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Digoxin is a high-alert medication because of its narrow therapeutic range and high drug-to-drug interactions (DDIs). Ap-
proximately 50% of digoxin toxicity cases are preventable, which motivated us to improve the treatment outcomes of digoxin.-e
objective of this study is to apply machine learning techniques to predict the appropriateness of initial digoxin dosage. A total of
307 inpatients who had their conditions treated with digoxin between 2004 and 2013 at a medical center in Taiwan were collected
in the study. Ten independent variables, including demographic information, laboratory data, and whether the patients had CHF
were also noted. A patient with serum digoxin concentration being controlled at 0.5–0.9 ng/mL after his/her initial digoxin dosage
was defined as having an appropriate use of digoxin; otherwise, a patient was defined as having an inappropriate use of digoxin.
Weka 3.7.3, an open source machine learning software, was adopted to develop prediction models. Six machine learning
techniques were considered, including decision tree (C4.5), k-nearest neighbors (kNN), classification and regression tree (CART),
randomForest (RF), multilayer perceptron (MLP), and logistic regression (LGR). In the non-DDI group, the area under ROC
curve (AUC) of RF (0.912) was excellent, followed by that of MLP (0.813), CART (0.791), and C4.5 (0.784); the remaining
classifiers performed poorly. For the DDI group, the AUC of RF (0.892) was the best, followed by CART (0.795), MLP (0.777), and
C4.5 (0.774); the other classifiers’ performances were less than ideal. -e decision tree-based approaches and MLP exhibited
markedly superior accuracy performance, regardless of DDI status. Although digoxin is a high-alert medication, its initial dose can
be accurately determined by using data mining techniques such as decision tree-based and MLP approaches. Developing a dosage
decision support system may serve as a supplementary tool for clinicians and also increase drug safety in clinical practice.

1. Introduction

Digoxin is the only oral heart medication approved by the
United States Food and Drug Administration for use in
enhancing positive inotropic effects and treating congestive
heart failure (CHF). Because of its narrow therapeutic range
and high drug-drug interactions (DDIs), digoxin is on the
list of high-alert medications. Concentration changes of
digoxin in the body are related to factors such as physio-
logical characteristics, disease state, and coadministered

drugs. Inappropriate dosages resulting in excessive drug
concentrations in the body can cause numerous adverse
reactions that affect the functioning of multiple organs [1, 2].

Digoxin toxicity is ranked fourth among adverse drug
events (ADEs) involving older adults [3]. Digoxin also ranks
among the top ten drugs requiring the interdisciplinary
approaches of physicians, pharmacists, and nurses to jointly
provide drug-related care [4]. Although the digoxin usage
rate declined from 31.4% in 2001 to 23.5% in 2004, this trend
was not reflected in the number of hospitalizations for
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digoxin toxicity, which indicates the difficulty involved in
determining the appropriate dosage [5].

Digoxin-specific antibodies can be acutely administered
to patients with digoxin toxicity; however, because adverse
reactions occur directly in the heart or in the central nervous
system, death may occur within a short time in severe cases.
A previous study reported that when the serum digoxin
concentration (SDC) exceeds 1.2 ng/mL, the mortality rate
of patients who administered digoxin was 11.8% higher than
that of patients in the placebo group [6].

Digoxin toxicity elevates mortality rates and increases
medical costs. Gandhi et al. [7] indicated that the mean
length of stay in the hospital as a result of digoxin toxicity
was 3.3± 1.2 days, and the mean overall cost associated with
digoxin toxicity was US$4087.05±US$2659.76. Moreover,
these increased expenditures correlated significantly with
increased SDC. According to reports in [1, 8], approximately
50% of digoxin toxicity cases are preventable, which mo-
tivated us to improve the treatment outcomes of digoxin,
reduce the incidence rate of digoxin toxicity, and minimize
the related medical costs.

Recent studies [9–17] on pharmacogenetics have in-
vestigated the influence of the ABCB1 gene polymorphism
on SDC; however, the correlation between these two factors
remains unclear, and conclusions have been inconsistent.
Hoffmeyer et al. [11] reported an association of the ABCB1
gene polymorphism with SDC, and some investigators
[12, 13, 16] confirmed the result of Hoffmeyer et al. [11]; on
the other hand, Sakaeda et al. [15] contended that ABCB1
genotypes minimally influences digoxin pharmacokinetics,
and Kurzawski et al. [17] noted that compared with other
factors (i.e., age, diseases, herbs, and coadministered drugs),
ABCB1 polymorphism slightly influences the digoxin level.
In clinical practice, genetic testing is expensive and time-
consuming, and its practical benefits in terms of determining
an appropriate dosage remain unconfirmed. -erefore,
using relatively inexpensive and accessible laboratory data to
construct multiple prediction models is a feasible direction
for future studies.

Recently, many researchers have applied statistical-based
techniques to construct digoxin dosage prediction equations
or models from clinical features. However, those studies
considered relatively few variables and used tools that
possessed poor prediction ability. -erefore, how to develop
a robust digoxin dosage prediction model from clinical
records is still a challenging task.

-is study collaborated with a medical center in
Taiwan and collected personal information of 307 in-
patients who received digoxin treatment during the pe-
riod of 2004–2013. Numerous studies have proven that
machine learning techniques demonstrate superior per-
formance on building prediction models. -erefore,
a number of machine learning techniques, including
decision tree (C4.5), k-nearest neighbors (kNN), classi-
fication and regression tree (CART), randomForest (RF),
multilayer perceptron (MLP), and logistic regression
(LGR), were used to construct prediction models for
digoxin dosage adequacy. To evaluate the performance of
the constructed classification systems, the accuracy,

sensitivity, specificity, and the area under the ROC curve
(AUC) of each classifier were assessed.

-e paper is structured as follows: Section 2 presents the
work related to digoxin dosage determination. Section 3
provides the preparation of data, experimental setup, and
performance measures. Sections 4 and 5 present thorough
experimental results and discussions. Section 6 concludes
our study.

2. Related Work

In recent years, a number of methods have been proposed to
predict digoxin dosage and treatment appropriateness (as
shown in Table 1). -ese methods are largely statistical-
based techniques, such as regression model, Konishi
equation, and the pharmacokinetics-based nonlinear mixed-
effect modeling (NONMEM). For example, the NONMEM
is a widely implemented method that enables physicians to
estimate the appropriate dosage of a drug by calculating the
SDC or clearance rate. When establishing a pharmacoki-
netics model, one must possess a complete understanding of
various statistical models, including parameters related to
pharmacokinetics structural models. However, Tolle et al.
[37] argued that the performance of pharmacokinetic
modeling can be significantly affected by population char-
acteristics of patients andmany other interference factors. In
addition, the pharmacological properties of digoxin are
more complex than those of other drugs, and its parameters
are not easily established. As a result, developing a statistical-
based model to digoxin dosage prediction is highly difficult.

Few recent studies have applied machine learning
techniques to digoxin treatment decisions. For example,
Albert et al. [8] applied artificial neural network (ANN) to
predict toxicity after digoxin administration, and results
showed the performance of the neural network model better
than the logistic regressions one in both sensitivity and
specificity. Mart́ın et al. [24] also adopted ANN to predict
digoxin toxicity and reported similar outcomes. However,
ANN-based methods have poor interpretability. Clinicians
cannot easily understand the output generated by ANN,
which limit its clinical applications.

Previous studies reveal that considering SDC or the
clearance of digoxin (CL) provides promising prediction
results. In clinical practice, physicians normally test patients’
SDC, and adjust medication dose according to therapeutic
drug monitoring (TDM) and personal experience. However,
for patients receiving such medications for the first time,
physicians are unable to perform dose evaluation via SDC or
CL. -erefore, our primary goal of this study was to apply
machine learning techniques to propose an alternative ap-
proach that could facilitate the prediction of the initial
dosage adequacy of digoxin.

In addition, previous studies utilized different pop-
ulation of ethnic groups to develop various prediction
models, which reveals that ethnicity is an important factor in
digoxin dosing. To the best of our knowledge, this study first
adopts machine learning techniques to construct digoxin
dosage prediction models for the Chinese ethnic group; our
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results can provide significant information in clinical de-
cision support.

Our main contribution of this work is to construct more
practical and robust prediction systems, including all drugs
having DDI when combined with digoxin is indispensable.
-e research results indicated that using a high-performance
classification model can effectively improve the prediction
accuracy rate, thereby confirming the value of this technique
in clinical applications.

3. Materials and Methods

3.1. Data. Research data were obtained through a medical
records database at a medical center in Taiwan; specifically,
the medical records were of patients who had been hos-
pitalized and had their conditions treated with digoxin
between 2004 and 2013. In addition, because some of the
patients may have taken digoxin prior to hospitalization,
a 3-month washout period was imposed to ensure the
accuracy of the prediction models after considering the
drug’s half-life (i.e., 36 to 48 hours with normal renal
function) [38]. -erefore, patients who had consumed
digoxin within 3 months prior to hospitalization were
excluded from this study. -e Chang Gung Memorial
Hospital Institutional Review Board approved the study
protocol (105-0542C). Written consent from the study was
deemed unnecessary because the dataset comprises only
deidentified secondary data for research purposes, and the
Chang Gung Memorial Hospital Institutional Review
Board issued a formal written waiver of the need for
consent and approved the study.

In addition, the medical records indicated that most of
the patients had been prescribed half a digoxin pill per day
(i.e., 0.125mg daily) as an initial dosage. To obtain more
reliable results, therefore, this study only selected the pa-
tients who had been prescribed 0.125mg daily as the study
samples.

To construct the prediction models, each patient was
classified based on whether the treatment was considered to
be appropriate or inappropriate (i.e., dependent variable).
Currently, SDC is the primary reference indicator for de-
termining the appropriate dosage of digoxin; if the SDC is
controlled at 0.5–0.9 ng/mL, this can effectively reduce all-
cause mortality and hospitalization rates [2, 20]. -erefore,
a patient with SDC being controlled at 0.5–0.9 ng/mL after
his/her initial digoxin dosage was defined as having an
appropriate use of digoxin; otherwise, a patient was defined
as having an inappropriate use of digoxin.

Each hospitalization record contained 10 independent
variables, including demographic information (i.e., sex, age,
and weight) and test data (i.e., alanine aminotransferase
(ALT), aspartate aminotransferase (AST), serum creatinine
concentrations (SCr), blood urea nitrogen (BUN), albumin
(ALB), and serum (K+)). Whether the patients had any
specific illnesses (CHF) was also noted.

Furthermore, DDI was another critical factor on digoxin
dosage determination and required consideration before
constructing the prediction models because it can affect SDC
performance and threaten the patient’s life in severe cases

[1, 2]. -erefore, we referenced DDI information released by
the Ministry of Health andWelfare in Taiwan and compared
this information with records from the drug registry used at
the studied medical center, subsequently identifying 26
drugs that are known to produce major DDIs when coad-
ministered with digoxin (Table 2). -e risk of DDI was
considered for the patients who were prescribed any of the
drugs listed in Table 2 while undergoing digoxin therapy,
and the data observations were accordingly categorized as
“with DDIs” or “without DDIs” before conducting the
analysis.

To construct highly reliable digoxin dosage prediction
models, the collected 307 clinical cases were then further
divided into two datasets: one containing 222 cases with
DDIs (i.e., DDI group) and the other containing 85 cases
without DDI (i.e., non-DDI group).

3.2. Experimental Setup. To develop prediction models
for evaluating the appropriateness of initial dosage of di-
goxin, this study adopted Weka 3.7.3 (www.cs.waikato.ac.
nz/ml/weka), an open source machine learning software. A
number of machine learning techniques were considered,
including decision tree (C4.5), k-nearest neighbors (kNN),
classification and regression tree (CART), randomForest
(RF), multilayer perceptron (MLP), and logistic regression
(LGR). In addition, the prediction performance of machine
learning techniques can be significantly influenced by the
internal parameter setting. To optimize the prediction
performance of the selected techniques, the CVPar-
ameterSelection metalearner module implemented in Weka
was used. In this module, we first selected a prediction
technique and specified various parameter combinations.
-e algorithm then automatically searched the optimal
parameter setting based on the best prediction results using
cross validation. -e parameter settings used in this study is
listed in Table 3.

Previous study showed that the class imbalance problem
can significantly affect the learning performance [39]. To
improve the classification performance, a resample module
inWeka is adopted to modify the distribution of instances of
two classes. Specifically, the distribution of the class label is
modified to be almost identical by oversampling the in-
adequate class and undersampling the adequate class. In
addition, the random resample technique is applied thirty
times to construct datasets; for each generated dataset, ten-
fold cross validation is then applied in all the experimental
evaluations [40]. Specifically, each dataset is partitioned into

Table 2: A list of medicines causing major DDI when combined
with digoxin.
Amiodarone Dronedarone Norepinephrine Spironolactone
Alprazolam Epinephrine Oxytetracycline Succinylcholine
Boceprevir Erythromycin Propafenone Tetracycline
Calcium
carbonate Indomethacin Propantheline -iazide

diuretics
Clarithromycin Itraconazole Quinidine Verapamil
Dopamine Mifepristone Ritonavir
Doxycycline Minocycline Saquinavir
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ten complementary subsets, wherein any nine were used for
model training, and the remaining subset was used for
model testing.

3.3. Performance Measures. To evaluate the performance of
the constructed classification systems (i.e., prediction
models), the accuracy, sensitivity, and specificity of each
classifier was assessed. -ese were measured using a con-
fusion matrix, as shown in Table 4.

-e prediction accuracy, sensitivity, and specificity were
obtained using the following formulas:

Accuracy �
a + d

a + b + c + d
,

Sensitivity �
a

a + b
,

Specificity �
d

c + d
.

(1)

In addition to use the performance measures, the receiver
operating characteristic (ROC) curve is plotted, and the area
under the ROC curve (AUC) is also calculated. -e ROC curve
can illustrate the performance of a binary classifier as its dis-
crimination threshold is varied. It can be generated by plotting
the sensitivity against (1−specificity) at different discrimination
threshold settings. When using normalized units, the AUC is
equal to the probability that a classifier will rank a randomly
chosen positive (i.e., adequate digoxin dosage) sample higher
than a randomly chosen negative (i.e., inadequate digoxin
dosage) one. Hosmer and Lemeshow [41] provide general rules
to categorize the evaluation performance using the AUC as
“excellent” if AUC≥ 0.9, “good” if 0.9>AUC≥ 0.8, “fair” if
0.8>AUC≥ 0.7, “poor” if 0.7>AUC≥ 0.6, and “`very poor” if
AUC< 0.6.

4. Results

Table 5 lists variables and descriptive statistics of the non-DDI
and DDI groups. As mentioned earlier, there were 222 in-
patient cases drawn from the group with DDIs and 85 cases
without DDIs, resulting in 307 valid clinical cases in total.

Table 6 shows the experimental results of the non-DDI
and DDI groups, which were analyzed using 6 specific
classification techniques. Sensitivity, specificity, accuracy,
and area under the curve (AUC) were employed to evaluate
the effectiveness of the prediction models. To facilitate result
interpretation, the means and standard deviations of the
above four metrics from 30 datasets are listed in the table.

Regarding the accuracy of the prediction models for the
non-DDI group, the RF result was the most favorable (83.9%),
followed by the MLP result (80.9%), and CART and C4.5
yielded accuracy rates above 75%. -e remaining classifiers
performed poorly, all of which yielded accuracy rates below
65%. Because of its complex medication regimens, the DDI
group generally exhibited prediction accuracies that were
lower than those of the non-DDI group. However, for the DDI
group, the RF (80.5%) continued to yield the most favorable
result (80.5%), followed by the MLP, CART, and C4.5. -e
other classifiers performed poorly, yielding no result higher
than 60.2%. Overall, the decision tree-based approaches
(i.e., RF, C4.5, and CART) and MLP exhibited markedly
superior accuracy performance, regardless of DDI status.

-e AUC performance values were distributed in the
0.533–0.912 range. In the non-DDI group, RF was excellent,
followed by MLP, CART and C4.5; the remaining classifiers
performed poorly. For the DDI group, the RF performance
was the best (0.892; good), followed by CART, MLP, and
C4.5; the other classifiers’ performances were less than ideal.

Finally, a comprehensive assessment of the various in-
dicators revealed that, regardless of DDI status, the decision
tree-based classifiers clearly outperformed the kNN and LGR
classifiers, demonstrating the superior accuracy of the decision
tree-based approaches for predicting appropriate dosages.

5. Discussion

-e safety of using high-alert medications such as digoxin is
a pressing topic [1, 2, 8]. Previous studies have employed

Table 3: Parameter settings in WEKA.

Method Parameters Value/Range Best parameter setting

J48 Confidence factor 0.1–0.5 0.25
Minimum number of instances per leaf 2–50 2

IBk Number of neighbors 2–10 2
SimpleCART Minimum number of instances per leaf 2–50 2

RandomForest Number of trees 5–10 10
Number of attributes to be used in random selection 2–8 4

Multilayer perceptron

Number of hidden nodes 3–14 7
Learning rate 0.1–0.6 0.3

Momentum factor 0–0.9 0.2
Maximum number of epochs 300–1000 500

AdaBoostM1 Number of iterations 10 10
Weight threshold for pruning 100 100

Table 4: Confusion matrix.

Predicted class
Adequate Inadequate

Actual class Adequate a b
Inadequate c d

Journal of Healthcare Engineering 5



statistical models [1, 2, 20, 22, 25] and pharmacokinetics
[18, 21, 23, 26, 28, 29, 31–36], and data mining and machine
learning techniques have only recently been adopted to
improve model predictability [8, 24]. -is study investigated
decision tree-based approaches, which were identified to
exhibit an average performance superior to that of other
techniques. In addition, the information obtained through
decision tree-based approaches can be presented as if–then
rules that physicians can refer to determine the appropriate
dosage of digoxin to prescribe to patients.

Among the investigated three decision tree-based ap-
proaches, an RF classifier exhibited the optimal prediction
performance. RF is an ensemble classifier that combines
bagging and decision tree techniques. Let m be the number
of variables and n be the number of instances, the time
complexity for constructing an unpruned decision tree is
O(m · n · log(n)). In building RF classifier, one should define
the number of bootstrap sample sets (denoted as nbt) and
the number of variables that can be randomly selected for
each sample set (denoted as nvar). -erefore, the complexity
of building an RF classifier is O(nbt · nvar · n · log(n)).

In addition to comparing the predictive capabilities of
various classification techniques, this study further evaluated
the importance of multiple variables to provide a reference
for clinicians. As shown in Table 5, 10 variables were used in
analysis, which is more than the number of variables ex-
amined in previous studies. Furthermore, previous studies

have evaluated only 8 drug types for DDIs; in this study,
a total of 26 drugs with major DDI effects were included.

By calculating gain ratios, we found that the most crucial
variables influencing dosage appropriateness were in the
order SCr, serum K+, CHF, and DDI (as shown in Table 7).
Following a discussion with the physicians and pharmacists
at the case medical center, the validity of the aforementioned
results is described as follows.

First, SCr is a major indicator of renal function. Because
digoxin in the body is mainly excreted through the kidneys,
poor renal functionmay result in a longer half-life of digoxin
in the body and an elevated SDC, thereby inducing digoxin
toxicity. We presented that renal function plays a significant
role for the SDC, and the finding is consistent with the
results of earlier studies about digoxin doses in patients with
renal failure [42–45]. -erefore, clinicians should consider
prescribing a low dosage of digoxin to patients with poor
renal function. Furthermore, our study indicated that serum
K+ is also a critical factor of dosage appropriateness. Di-
goxin’s primary mechanism of action involves inhibition of
the sodium potassium adenosine triphosphatase (Na+/K+
ATPase), mainly in themyocardium. Because potassium and
digoxin compete for the same ATPase-binding site, exces-
sively low concentrations of potassium ions in the body
cause the cardiomyocytes to absorb additional digoxin,
thereby increasing toxicity risk [46–50].-erefore, clinicians
should monitor their patients’ electrolyte levels (particularly

Table 5: Summary statistics for the non-DDI and DDI groups.

Variable
Non-DDI group DDI group

Range Summary statistics Range Summary statistics

Gender Male/female Male: 40 Male/female Male: 121
Female: 45 Female: 101

Age (years) 38 to 94 μ� 73.95, σ � 10.53 23 to 101 μ� 74.84, σ � 11.28
Weight (kg) 35 to 89 μ� 57.37, σ � 10.62 33 to 105 μ� 55.95, σ � 12.90
SDC 0.2 to 2.4 μ� 0.628, σ � 0.470 0.2 to 4.3 μ� 0.85, σ � 0.59
ALT 8 to 475 μ� 46.05, σ � 81.74 5 to 1381 μ� 85.26, σ � 191.95
AST 17 to 1776 μ� 169.69, σ � 437.21 12 to 2615 μ� 105.77, σ � 290.97
SCr 0.38 to 3.55 μ� 1.046, σ � 0.653 0.29 to 12.1 μ� 1.361, σ � 1.270
BUN 1.9 to 83 μ� 21.43, σ � 14.50 2 to 219 μ� 35.49, σ � 30.10
ALB 1.4 to 4.2 μ� 2.913, σ � 0.597 1.1 to 4.2 μ� 2.546, σ � 0.611
K+ 2.5 to 5.4 μ� 3.96, σ � 0.614 2.69 to 6.80 μ� 3.979, σ � 0.723
CHF Yes/no Yes: 35/no: 50 Yes/no Yes: 132/no: 90

Table 6: Performance evaluation of the classifiers for the non-DDI and DDI groups.

Group Method Sensitivity Specificity Accuracy AUC

Non-DDI

C4.5 0.705/0.091 0.806/0.078 0.759/0.061 0.784/0.065
CART 0.696/0.095 0.825/0.067 0.765/0.055 0.791/0.057
RF 0.782/0.090 0.888/0.054 0 0.839/0.041 0.912/0.032
kNN 0.619/0.172 0.547/0.162 0.592/0.068 0.606/0.070
LGR 0.566/0.145 0.715/0.117 0.648/0.078 0.661/0.097
MLP 0.741/0.091 0.871/0.057 0.809/0.059 0.813/0.071

DDI

C4.5 0.701/0.060 0.759/0.050 0.732/0.029 0.774/0.030
CART 0.728/0.051 0.776/0.050 0.754/0.031 0.795/0.031
RF 0.790/0.050 0.817/0.043 0.805/0.027 0.892/0.020
kNN 0.545/0.094 0.651/0.087 0.602/0.042 0.634/0.048
LGR 0.464/0.139 0.621/0.145 0.551/0.042 0.556/0.058
MLP 0.745/0.058 0.799/0.042 0.774/0.037 0.777/0.051
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serumK+) to facilitate dosage adjustment. Second, one of the
major indications for using digoxin is CHF, and accumu-
lative evidences indicate that low-dose digoxin can reduce
hospitalization and mortality in patients with heart failure
[51–53]. However, a history of CHF may influence the
metabolism of digoxin. Previous studies showed that digoxin
absorption is slower, and peak concentration is lower in
patients with CHF than in healthy volunteers due to reduced
gastrointestinal motility, congestion in the gut wall, and
reduced splanchnic blood flow in patients with CHF [54–
56], thereby causing changes of SDC. Finally, DDI involving
high-alert medications has gained considerable attention in
the field of medicine, particularly digoxin, which has
a narrow therapeutic concentration range [2, 8, 18, 20, 23,
24, 27–31, 34–36]. DDI involving digoxin can easily lead to
an elevated SDC and subsequent toxicity reaction [57].
Although this study included only drugs that are known to
produce major DDI with digoxin, the results are sufficient
for confirming the importance of DDI. -e results also con-
firmed that adequate laboratory information can effectively
assist physicians in determining the appropriate dosage.

6. Conclusion

Medication safety has received considerable attention in the
medical community in recent years. It is particularly crucial for
high-alert medications that have a narrow therapeutic range or
easily induce toxicity. Digoxin is a high-alert medication, and
prescribing an inappropriate dosage of digoxin can easily
cause severe side effects and even fatality. -e objective of this
study was to predict the appropriateness of the initial dosage of
digoxin. Six classification techniques were adopted to establish
multiple classification models for predicting dosage appro-
priateness. -e medical records of 307 hospitalized patients
were used to confirm that the prediction accuracy rates of all
adopted techniques exceeded those of the physicians in the
actual patient cases. Overall, the RF prediction model
exhibited the optimal effectiveness; the decision tree-based
approaches exhibited favorable performance and can be used
by clinicians as aid for making clinical dosage decisions.

Although digoxin is characterized by complex phar-
macological properties, this study confirmed that the ade-
quate use of laboratory data and consideration of numerous
variables can yield favorable prediction effectiveness. In
conjunction with clinical experience, the suggested pre-
diction models can facilitate clinicians making a proper
decision in practice. -e improvement in the safe use of
digoxin will be of benefit to both clinicians and patients.

Some limitations of the present study should be addressed
because they may restrict generalizability and are indicative of

the need for further research. First, the data used in this study
were collected from a single medical institution. Proceeding
with the evaluations of clinical cases from other hospitals is
critical for confirming the validity of the model. Second, other
potentially valuable features, such as data collected from the
nursing information system and clinical pathway, can be
considered for use in the model. Finally, because most of the
inpatients took half a digoxin pill per day as an initial dosage in
the case hospital, this study only focused on evaluating the
adequacy of prescribing 0.125mg digoxin as an initial dosage
for the inpatients daily. Future studies may directly predict
adequate digoxin dosage when a large enough number of
samples are collected.
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