
June 2018 | Volume 9 | Article 12721

Review
published: 06 June 2018

doi: 10.3389/fimmu.2018.01272

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Francesca Chiodi,  

Karolinska Institutet (KI),  
Sweden

Reviewed by: 
Savita Pahwa,  

University of Miami,  
United States  

Monica Vaccari,  
National Institutes of Health  

(NIH), United States

*Correspondence:
Vijayakumar Velu 

vvelu@emory.edu; 
Rama Rao Amara 

ramara@emory.edu

Specialty section: 
This article was submitted  

to Viral Immunology,  
a section of the journal  

Frontiers in Immunology

Received: 21 February 2018
Accepted: 22 May 2018

Published: 06 June 2018

Citation: 
Velu V, Mylvaganam G, Ibegbu C and 

Amara RR (2018) Tfh1 Cells in 
Germinal Centers During Chronic 

HIV/SIV Infection. 
Front. Immunol. 9:1272. 

doi: 10.3389/fimmu.2018.01272

Tfh1 Cells in Germinal Centers 
During Chronic Hiv/Siv infection
Vijayakumar Velu 1,2*, Geetha Mylvaganam 3, Chris Ibegbu1,2 and Rama Rao Amara 1,2*

1 Emory Vaccine Center, Emory University, Atlanta, GA, United States, 2 Yerkes National Primate Research Center, Emory 
University, Atlanta, GA, United States, 3 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of 
Technology, Harvard, Cambridge, MA, United States

T follicular helper CD4 cells (Tfh) are essential for the development and maintenance of 
germinal center (GC) reactions, a critical process that promotes the generation of long-
lived high affinity humoral immunity. It is becoming increasingly evident that GC-Tfh cells 
are heterogeneous in nature with some cellular characteristics associated with a Th1, 
Th2, and Th17 phenotype. Emerging studies suggest that GC-Tfh cells are directed to 
differentiate into distinct phenotypes during chronic HIV/SIV infection and these changes 
in GC-Tfh cells can greatly impact the B cell response and subclass of antibodies gen-
erated. Studies in HIV-infected humans have shown that certain Tfh phenotypes are 
associated with the generation of broadly neutralizing antibody responses. Moreover, 
the susceptibility of particular GC-Tfh subsets to HIV infection within the secondary 
lymphoid sites can also impact GC-Tfh/B cell interactions. In this review, we discuss 
the recent advances that show Tfh heterogeneity during chronic HIV/SIV infection. In 
particular, we will discuss the dynamics of GC-Tfh cells, their altered differentiation state 
and function, and their impact on B cell responses during HIV/SIV infection. In addition, 
we will also discuss the potential role of a recently described novel subset of follicular 
homing CXCR5+ CD8 T  cells (Tfc) and their importance in contributing to control of 
chronic HIV/SIV infection. A better understanding of the mechanistic role of follicular 
homing CD4 and CD8 T cells during HIV/SIV infection will aid in the design of vaccines 
and therapeutic strategies to prevent and treat HIV/AIDS.
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iNTRODUCTiON

Lymphoid organs are the primary anatomical compartments for the generation of an effective 
adaptive immune response. CD4 T cells play a central role in the generation of adaptive immunity 
by providing help to both B cells and CD8 T cells (1, 2). CD4 T helper cells comprise of multiple 
subsets, including Th1, Th2, Th17, Tfh, Th9, Th22, Th-CTL, and T-regulatory cells (1, 3–5), and 
the generation of each subset is regulated by specific transcription factors and cognate cytokines 
(3). Among the various subsets of CD4 T cells, the follicular CD4 T cells (Tfh) reside in the B cell 
follicles and germinal centers (GC) of lymphoid tissue and play a major role in providing B cell 
help for the generation of high affinity antibody and long-lived memory B cell response (6, 7). Tfh 
cells are characterized by the expression of the chemokine receptor CXCR5 (required for homing 
to B cell follicles), PD-1, CD40L, and ICOS, and the transcription factor Bcl-6 (Figure 1) (8). These 
cells secrete the cytokines IL-21, IL-4, and IL-10 (6). A subset of Tfh cells reside within the GCs 
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FiGURe 1 | Altered differentiation of Tfh cells during chronic HIV/SIV infection. Following antigenic stimulation naïve CD4 T cells differentiate into different  
helper T cells and the presence of cytokines, such as IL-12, IL-23, and TGFβ promote differentiation into Tfh cells. Upon further interaction with B cells, these  
Tfh differentiate into germinal center (GC)-Tfh and migrate to GC. GC-Tfh can further differentiate into Tfh1 cells that can be mediated by the high levels of IFNγ  
and IP-10 produced during chronic HIV/SIV infection. The GC-resident Tfr cells can regulate the magnitude and function of GC-Tfh.
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(GC-Tfh) (Figure 1), interact with GC-B cells, and facilitate affin-
ity maturation and Ig class switching (9–12). The GC-Tfh cells 
express higher levels of PD-1 and Bcl-6 compared to Tfh cells that 
reside outside the GC. The interaction between Tfh and B cells is 
mediated by cell associated and soluble factors, including CD40L 
and ICOS, and IL-21, IL-10, and IL-4 (1, 6). GCs also consist of a 
subset of regulatory CD4 T cells called follicular regulatory cells 
(Tfr), which aid in regulating Tfh responses during GC reactions 
(Figure  1) (13, 14). Blood counterparts of lymph node (LN) 
resident Tfh have also been identified (15) and similar to LN-Tfh 
cells, these peripheral Tfh cells (pTfh) have been shown to provide 
help to B cells in vitro (15–17).

The linear multistage Tfh differentiation pathway implicates 
cooperation between multiple antigen-specific interactions and 
signaling pathways to imprint Tfh differentiation program in the 
secondary lymphoid organs (7). These include TCR activation, 
costimulation, cytokines and chemokine receptors. Now it is well 
established that the co-stimulatory receptors, such as ICOS, CD40L, 
and cytokines, such as IL-12, IL-23, TGF-β, IL-6, and SLAM fam-
ily receptors regulate the Tfh differentiation program. Although 
IL-12 has been shown to be essential for Th1 differentiation, it 
has also been shown to be important for Tfh cell differentiation in 
humans (6, 17–20). An early step in the differentiation of human 
Tfh cells is the upregulation of CXCR5 that is strongly induced by 

the combination of cytokines IL-12, IL-23, and TGF-β (Figure 1) 
(18). The expression of cell surface CXCR5 allows for trafficking 
of Tfh cells along a CXCL13 chemokine gradient into lymphoid 
B cell follicles (21, 22). Recently, Activin A has been identified as 
a novel regulator that enhances the expression of multiple genes 
associated with the Tfh program (23), however, this program was 
conserved in humans and macaques but not in mice.

Tfh cells have been extensively studied in the LN of chronic 
HIV-infected humans and SIV-infected rhesus macaques (RM) 
(24–26). HIV infection is associated with altered T and B cell dif-
ferentiation and enhanced frequencies of Tfh and B cell follicles 
within secondary lymphoid sites. Characterization of LN Tfh 
cells during chronic HIV infection has demonstrated impaired 
B cell help in vitro (27, 28). Furthermore, LN-resident Tfh cells are 
targeted early after SIV infection and constitute a major fraction 
of latent reservoirs during highly active anti-retroviral therapy 
(ART) (29–31). Despite their high susceptibility to HIV/SIV 
infection, many studies including our own reported an accumu-
lation of both tissue resident (32, 33) and circulating Tfh cells 
during the early chronic phase of HIV/SIV infection (34, 35). In 
this review, we focus on the recent reports that studied the Tfh cell 
accumulation, differentiation and heterogeneity during chronic 
HIV/SIV infection, and discuss the influence of these changes in 
Tfh cells on the GC response.
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FiGURe 2 | A model showing the status of different germinal center (GC)-Tfh cell subsets during chronic HIV/SIV infection. Tfh cells present as phenotypically 
distinct subsets with expression of different chemokine receptors pertaining to different lineages of helper CD4 T cells. Upon activation during chronic SIV/HIV 
infection, there is a massive enrichment of CXCR3+ Tfh cells within the Tfh population in the GC of the lymph node, which in turn drives rapid accumulation of  
Tfh1 cells. Typical progressors will present with hyperplastic follicles containing a high density of GC-Tfh cells with high levels of CXCR3 expression.
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DYNAMiCS OF Tfh CeLLS DURiNG 
CHRONiC Hiv AND Siv iNFeCTiONS

Multiple studies including our own have characterized the Tfh 
cells in the LNs during chronic HIV infection in humans (27, 29, 
36, 37) and SIV infection in RMs (33, 35, 38–40). These studies 
demonstrated a marked increase in Tfh cells during chronic SIV 
infection and this increase in Tfh cells has been shown to be 
associated with higher HIV/SIV replication (27, 29, 33, 35, 38). 
Importantly, this increase in Tfh cells occurs despite their high 
frequency of infection in vivo and in vitro. Additionally, Tfh cells 
constitute a significant portion of the HIV/SIV reservoir (31, 32, 
35, 36, 40–42). It has been shown that infection of Tfh cells occurs 
early in the course of SIV infection and persists throughout the 
course of disease progression (42). Although longitudinal studies 
in HIV-infected humans are yet to be done, cross-sectional stud-
ies suggest a similar profile of infection (27, 29, 31). However, 
Tfh in lymphoid tissues are eventually depleted in macaques 
with end-stage AIDS (40). It is also important to note that rapid 
progressing SIV infection results in severe follicular involution in 
lymphoid tissues, while on the contrary, animals that are typical 
progressors show lymphadenopathy with confluent GCs and fol-
licular hyperplasia (43) (Figure 2). In addition, there is increasing 
evidence to suggest that follicular hyperplasia does not completely 

resolve following ART (44) and that the preferential carriage of 
HIV in Tfh cells during ART therapy (31, 45) contributes to the 
persistent and intractable viral reservoir in ART-treated patients. 
The mechanisms that contribute to increased Tfh cells during 
acute HIV/SIV infection are not completely clear. However, the 
increased levels of IL-6, TGF-β, and IL-21 during chronic HIV/
SIV infection could contribute significantly to their expansion 
(Figure 1). In addition, factors such as relative exclusion of fol-
licular CD8 T  cells in B  cell follicles, lack of regulation by Tfr  
(T follicular regulatory cells), lack of follicular NK cells, persis-
tence antigen stimulation, and immune inflammation all these 
above factors contribute to the rapid accumulation of Tfh cells in 
lymphoid follicles during chronic HIV/SIV infection. Although 
there is an aberrant expansion of Tfh cells during chronic HIV 
infection, these cells are providing inadequate help to B cells. One 
important issue with GC-Tfh cell is the identification of antigen-
specific GC-Tfh cells in lymphoid tissues. It is problematic to 
identify antigen-specific GC-Tfh cells by cytokine production, as 
GC-Tfh cells have been shown to be a poor cytokine producers 
compared to other memory CD4 T cell subsets, as biological role 
of GC-Tfh cell is to provide B  cell help. In order to overcome 
this problem, currently investigators have started focusing on 
the cytokine-independent activation induced marker methodo-
logy assay (AIM assay using OX40 and CD25) to identify 
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TAbLe 1 | Divergent marker profile of Tfh1 cells versus Tfh0 cells.

Markers CXCR3+ Tfh CXCR3− Tfh

Surface markers
CXCR5 +++ +++
CXCR3 +++ −
PD-1 ++ +++
ICOS +++ +++
CCR7 ++ +/−
CCR5 +++ +/−
α4β7 +++ +/−
Transcription factors
BCL-6 +++ +++
T-bet +++ −
Cytokines
IFN-γ +++ −
IL-21 +++ +++
CD40L +++ +++
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antigen-specific GC-Tfh cells in lymphoid tissues in human and 
macaques (46, 47). This AIM assay could identify (>10-fold) 
more antigen-specific GC-Tfh cells compared to cytokine assay. 
In addition, it has been shown that GC-B  cells express higher 
levels of programmed cell death 1 ligand (PD-L1) in LN during 
chronic HIV infection, which may suggest a potential role for 
PD-1/PD-L1 interaction in regulating Tfh cell function (27). 
Moreover, engagement of PD-1 on Tfh cells leads to a reduction 
of Tfh cell proliferation, activation, cytokine production, and 
importantly ICOS expression (48), a key molecule in maintaining 
a Tfh phenotype. All together these data suggest that impaired 
Tfh-mediated B cell help diminishes B cell responses during HIV 
infection and may be regulated by the PD-1 axis on Tfh cells.

PeRiPHeRAL Tfh veRSUS GC Tfh CeLLS

A subset of CD4 T  cells in the blood expresses CXCR5 and is 
referred to as peripheral (pTfh) or circulating Tfh cells (17, 49, 50). 
These pTfh cells have been identified in mouse, macaques, and 
humans, and are considered to be the functional equivalent of Tfh 
cells in the LN. These pTfh cells express CCR7, albeit at low levels 
indicating that these cells traffic through lymphoid tissue. It has 
been shown that the pTfh cells express CXCR5 and PD-1 stably 
(15). However, pTfh express significantly lower levels of PD-1 and 
do not express Bcl-6 compared to GC-Tfh cells. Similar to LN 
Tfh, pTfh can also express other chemokine receptors associated 
with Th1 (CXCR3), Th2 (CCR4), and Th17 (CCR6) cells (17). 
pTfh can be distinguished into four subsets based on the expres-
sion of CXCR3 and PD-1. In humans, the PD-1lo CXCR3− pTfh 
express high levels of IL-4, do not express IFN-γ, and provide 
superior B cell helper function compared to PD-1+ CXCR3+ cells 
(15, 51). In addition, the presence of higher frequency of PD-1lo 
CXCR3− pTfh was shown to be associated with the development 
of a broader neutralizing antibody response in HIV-infected 
individuals with high viremia (15, 51). However, in another study 
the ratio of PD-1lo to PD-1hi cells within the CXCR3+ pTfh was 
shown to correlate with increased neutralization breadth in HIV 
controllers with very low viremia (34). These results suggest that 
both CXCR3− and CXCR3+ pTfh expressing lower levels of PD-1 
may be important for the generation of a functional antibody 
response. More studies in different disease contexts are required 
to correlate the phenotypic and functional differences previously 
observed between pTfh and GC-Tfh in order to understand the 
important dynamics of this subset in blood and tissue.

Hiv AND Siv iNFeCTiONS ALTeR Tfh 
DiFFeReNTiATiON TOwARD Tfh1 
PHeNOTYPe

The blood memory Tfh cells have been shown to co-express 
chemokine receptors associated with other T helper cell lineages, 
such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17) (17, 34, 52). 
Recent studies characterizing Tfh cells during chronic HIV/SIV 
infection have delineated phenotypically distinct subsets of Tfh cells 
in the circulation (17, 34, 53). Similarly, data from our recent study 
in macaques revealed that a significant proportion of GC-Tfh cells 

express the surface markers associated with several CD4 lineages 
during chronic SIV infection (Figure 2). We observed a selective 
enhancement of CXCR3+ Tfh (Tfh1) cells in the blood and LN and 
rapid depletion of CCR6+ Tfh cells (Tfh17) (32) demonstrating 
that SIV infection alters the balance of different subsets of Tfh 
cells. Others and we have also observed a marked enhancement 
of T-bet (Th1 marker) expression on Tfh and GC-Tfh cells (32, 33, 
40, 54, 55). Unlike conventional GC-Tfh0 cells (CXCR3−), these 
GC Tfh1 cells exclusively produced IFN-γ (32). Interestingly, 
these T-bet+ Tfh1 cells also expressed Tfh transcription factor 
Bcl-6 (32, 54). The immune mechanisms that contribute to induc-
tion of Tfh1 cells are not completely understood. A similar Tfh1 
phenotype was observed in GC-Tfh of humanized mice infected 
with HIV (56), during chronic LCMV clone-13 infection (57) and 
malarial infection (49). On the other hand, this phenotype may 
not be specific to chronic infections as we recently observed this 
phenotype on GC-Tfh cells after DNA/MVA SIV vaccination in 
RM (58). This raises the possibility that the local inflammation 
alone can induce this CXCR3 phenotype on GC-Tfh cells. One 
possibility is that the induction of high levels of CXCL10 (IP-10) 
during chronic infection and after DNA/MVA vaccination may 
promote induction of CXCR3 on Tfh cells (59).

The Tfh1 cells differ significantly compared to Tfh0 cells in terms 
of the expression of key molecules. Tfh1 cells, compared to Tfh0 cells 
express relatively lower levels (MFI) of CXCR5, PD-1, and CCR7 
and higher levels of ICOS and IL-21 (Table 1). In addition, they 
exclusively produce IFN-γ express high levels of HIV co-receptor 
CCR5 and HIV-binding protein α4β7 suggesting that these cells 
are highly susceptible to HIV/SIV infection. Importantly, these 
cells also provide help to B cells similar to Tfh0 cells. One possible 
reason for better B cell help from Tfh1 cells could be the expression 
of high levels of ICOS, IL-21, and CD40L, as these markers direct 
recruitment of B cells and more efficiently activate B cells (60).

Tfr CeLLS DURiNG CHRONiC Hiv/Siv 
iNFeCTiON

Foxp3+ regulatory cells are important in suppressing differ-
ent types of immune responses help to maintain homeostasis. 
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Recent data in mice, macaques, and humans have identified a 
subset of Foxp3+ cells that express Tfh markers, such as CXCR5, 
PD-1, ICOS, and BCL-6, and migrate into the B cell follicles to 
regulate Tfh and B cell differentiation. These cells are called Tfr 
(follicular regulatory) cells (13, 14, 61). Although these cells show 
characteristics of Tfh cells they lack expression of functional mol-
ecules required for B-cell help, such as CD40L, IL-4, and IL-21. 
Deletion of Tfr cells or impairing their follicular localization led 
to increased number of Tfh and GC B  cells in murine models 
(13,  14, 61). These cells inhibit GC reactions by interacting 
with Tfh cells. The mechanisms by which Tfr cells limit Tfh cell 
function are not clearly understood. During chronic HIV/SIV 
infection, Tfr cells are also expanded in parallel with Tfh cells. 
Although both Tfh and Tfr expand after SIVmac251 infection 
(62), higher frequency of Tfr cells is associated with lower Tfh 
frequency, suggesting that the expansion of Tfr cells diminishes 
Tfh frequencies and eventually B  cell responses and antibody 
production (55, 63, 64). In line with this, a recent study demon-
strated that a deficiency in Tfr cells promotes autoimmunity (65). 
In vitro, Tfr inhibit the ability of Tfh to proliferate and produce 
critical B cell helper cytokines, such as IL-4 and IL-21, although 
they maintain ICOS expression. A small fraction of HIV-infected 
individuals develops broadly neutralizing antibodies and it would 
be interesting to assess whether these individuals have lower 
frequencies of Tfr that would aid in the number and quality of 
Tfh and the generation of NAbs. Given their negative influence 
on Tfh cells, HIV vaccination modalities that induce lower levels 
of Tfr may generate stronger Tfh responses and higher quality 
B cell responses. Further studies are required to elucidate the role 
of Tfr on humoral immunity both post vaccination and during 
HIV/SIV infection.

Tfh AND Hiv/Siv viRAL ReSeRvOiRS

SIV infection of Tfh occurs early during primary infection and 
persists over the course of the disease (42). Although extensive 
longitudinal studies have not been carried out in humans, 
cross-sectional studies suggest a similar temporal profile of HIV 
infection of Tfh (29, 37). Studies have shown that HIV-specific 
CD4+ T  cells are preferentially infected by HIV/SIV (66, 67). 
Within the CD4 compartment, the Tfh population has been 
shown to constitute higher numbers of HIV-infected cells that 
are more efficient in supporting viral replication and correlate 
directly with plasma viral RNA levels (36). Despite representing 
a large fraction of the HIV-infected CD4 pool (29), LN-resident 
Tfh cells appear to express low levels of the HIV co-receptor 
CCR5 (27, 29, 32, 33) but do, however, express CXCR4 (40).  
A recent study suggested that approximately 30% of human 
Tfh cells may be CCR5+ cells (41). Furthermore, studies have 
also shown that the proviral DNA sequences in Tfh cells from 
SIV-infected macaques are predominantly CCR5-tropic (42). 
The mechanism by which CCR5 tropic HIV/SIV is present at 
high levels in Tfh cells in macaques is not well understood. This 
leads to several questions; where and when are Tfh cells becom-
ing infected, are they being infected before migrating into the 
GC at the stage of Tfh precursors which express high levels of 
CCR5 (32, 33), a potential mechanism recently described (40). 

In support of this potential mechanism is the knowledge that 
Th1 like Tfh cells accumulate during SIV infection, constitute a 
large proportion of the Tfh subset, and express higher levels of 
CCR5 and the HIV binding gut homing integrin receptor α4β7 
(32). The accumulation of Tfh1 cells throughout the course of 
SIV infection both in periphery and in LN (32) suggest that 
Tfh1 cells accumulate rapidly post HIV/SIV infection and 
could potentially be transdifferentiating either from a different 
CD4 T helper cell subset or from a precursor population into 
a committed GC-Tfh phenotype. Several studies have reported 
the presence of CXCR3+CXCR5+ pTfh cells in HIV-infected 
individuals and in humanized mice preferentially expressing 
the HIV-co-receptor CCR5 (56, 68). Therefore, we can speculate 
that Tfh1 cells that are CCR5+α4β7+ may have the capacity to 
maintain a dynamic viral reservoir in GCs.

FOLLiCULAR HOMiNG CD8 DURiNG  
Hiv/Siv iNFeCTiON

As described above, HIV and SIV infection of Tfh occurs very 
early in the course of infection and persists throughout disease 
even after ART (29, 42). Similarly, a higher fraction of these Tfh 
cells is shown to contain replication competent HIV genomes 
during ART (29, 36). An important question that needs to be 
addressed is the role of HIV-specific CD8 T cells in targeting 
and clearing the viral reservoirs that reside within Tfh cells. It 
is very clear that anti-viral CD8 T cells are critical for HIV/SIV 
control (69–74) even under ART (75). However, B cell follicles/
GCs are considered to be immune privileged for anti-viral CD8 
T cells (76, 77). Studies in unvaccinated SIVmac251-infected 
RM and HIV-infected humans showed that anti-viral CD8 
T cells have a limited capacity to migrate to B cell follicles and 
GC of the lymphoid tissue during chronic infection (76–78) 
and the exclusion of CD8 T  cells from GC sites have been 
posited as an important mechanism of immune evasion by 
HIV/SIV. However, recent studies reported the emergence 
of CD8 T  cells expressing the chemokine receptor CXCR5 
that is required for homing to B  cell follicles (2, 10) during 
chronic LCMV, EBV, and HIV infections (79–82). Similarly, in 
the setting of DNA/MVA vaccinated and SIVmac251-infected 
macaques, we showed a rapid expansion of a novel subset of 
SIV-specific CD8 T cells expressing CXCR5 (Tfc) in vaccinated 
controllers after SIV infection (83) and the expansion of these 
cells was strongly associated with improved control of SIV 
replication. The higher expansion of these cells correlated 
strongly with the higher presence of anti-viral CD8 T  cells 
in the GCs. Similar to SIV studies, these cells are shown to 
be present in the B  cell follicles of HIV-infected LN (84).  
A more recent study carried out a comprehensive analysis of 
the phenotype, frequency, localization, and function of folli-
cular CD8 T cells in SIVmac251-infected macaques (85). This 
study demonstrated that follicular CD8 T  cell accumulation 
occurs in pathogenic SIV infection but not in natural infection 
(African green monkeys). Interestingly, this study provides 
clues to the cause of mobilization and accumulation of follicu-
lar CD8 T cells during pathogenic SIV infection and describes 
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the process to be largely driven by inflammation and immune 
activation in and around B cell follicles. Similar to CD8 T cells, 
a recent study has shown that NK cells also traffic to the GCs, 
but these cells were seen only in non-pathogenic African green 
monkeys but these cells are rare SIV mac infection (86). These 
results clearly demonstrated that anti-viral CD8 T  cells can 
migrate to B cell follicles under conditions of controlled SIV 
infection.

The mechanisms by which these Tfc contribute to control 
of HIV/SIV are still under active investigation. Interestingly, 
Tfc possess a unique gene expression profile that shares both a 
cytotoxic CD8 T  cells and Tfh phenotype (81, 83). These cells 
display enhanced poly functionality and are capable of restricting 
the expansion of SIV antigen-pulsed Tfh in  vitro (83, 84). The 
Tfc from LN of HIV-infected individuals have been shown to 
possess higher cytolytic activity than extrafollicular CD8 T cells 
(79, 80, 82). Similar to HIV/SIV infection, CXCR5+ CD8 T cells 
have been identified during chronic LCMV infection. These cells 
have been shown to possess stem-cell like properties with self-
renewal potential and may prove critical for long-term mainte-
nance of effector CD8 T cells (Figure 3) (81). Thus, CXCR5+ CD8 
T cells may contribute to viral control by replenishing the effector 
CD8 T cell population required to eliminate persistent virus. It 
is also important to note that some studies also suggest that the 
CD8 T cells that localize within B cell follicles may have limited 
cytolytic capacity and the overall frequencies of virus-specific 
CD8 T cells are lower in absolute numbers in the intra-follicular 

compared to extra-follicular compartment (78, 87, 88). However, 
the potential of Tfc to generate a population of effector CD8 
T cells suggests that these cells may also contribute to viral control 
indirectly through their ability to homeostatically reconstitute the 
effector CD8 T cell response.

CONCLUSiON

The past few years of active research have provided profound 
insight into the role of follicular CD4 T cells in HIV pathogenesis. 
It is now well established that the Tfh population represents a 
major fraction of the viral reservoir and it is essential to develop 
HIV cure approaches capable of targeting and eliminating these 
cells. It is also clear that follicular homing CD8 T cells may serve 
as an important subset in targeting the Tfh reservoir. However, 
we need to develop a greater understanding of the mechanisms 
that contribute to the development and maintenance of viral res-
ervoirs in Tfh cells under ART to design strategies to purge virus 
from this cellular site. The discovery of phenotypically distinct 
subsets of circulating Tfh cells in HIV infection and the potential 
for memory recall of Tfh cells in mice warrants further investiga-
tion into follicular CD4 T cells in an effort to inform vaccination 
strategies for HIV. Moreover, the heterogeneous nature of GC-Tfh 
and circulating Tfh cells can be harnessed for the generation of 
optimal vaccine-induced HIV-specific B-cell responses. A sig-
nificant amount of work remains to uncover molecular signals 
that regulate the generation of follicular CD8 T cells and if this 
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T cells by vaccination and therapeutic interventions may be critical for the control of chronic HIV/SIV infection.
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