could
effectively enhance the hydrogen desorption kinetics of pure MgH2.
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