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Purpose of review

This review highlights recent developments in HIV-1 antibody engineering and discusses the effects of
increased polyreactivity on serum half-lives of engineered antibodies.

Recent findings

Recent studies have uncovered a wealth of information about the relationship between the sequences and
efficacies of anti-HIV-1 antibodies through a combination of bioinformatics, structural characterization and
in vivo studies. This knowledge has stimulated efforts to enhance antibody breadth and potency for
therapeutic use. Although some engineered antibodies have shown increased polyreactivity and short half-
lives, promising efforts are circumventing these problems.

Summary

Antibodies are desirable as therapeutics due to their ability to recognize targets with both specificity and
high affinity. Furthermore, the ability of antibodies to stimulate Fc-mediated effector functions can increase
their utility. Thus, mAbs have become central to strategies for the treatment of various diseases. Using both
targeted and library-based approaches, antibodies can be engineered to improve their therapeutic
properties. This article will discuss recent antibody engineering efforts to improve the breadth and potency
of anti-HIV-1 antibodies. The polyreactivity of engineered HIV-1 bNAbs and the effect on serum half-life will
be explored along with strategies to overcome problems introduced by engineering antibodies. Finally,
advances in creating bispecific anti-HIV-1 reagents are discussed.
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HIV-1 effectively evades antibody-mediated respon-
ses due to rapid mutation of gp120 and gp41, the two
glycoproteins that comprise the envelope (Env) spike
(Fig. 1) [1

&

,2
&

,4
&

], and structural features that enable
Env to hide conserved epitopes, including a shield
of host-derived carbohydrates [5], conformational
masking [6], steric occlusion [7–10] and flexible vari-
able loops [8,11]. The low number and density of
envelope spikes on HIV-1 virions may also contrib-
ute to the ability of HIV-1 to evade antibodies by
preventing most IgGs from binding simultaneously
with both Fabs [12,13

&

]. These features usually result
in production of strain-specific antibodies. However,
recent advances in single-cell cloning techniques
have led to the identification of extremely potent,
broadly neutralizing HIV-1 IgG antibodies (bNAbs)
from infected donors [14–16]. When delivered
passively in animal models of HIV-1 infection,
anti-HIV-1 bNAbs can prevent [17–20] or suppress
infection [21–24], prompting efforts to improve their
potency and/or breadth in order to increase their
rs Kluwer Health, Inc. All rights rese
through structural and bioinformatic approaches has
identified epitopes on HIV-1 Env, including the
gp120 V1V2 and V3 loops, the CD4-binding site
(CD4bs), the gp41 membrane proximal external
region (MPER) and sites bridging gp120 and gp41
(Fig. 1) [25–30].
rved. www.co-hivandaids.com



KEY POINTS

� Library-based and structure-design-based strategies for
engineering anti-HIV-1 antibodies can increase both
breadth and potency, even of potent donor-
derived antibodies.

� Antibody engineering may introduce polyreactivity,
which correlates with short serum half-life.

� Antibody engineering efforts can overcome problems of
short half-life and other poor pharmacokinetic
properties.

� Bispecific and chemically-conjugated antibody reagents
provide an alternative strategy to target multiple HIV-1
epitopes to control viral escape and engineer avidity.

Antibodies for prevention and therapy
This review will discuss engineering efforts to
create more potent anti-HIV-1 antibodies, using
both traditional IgG and modified architectures.
We also consider how engineering efforts can result
in polyreactivity, the ability of an antibody to bind
to more than one antigen, which can lead to auto-
reactivity and/or decreased in vivo half-life.
ENGINEERING HIV-1 ANTIBODIES

Techniques to improve IgG affinities [31
&

,32], broa-
den their specificity to related antigens [33–35] and
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FIGURE 1. Location of bNAb epitopes on HIV-1 Env trimer. The
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were added to all potential N-linked glycosylation sites present in
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improve their expression and solubility [32] include
computational techniques [36–39] and directed
mutagenesis to introduce diversity coupled with
selection techniques, for example phage, yeast,
mRNA and ribosome display [32]. Early library-based
engineering efforts to improve HIV-1 antibodies
involved b12, one of the first HIV-1 bNAbs. The
affinity of b12 was enhanced by nearly 400-fold by
selecting for gp120 binding from libraries of phage-
displayed mutants in complementarity-determining
regions (CDRs) [40]. These studies demonstrated that
increasing affinity through in-vitro evolution could
also increase breadth [41]. The engineering of the
HIV-1 m9 antibody used a modified approach termed
sequential antigen planning to improve both affinity
and breadth: a single-chain variable fragment (scFv)
library of a CD4-induced (CD4i) antibody was
screened against sequentially changing antigens,
ultimately identifying m9 [42]. Although antibodies
recently isolated from donors are more promising
therapeutically than earlier bNAbs [43,44

&

], library-
based methods may be important to improve the new
generation of antibodies, as they can introduce
beneficial changes that might not be anticipated
from inspection of antibody–antigen complex struc-
tures. However, the large number of HIV-1 strains,
including the diversity of the viral swarm within a
single infected individual, makes it difficult to select
for antibodies that maintain breadth across viral
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MPER epitope (gray). N-linked glycans shown as grey sticks
the coordinates for BG505 SOSIP Env (PDB 4NCO) [2&]
re listed.
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strains while increasing binding to one or a few Env
specificities.

Of relevance to prospects for improving anti-
HIV-1 antibodies is the fact that bNAbs isolated from
HIV-1 infected individuals, especially the most
potent, recently discovered bNAbs, often show high
levels of somatic hypermutation [43,44

&

,45
&

].
Somatic mutations in HIV-1 bNAbs can include
insertions/deletions in framework regions (FWRs)
and the more variable CDRs. Taken together, the
VH domain alone can include 40–100 nucleotide
mutations [14,45

&

,46–51]. Many of the FWR
mutations, even those not directly contacting anti-
gen, appear to be important for bNAb function, as
reverting mutated noninteracting FWR residues to
germline residues resulted in reduced neutralization
potency and breadth [45

&

]. Efforts to identify a
minimal set of FWR mutations required for bNAbs
VRC01 and 10E8 showed that it was possible to
revert up to 78% of VRC01 and up to 89% of
10E8 FWR mutations to germline residues while
maintaining much of the original potency and
breadth [52

&

]. Interestingly, reverting 50% of the
light chain FWR mutations to germline improved
the potency of VRC01 [52

&

]. Thus, although FWR
mutations can contribute antigen contacts in
addition to stabilizing CDR conformations and
allowing conformational flexibility [45

&

], not all
FWR mutations are required for bNAb potency
and breadth, and some may even be deleterious.

Some of the most potent antibodies against HIV-
1 that are the focus of engineering efforts are VRC01-
class antibodies, which target the CD4bs using a
VH1-2�02 derived heavy chain to mimic CD4 recog-
nition of gp120 [8,15,16,46,53,54

&&

]. A structure-
based approach was taken to improve NIH45-46
[46], a more potent clonal variant of VRC01 [15].
Structural and mutagenesis studies demonstrated
that a four-residue insertion within the NIH45-46
CDRH3 loop accounted for its increased potency
[55]. Although VRC01-like bNAbs effectively mimic
CD4 [48], both VRC01 and NIH45-46 fail to fill a
hydrophobic pocket within gp120 to mimic the
burying of a hydrophobic CD4 residue, Phe43CD4.
Mutants were created by substituting the Phe43CD4-
equivalent residue in NIH45-46, Gly54NIH45-46, and
improved potencies were found for Trp, Phe, Tyr and
His substitutions [55]. The most promising mutant,
NIH45-46G54W, showed an overall 10-fold increase
in neutralization potency and neutralized some
NIH45-46 resistant strains [55]. Residue 54 is a Trp
in some VRC01-related bNAbs that are less potent
than VRC01 or NIH45-46, for example VRC03 [48],
demonstrating that a Gly-to-Trp substitution at pos-
ition 54 is a possible somatic mutation in this bNAb
lineage, but that maximal increased potency from
1746-630X Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
this substitution requires other features of a VRC01-
like bNAb, most likely the CDRH3 loop insertion.

A follow-up study [56
&

] used structure-based
design to reduce available routes of HIV-1 escape
from antibody pressure.Bioinformatic analysis ident-
ified gp120 sequence correlates for resistance to
VRC01-class antibodies by noting that variations at
highly conserved gp120 residues 279gp120–280gp120

and 458gp120–459gp120 (the ‘NNGG’ motif, named for
the Asn and Gly residues at these positions) lead to
resistance [53]; these predictions were experimen-
tally verified in vitro [53] and in HIV-1 infected
humanized mice [22]. To counteract the effects of
gp120 escape mutations, rational design was used to
create two new mutants: 45–46m2 (S28YLC), which
introduces contacts with an Asn276gp120-linked gly-
can, as seen in VRC01/gp120 complexes, but not
NIH45–46/gp120 complexes [48,55], and 45–46m7
(W47 VHC), which removes steric clashes with gp120
substitutions in the GG motif [56

&

]. 45–46m2
neutralized nearly 96% of viruses, an improvement
over other CD4bs bNAbs, which typically neutralize
nearly 90% of strains. In vivo experiments demon-
strated that viral escapes were no longer found in the
GG motif when HIV-1 infected animals were treated
with 45–46m2/45–46m7, and a resulting A281Tgp120

escape variant had reduced viral fitness [56
&

]. These
studies demonstrate that even highly somatically
mutated bNAbs are not necessarily optimal as iso-
lated from donors, and that even if it is impossible to
completely prevent HIV-1 escape from bNAbs, it
might be possible to drive the evolution of viruses
with reduced fitness that could be more easily com-
bated by host defense mechanisms.

A similar effort to improve a bNAb is represented
by development of a more potent variant of a
VRC01-class antibody that was isolated from the
VRC01/NIH45–46 donor [54

&&

]. First, 454 pyrose-
quencing of B cell antibody gene transcripts allowed
identification of a heavy chain clonal variant that
was closely related to NIH45–46 and contained the
same four-residue CDRH3 insert. When combined
with the VRC01 light chain, the new bNAb, VRC07,
was about two-fold more potent than VRC01.
Although not antibody engineering per se, this result
illustrates that deeper searching of bNAb donor
repertoires can identify more potent clonal relatives;
other examples include variants of PGT121
[47,57,58], PGT141 [59] and 8ANC195 [26]. Next,
all 20 amino acids were evaluated at VRC07 heavy
chain position 54. Similar to results for NIH45–46
Gly54HC mutants [55], substitution of VRC07 Gly54
to larger residues, including Trp, Tyr, Phe and His,
increased neutralization potency and breadth, but
substitutions for large aromatic residues resulted in
polyreactive recognition of non-HIV-1 antigens
rved. www.co-hivandaids.com 153
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[54
&&

]. A Gly54His substitution showed the least
increase in polyreactivity while still increasing
potency. The antibody light chain was also shortened
to address observations that the V5 loop of gp120
interferes with the binding of VRC01-like anti-
bodies [60]. On the basis of results from a screen of
light chain truncations and modifications, a two-
residue N-terminal truncation as well as a Val3SerLC

mutation was selected [54
&&

]. For in vivo experiments,
mutations in the Fc region to improve plasma half-life
through enhanced binding to FcRn (M428L/N434S,
the ‘LS’ mutant [61]) were introduced. Additional
framework mutation reversions and solubility-
enhancing mutations were investigated, but the anti-
body selected after in vivo half-life determinations,
VRC07-523-LS, did not contain these mutations.
VRC07-523 and VRC07-523-LSwere five- toeight-fold
more potent than VRC01 and neutralized 96% of
tested HIV-1 strains in vitro. Viral challenge experi-
ments in macaques verified that the increased in vitro
potency correlated with improved protection from
infection in vivo [54

&&

]. Taken together, the NIH45-46
and VRC07 examples illustrate the potential to
improve the activity of VRC01-class bNAbs by filling
the hydrophobic Phe43CD4 pocket on gp120.

In a different approach, features of clonally
related antibodies with similar specificities can some-
times be combined into one antibody to increase
breadth and/or potency. For example, a chimeric
version of glycan-dependent bNAbs 10-1074 and
PGT121 [14,57] was constructed by grafting five
PGT121 heavy chain residues identified as contacting
a complex-type N-linked glycan into the 10-1074
heavy chain [57]. The chimera (10-1074GM) exhibited
improved potency and neutralized some viral strains
resistant to wildtype 10-1074. In the case of PG9 and
PG16, members of a family of bNAbs targeting the
V1V2 loop and glycans at positions Asn160gp120 and
Asn176gp120 [14], three PG16LC residues that contact
a complex or hybrid-type N-glycan at Asn176gp120

were grafted onto LCPG9 to create PG9-PG16-RSH
[62]. The resulting chimeric antibody had improved
potency compared with PG9 [62]. In both examples,
grafting residues contacting complex-type N-glycans
onto a family member that favors a high-mannose
N-glycan at the same Env position seemed to allow
the antibody to accommodate different types of gly-
coforms. In another example, the neutralization
potency of the MPER antibody 4E10 was improved
nearly two-fold by engineering its CDRH3 to mimic
lipid-binding properties observed for 10E8 [63].

ENGINEERING ANTIBODIES CAN AFFECT
POLYREACTIVITY AND IN VIVO HALF-LIFE
Antibodies raised against foreign antigens such as
HIV-1 Env can be polyreactive or autoreactive, that
154 www.co-hivandaids.com
is they can bind to more than one antigen (poly-
reactivity) and/or to self proteins (autoreactivity)
[64–66]. Although B cells with autoreactive and
polyreactive B cell receptors are largely removed
as they pass through tolerance checkpoints
[67,68], a fraction of mature B cells remain poly-
reactive or autoreactive in healthy individuals [69].
Polyreactive antibodies produced by these cells may
be generally useful for fighting bacterial infection
and enhancing the phagocytosis of apoptotic cells
[70,71]. Indeed, some bacterial and viral infections
are associated with higher serum levels of autoreac-
tive and polyreactive antibodies [65].

The presence of autoreactive/polyreactive anti-
bodies has been associated with HIV-1 infection for
more than 25 years [72–74]. Polyreactivity was first
characterized in detail for the 4E10 and 2F5 MPER
bNAbs [75]. These bNAbs were described as interact-
ing with cardiolipin, a negatively charged mito-
chondrial phospholipid [75–80]. Further studies
confirmed that binding of 2F5 and 4E10 to HIV-1
Env is enhanced by the presence of the host-derived
viral membrane, which would include negatively
charged phospholipids [81]. Recent studies have
identified human proteins, kynureninase, type 1
inositol trisphosphate receptor and splicing factor
3b subunit 3 as potential self-antigens recognized by
2F5 and 4E10 [82,83]. Another MPER antibody,
10E8, does not exhibit polyreactivity in standard
assays [84], yet binds tightly to a self-antigen,
FAM84A (family with sequence similarity 84, mem-
ber A) [85

&&

]. In a comprehensive study, a majority of
more than 200 anti-HIV-1 Env antibodies isolated
from HIV-1 infected donors exhibited binding to
both self and nonself antigens, with anti-gp41 anti-
bodies showing the most polyreactivity, particularly
against lipid antigens [86,87]. In general, broadly
neutralizing anti-HIV-1 antibodies exhibit a higher
frequency of polyreactivity than nonneutralizing
antibodies [85

&&

].
Polyreactivity may not necessarily be a problem

for anti-HIV-1 antibodies, especially as it is a com-
mon property of donor-derived bNAbs; however, a
correlation between increased polyreactivity and an
increased rate of antibody clearance in vivo has been
observed for IgGs [88]. IgG half-lives are normally
extended beyond other serum proteins due to inter-
actions with FcRn, the receptor that protects serum
IgG from a default degradative pathway in vascular
endothelial cells [89,90]. However, mutations
known to increase the half-life of nonpolyreactive
IgGs through enhanced interactions with FcRn,
such as the LS mutation [61] that was introduced
into VRC01 and VRC07–523 [54

&&

,91], do not gener-
ally improve the half-lives of polyreactive IgGs. This
is likely because increased FcRn function cannot
Volume 10 � Number 3 � May 2015
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compensate for IgG loss due to off-target binding,
which absorbs polyreactive IgGs and leads to their
rapid clearance [88].

In antibody engineering efforts, it has been
observed that improving the breadth and potency
of antibodies can lead to increased polyreactivity
and/or reduced solubility and increased aggregation
propensity [54

&&

,92–94]; in studies described above,
many of the Gly54HC substitutions into NIH45–46
and VRC07 derivatives resulted in increased poly-
reactivity and decreased in vivo half-lives [54

&&

,94].
In addition, the more potent version of 10–1074,
10–1074GM, exhibited increased polyreactivity
compared with its PGT121 and 10–1074 parents
(H. Mouquet, L. Scharf, P.J. Bjorkman and M.C.
Nussenzweig, unpublished data).

Strategies being used to improve properties such
as poor solubility and aggregation profiles that
could lead to polyreactivity include switching the
IgG isotype, inserting N-linked glycosylation sites,
and making targeted mutations to reduce surface-
exposed hydrophobic residues [92–97]. For
example, in the engineering of VRC07-523, variants
such as VRC07-G54W not only showed increased
breadth and potency, but also polyreactivity and
poor pharmacokinetics [54

&&

]. Similar characteristics
were observed for NIH45–46G54W [94]. In both
cases, a histidine substitution (G54H) reduced poly-
reactivity [54

&&

,94]. Similarly, several mutations
intended to eliminate clashes with the gp120 V5
loop resulted in VRC07 variants with increased
polyreactivity, but mutations were identified that
yielded a variant exhibiting a favorable pharmaco-
kinetic profile [54

&&

]. In another study, a structure-
based approach guided by cataloguing variations in
solubility in clonal relatives of 10E8 was used to
improve the solubility of 10E8 nearly 10-fold while
maintaining comparable potency, an important
step towards making this antibody useful clinically
[98].
BISPECIFIC REAGENTS

In addition to traditional IgG architectures (Fig. 2a),
other scaffolds have been used to achieve bispecific
recognition. Small molecules can be conjugated to
IgGs to create bifunctional reagents (Fig. 2b); for
example conjugating cholesterol to the light chains
of the anti-MPER bNAbs 2F5 and D5 enhanced their
potencies through cholesterol-mediated inter-
actions with the viral membrane [99]. In another
study, a small-molecule inhibitor of viral entry,
aplaviroc, was conjugated to the Fc to enhance
neutralization potency [100].

An early example of a bispecific anti-HIV-1
reagent fused the gp120-binding domains of CD4
1746-630X Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
to an scFv version of a CD4i antibody. CD4i anti-
bodies recognize the conserved coreceptor-binding
site on gp120 after it is exposed as a result of CD4
binding [101]. As IgGs, CD4i antibodies exhibit
limited neutralization potencies because of steric
constraints when gp120 is bound to CD4 on the
target cell [7]. The broadly neutralizing reagent
sCD4-17b was created by fusing CD4 to the variable
regions of a CD4i antibody, 17b, thereby solving the
steric problem because the epitope was exposed by
CD4 binding when the virion was not bound to the
target cell (Fig. 2c) [101]. The CD4-17b reagent was
recently expressed in a chimeric antigen receptor
(CAR) format on T cells to target and kill HIV-1-
infected cells [102

&

]. Later versions of CD4-CD4i
reagents used an IgG architecture by N-terminally
fusing CD4 to the Fabs of CD4i antibodies [103].
Despite containing only two CD4 moieties, the IgG-
based CD4-CD4i reagents showed increased poten-
cies compared with CD4-IgG2 (PRO542), a tetrava-
lent CD4-Fc fusion protein [104]. A more recent
reagent of this class combined a CD4 variant with
m36, a CD4i single variable domain selected against
different HIV-1 envelope proteins (Fig. 2d)
[105

&

,106].
Bispecific IgGs containing variable regions from

two different IgGs have been produced using the
crossMab platform in which heavy chain heterodi-
merization occurs using a ‘knob-into-hole’ Fc archi-
tecture and VH and VL domains are swapped in one
half of the reagent to ensure proper heavy chain–
light chain pairing [107] (Fig. 2e). Other architec-
tures, such as dual variable domain constructs,
attach a second Ig variable domain N-terminal to
an IgG (Fig. 2f). A promising reagent of this class was
created from bNAbs against gp120 and gp41 [108].
Another potent chimeric reagent was constructed as
an Fc fusion with CD4- and coreceptor-mimetic
peptides attached to the Fc, thus targeting both
the receptor and coreceptor sites on HIV-1 Env
(Fig. 2g) [109

&

]. Bispecific reagents generally func-
tion by binding of one or the other Env-targeting
component at a time. Simultaneous binding of both
components of bispecific reagents to single Env
trimers was recently shown to result in synergistic
in vitro neutralization improvements of two to
three orders of magnitude [13

&

], suggesting a prom-
ising strategy for achieving potency, breadth and
resistance to viral mutations. Synergistic neutraliz-
ation resulting in extremely high in vitro potencies
was also observed for reagents combining anti-Env
and antihost specificities (see Ho and Markowitz,
this issue). For example, attaching the scFv of PG9 or
PG16 to the N-terminus of ibalizumab (anti-CD4)
yielded synergistic reagents, PG9-iMab and PG16-
iMab, of exceptional potency that neutralized 100%
rved. www.co-hivandaids.com 155
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FIGURE 2. Architectures of bispecific anti-HIV-1 reagents. (a) Domain nomenclature for IgG. (b) Conjugate of small molecule
antiretroviral aplaviroc with an IgG. (c) Fusion of CD4 D1-D2 with CD4i scFv 17b. (d) Reagent 2Dm2m constructed from CD4-
mimetic mD1.22 and m36 single domain antibody. (e) The CrossMab technology allows for specific heavy chain
heterodimerization using ‘knob-into-hole’ mutations to combine heavy chains from two IgGs, A and B. Domain exchange of
CH1 with CL from the second IgG, labeled CH1B and CLB, ensure unique light chain pairing. (f) Dual-variable domain IgG that
contains a second set of VH/VL domains. The two variable domains from a second antibody, labeled VHB and VLB, are added
N-terminally to the variable domains of the first IgG, VHA and VLA. (g) 16-Fc, CD4 and CCR5 mimetic peptides are attached
to an Fc. (h) PG9/PG16-iMab, containing scFvs attached to anti-CD4 antibody ibalizumab. CH1–3, the heavy chain constant
domains; CL, light chain constant domain; VH, variable heavy chain domain; VL, variable light chain domain.

Antibodies for prevention and therapy
of a 118-virus panel, with the majority of IC50s less
than 0.01 mg/ml (Fig. 2h) [110

&&

]. Another broad and
potent bispecific reagent, iMabm36, joined m36
with ibalizumab [111]. This reagent neutralized
96% of a 118-member multiclade pseudovirus panel
at a concentration of 10 mg/ml.
CONCLUSION

Although an effective HIV-1 vaccine remains an
elusive goal, newly discovered potent HIV-1 bNAbs
and advances in engineering antibodies offer possi-
bilities for improved passive delivery strategies to
prevent or treat HIV-1. More potent bNAbs could be
used therapeutically at a lower concentration and
thus reduce cost and/or production time, increase
the number of patients being treated and lower the
potential for immunogenicity or other side effects
related to bNAb administration. There also remains
a need to create reagents to combat viral mutation
and the natural sequence diversity of HIV-1, which
156 www.co-hivandaids.com
may be possible by identifying common pathways
of viral escape and then using structure-based design
to engineer resistance to these pathways. Library-
based strategies designed to enhance affinity can
also lead to increased breadth and block escape.
Bispecific reagents and chemically conjugated
reagents offer other ways to target multiple sites
to prevent viral escape strategies and combat HIV-
1 diversity. Although increased polyreactivity
associated with some improved bNAbs may not
necessarily be dangerous, polyreactivity correlates
with shortened plasma half-life and represents an
indicator that a reagent needs to be optimized to
improve its biophysical and pharmacokinetic prop-
erties. Recent successes in creating bispecific, con-
jugate and engineered antibody reagents with
minimal polyreactivity may be important thera-
peutically, particularly if gene therapy strategies,
such as vector-mediated gene transfer (see Balasz
and Baltimore, this issue) [112], are used to deliver
antibodies and antibody-like reagents.
Volume 10 � Number 3 � May 2015
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