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Selection should act on parental care and favour parental investment
decisions that optimize the number of offspring produced. Such predictions
have been robustly tested in predation risk contexts, but less is known about
alternative functions of parental care under conditions of parasitism. The
avian vampire fly (Philornis downsi) is a myasis-causing ectoparasite acciden-
tally introduced to the Galápagos Islands, and one of the major mortality
causes in Darwin’s finch nests. With an 11-year dataset spanning 21 years,
we examine the relationship between parental care behaviours and
number of fly larvae and pupae in Darwin’s finch nests. We do so across
three host species (Camarhynchus parvulus, C. pauper, Geospiza fuliginosa)
and one hybrid Camarhynchus group. Nests with longer female brooding
duration (minutes per hour spent sitting on hatchlings to provide warmth)
had fewer parasites, and this effect depended on male food delivery to
chicks. Neither male age nor number of nest provisioning visits were directly
associated with number of parasites. While the causal mechanisms remain
unknown, we provide the first empirical study showing that female brood-
ing duration is negatively related to the number of ectoparasites in nests. We
predict selection for coordinated host male and female behaviour to reduce
gaps in nest attendance, especially under conditions of novel and introduced
ectoparasites.
1. Introduction
Parental care functions to enhance offspring survival by satisfying offspring
needs during growth and development, often at a cost to the parent [1–3]. Selec-
tion should act on parental care and favour parental investment decisions that
optimize both the number and quality of offspring in relation to the current
versus future reproductive opportunity of each parent [4,5]. Such predictions
have been robustly tested in the context of predation risk, and parents generally
adjust their level of parental defence behaviour towards a predation threat to
themselves or their offspring, as predicted by life-history theory [6–9]. In the
context of avian nest ectoparasites, the effects of parasitism on parental care
have mostly been explored in relation to food delivery. Yet, when offspring
are parasitized, research has found inconsistent patterns across species in the
impact of parasite burden × chick begging on parental food delivery [10–12].
There are also gaps in knowledge because of missing information about the
relative value of current versus future broods infested with ectoparasites,
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which further hampers interpretation of adjustments in food
delivery to parasitized offspring [13,14]. In this study, we take
a different approach and ask a more fundamental question:
can parental care at the nest act as a physical deterrent that
prevents ectoparasites from entering the nest to oviposit? If
longer in-nest attendance by parents deters ectoparasite
oviposition, then factors that promote longer in-nest attend-
ance such as brooding duration could be targets of selection
when parasites impose strong fitness costs.

Most studies on host parental care in response to ectopar-
asites have tested the food compensation hypothesis, which
predicts that parents will increase food delivery to offspring
at parasitized nests to compensate for the nutritional and
energetic costs of parasitism [15,16]. Evidence for the food
compensation hypothesis has been mixed [17–21], perhaps
due to sex differences in the value of current versus future
broods [20]. Parental care can reduce the number of ectopar-
asites when parents consume or remove parasites during nest
sanitation [22–24] or use aromatic plants with volatile chemi-
cal compounds during nest building or applied to
themselves, which can deter ectoparasites [25–27] (but see
[28]). However, no studies we are aware of have measured
the role of parental in-nest attendance, a possible form of
nest guarding, to reduce parasite burden, or the effect of be-
havioural conspicuousness of the attending birds, measured
as parental activity at the nest, to deter or attract ectoparasites.

The offspring of Darwin’s finches on the Galápagos
Islands are currently being parasitized by the accidentally
introduced avian vampire fly (Philornis downsi), a myasis-
causing ectoparasite [29]. Adult P. downsi were first collected
from traps on Santa Cruz Island in 1964 [30]. The adult fly is
vegetarian and feeds on decaying plant matter [31], but the
developing fly larvae are parasitic and feed on the blood and
tissue of avian chicks. These chicks suffer, by far, the most
extreme costs of P. downsi parasitism, including blood loss,
naris deformation, infected body wounds, and mortality [32].
On average, 55% of chicks die in the nest due to parasitism,
with annual variation in mortality ranging from 20% to
100% per year [32]. Effects of P. downsi larvae on adult
birds are considered indirect. For example, P. downsi-specific
antibodies have been detected in some, but not all, adult
finches [12,24], and adult finches that survived parasitism
as chicks often sustain enlarged or malformed nares (nasal
openings) as adults [33,34]. Philornis downsi females oviposit
eggs onto nesting material [23] and perhaps onto chicks; after
hatching, larvae crawl inside the nares of the chicks to con-
sume blood or keratin [11]. Increasingly over the past
decade, larvae on Santa Cruz Island are suspected to con-
sume the blood of incubating females [35], with
observations of temporal and island differences in P. downsi
behaviour. For example, during 2000 to 2004 on Santa Cruz
Island, P. downsi were only found in Darwin’s finch nests
with chicks (100% prevalence), but, since 2012 on Santa
Cruz Island, P. downsi have regularly been found in Darwin’s
finch nests with eggs (80% prevalence in some species and
some years) and in most nests with chicks (83% to 100%
prevalence) [35], indicating adult P. downsi are ovipositing
earlier in the nesting cycle. By contrast, on Floreana Island,
during 2004 to 2016, P. downsi larvae and pupae were uncom-
mon in nests with eggs (2% prevalence) but were found in all
highland nests with chicks (100% prevalence) [36].

Currently, P. downsi is considered the biggest risk factor to
the survival of all Galápagos land birds, and researchers are
urgently interested in identifying causative factors that
explain P. downsi oviposition behaviour in host nests, which
could be used to inform both mechanical removal and bio-
control approaches [31,37]. Two main hypotheses have been
proposed for how P. downsi locate host nests: (i) olfactory
cues from the host and/or (ii) visual cues from host behav-
iour [37]. One observation at one Galápagos flycatcher
(Myiarchus magnirostris) nest provides a clue that parental
presence at, or near, a nest entrance may deter an ectoparasite
from entering the nest [38]. In this detailed observation, two
adult P. downsi females were observed resting approximately
50 cm from the nest entrance for approximately 40 min [38].
During a second observation period later in the day, after
the attending female flycatcher had left the nest, one of the
two P. downsi females entered the nest [38]. The flycatcher
returned shortly thereafter; both fly and flycatcher remained
in the nest for 8 min, then the flycatcher emerged and so did
P. downsi, flying over the head of the flycatcher [38]. From in-
nest video material in Darwin’s small ground finch (Geospiza
fuliginosa), P. downsi females were observed to enter and ovi-
posit on the nesting material when the attending female was
out of the nest [23]. Fly visitation length at the nest averaged
1.3–1.5 min and was terminated if the adult host returned
[23].

We are interested in whether parental care in Darwin’s
finch hosts could attract or deter P. downsi from ovipositing
in nests. We do not measure oviposition behaviour directly
but use total number of P. downsi (larvae, pupae and puparia)
per nest as a proxy for total oviposition behaviour. We test
the following ideas. (i) If parental activity attracts P. downsi
via visual cues, then we predict more P. downsi in nests
with high levels of parental activity (many incubation
events, many male and female visits with food delivery to
chicks). (ii) If parental attendance at the nest attracts P.
downsi via other cues, perhaps olfactory cues, then we predict
more P. downsi in nests with greater parental nest attendance
(longer incubation duration of eggs, longer brooding dur-
ation of hatchlings, interaction effect between food delivery
by male and time inside nest by female). (iii) If parental
attendance at the nest deters P. downsi from entering the
nest, then we predict fewer P. downsi in nests with greater
parental in-nest attendance (longer incubation duration of
eggs, longer brooding duration of hatchlings). As a corollary
of this prediction, we explore factors that may be associated
with longer female nest attendance (male feeds to female,
male feeds to chicks, chick age). Finally, we consider an
alternative explanation, namely that the date of nesting
explains variation in parental care, given changes in timing
of activity associated with ambient temperature [39,40],
invertebrate abundance [41] or other factors we did not
measure. We also analysed nesting date in relation to
number of P. downsi per nest, as the number of parasites
may increase across the host nesting season [42].
2. Methods
(a) Study site and species
Our study was conducted on two islands in the Galápagos archi-
pelago from January to March during 2000 to 2020. On Santa
Cruz Island (−0.624192, −90.384808), we observed Darwin’s
finch nesting behaviour in 2000, 2001, 2002 and 2004, and on
Floreana Island (−1.299829, −90.455674) we observed nesting
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behaviour in 2006, 2010, 2012, 2013, 2014, 2016 and 2020 (11
years of sampling spanning 21 years). The two focal species on
Santa Cruz Island were small ground finch (G. fuliginosa) and
small tree finch (Camarhynchus parvulus) and the four focal taxo-
nomic groups on Floreana Island were small ground finch, small
tree finch, medium tree finch (C. pauper) and the recently discov-
ered hybrid Camarhynchus group that arises mostly from pairings
between C. pauper females and C. parvulus males [43–45]. Male and
female ground finches (Geospiza spp.) are easily distinguished once
males are 1+ years old, as they become progressively black-
bodied with age until attaining a fully black body around 5+
years old whereas females remain olive grey with streaked plu-
mage [46]. In tree finches (Camarhynchus spp.), males become
progressively black-headed until attaining a fully black crown
and hood from around 5+ years old whereas females remain
olive green [47,48]. We only consider the effects of male age on
parental care because male age can be inferred from plumage
colour, whereas female age cannot be inferred from plumage
colour. In both ground and tree finches, only females incubate
eggs and brood hatchlings [49]. Thus, one can easily discern
the sexes of nesting Darwin’s finches. Minimum longevity (calcu-
lated as the age at first capture plus the number of years until the
last recapture) in these finches is 12–17 years [48].
1668
(b) Parental care behaviour
We analysed 541 1 h nest observations at 208 Darwin’s finch
nests during the incubation (n = 305) or chick feeding (n = 236)
phase. The number of nests monitored per species was 59 G. fuli-
ginosa, 79 C. parvulus, 58 C. pauper and 12 nests of hybrid
Camarhynchus finches. We regularly mist-netted birds in the
study area during the first two weeks of every field season and
then subsequently located nests with colour-banded birds. At
149 nests, at least one bird per pair had unique colour bands,
and, at 74 nests, both the male and female were colour-banded.
In total, 110 males and 113 females were uniquely colour-
banded (26 male and 25 female G. fuliginosa; 57 male and 67
female C. parvulus; 18 male and 11 female C. pauper; 9 male
and 12 female hybrid finches).

Nests were monitored using our standardized protocol
developed in 2000 and maintained throughout the study
[39,43]. To confirm nesting activity, nests were routinely
inspected (with binoculars and ladder from 2000 to 2006 and
using a borescope since 2008) every 3 days during incubation
and every 2 days during the nesting phase. During 1–2 days
per phase (incubation, chick feeding), we made a 1 h focal
sample observation (between 7:00 and 11:00), noting every be-
haviour with a time stamp. In about 15% of observations, the
observation time was slightly shorter or longer than 60 min.
This was accounted for in our analyses by applying the offset
function within our statistical models [50]. The observer was
seated on the ground, about approximately 20 m from the nest,
with binoculars focused on the nest entrance. As Darwin’s
finches do not noticeably alter their behaviour in the presence
of a human observer within 5 m [51], this observer distance
was unlikely to disturb parental feeding. During the incubation
phase, we recorded the following behaviours: (i) time female
spends inside the nest during incubation; (ii) number of
incubation events (number of bouts of incubation per hour of
observation); (iii) incubation bout duration (min); and (iv)
number of male food deliveries to the incubating female at or
near the nest entrance. Behaviours recorded during the chick
feeding phase (eggs hatched into chicks) were: (v) time female
spends inside the nest sitting on hatchlings to provide warmth
during the chick phase (brooding duration, min h−1); (vi)
number of male visits per hour to the nest with food delivery
to chicks; and (vii) number of female visits per hour to the nest
with food delivery to chicks. We noted clutch size, brood size
and chick age at the time of behavioural observations for all
nests from routine nest inspections.

(c) Number of Philornis downsi per nest
Once the nesting event had finished (i.e. the offspring had died
or fledged), as confirmed by our routine nest monitoring, the
nest was immediately collected from the field, stored in a plastic
bag and transported to our on-site laboratory later in the day to
count the number of P. downsi larvae, pupae and puparia [52].
Generally, all P. downsi were counted within 6 h and a maximum
of 24 h post-nest collection. The P. downsi specimens from each
nest were preserved in separate tubes containing 70% ethanol.
We recorded the number of P. downsi per instar phase, though
first and second instar were confirmed later with a microscope
[52,53]. Here, we analysed the total number of P. downsi per
nest as our main variable of interest and in relation to chick
age at the time of nesting termination.

(d) Statistical analysis
All statistical analyses were performed in R v. 3.6.1 [54] under a
pseudo-Bayesian framework with non-informative priors using
the packages ‘arm’ [55] and ‘lme4’ [50]. For every statistical
model (package ‘lme4’), the restricted maximum-likelihood esti-
mation method was applied, and all the assumptions were
checked by visual inspection of the residual plots. In each
model, we applied the function ‘sim’ and carried out 10 000
simulations to obtain the posterior distribution of every estimate,
the mean value and the 95% credible interval (CrI) [55]. CrIs pro-
vide information about uncertainty around the estimates. We
defined a difference between species (and hybrid birds) to be
statistically meaningful when the posterior probability of the
CrI difference (termed ‘p(dif )’) was higher than 95%, and an
effect to be statistically meaningful when the 95% CrI did not
overlap with zero. A threshold of 5% is equivalent to the signifi-
cance level in a frequentist framework (i.e. p-value of 0.05) [56].

(i) Effect of incubation and brooding behaviour on number of
Philornis downsi per nest

To examine the effect of incubation and brooding behaviour on
the number of P. downsi, we fitted separate Poisson generalized
linear mixed effects models. The dependent variable was the
number of P. downsi in the nest at the time of the nesting out-
come. We included observation duration as an offset in the
model. To measure the effect of incubation behaviour, the expla-
natory variables were number of incubation events, incubation
bout duration, the interaction between these two variables and
number of male food deliveries to the female. To measure the
effect of brooding duration, the explanatory variables were
female brooding duration percentage, number of female food
deliveries to the chicks and number of male food deliveries to
the chicks. For better model stability and to obtain standardized
effect sizes (i.e. comparable estimates), every dependent variable
and covariate was transformed into z-scores. We included the
interaction terms between (i) brooding duration ×male food
delivery to chicks, (ii) brooding duration × female food delivery
to chicks and (iii) male food delivery × female food delivery to
the chicks. Year, time of observation and nest ID nested within
species were included as random factors to account for among-
year variation, short-term environmental variation, among-
species variation, and repeated measures, respectively. We are
aware that parental age and breeding experience could influence
brooding and incubation behaviours [57], though this is not
always the case [58]. However, our sample size did not allow
for including additional covariates in our models. To account
for this, we carried out a separate analysis quantifying the
effect of male age on the different parental care behaviours
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Figure 1. Female incubation and brooding behaviour, number of Philornis downsi in Darwin’s finch nests and male food delivery to chicks. (a) Relationship between
number of female incubation bouts ( per hour) and number of P. downsi in the nest. (b) Relationship between female incubation bout duration (min) and number of
P. downsi in the nest. (c) Relationship between female brooding duration (min) and number of P. downsi in the nest. Longer female brooding duration is associated
with fewer P. downsi per nest but depends on male provisioning behaviour. (d ) Interaction between number of male food deliveries to the chicks and female
brooding duration. Males that provided more food deliveries to the chicks enhanced the negative association between female brooding duration and number
of P. downsi in the nest. Black lines represent the mean estimate, grey ribbons the 95% CrIs and grey dots the raw data.
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across species and found that this effect was, if any, very small
(see electronic supplementary material, figure S1 and table S1
for details). Further, for a descriptive purpose and presentation
of the raw data, variation in the parental care parameters for
each species were quantified in separate models (see electronic
supplementary material, figure S2 and table S2 for details).

To explore possible differences across islands, we ran the
same models with the addition of island as covariate. For the
model of brooding duration, species was removed as a random
factor because it explained very little variance, and with it the
complete model including island would not converge. The
reason for running these models separately was because the
addition of island as a covariate pushed the number of explana-
tory variables, covariates and interactions to the maximum limit
allowed by our sample size.

In a separate model, we explored the effects of chick age and
brooding duration on the number of P. downsi. Here, we carried
out a Poisson generalized linear mixed effects model with
number of P. downsi as the dependent variable. The explanatory
variables were brooding duration percentage, chick age, the
interaction between brooding duration × chick age and island.
As with the previous models, (i) numerical dependent variables
and covariates were converted to z-scores, and (ii) year, time of
observation and nest ID nested within species were included as
random factors.
3. Results
(a) Parental care and Philornis downsi parasitism
Within the incubation phase, there was no evidence that the
number of female incubation events (figure 1a and table 1),
number of male food deliveries to the incubating female
(table 1), or female incubation bout duration (figure 1b and
table 1) affected the number of P. downsi in the nest (electronic
supplementary material, table S3). These results during the
incubation phase were consistent across both islands (elec-
tronic supplementary material, table S4).

During the chick feeding phase, female food delivery to
chicks was not associated with the number of P. downsi in
the nest (table 2). Brooding duration had a negative effect
on the number of P. downsi when all covariates are at their



Table 1. Effect of incubation behaviours on P. downsi parasitism. The
response variable number of P. downsi was modelled with a Poisson error
distribution. Estimates of fixed (β) and random (σ2) effects with their 95%
CrIs are shown in brackets. Values of ‘0.00’ represent values smaller than
0.001. We found no statistically meaningful effects (i.e. all the CrI overlap
zero) of any incubation behaviour on the number of parasites in the nest.

fixed effects
no. of P. downsi
β (95% CrI)

intercept 2.03 (1.78; 2.38)

no. of incubation events −0.02 (−0.17; 0.13)
incubation bout duration −0.02 (−0.18; 0.14)
no. of male food delivery to female −0.06 (−0.14; 0.02)
no. of incubation events × incubation

bout duration

−0.001 (−0.07; 0.06)

random effect σ2 (95%CrI)

year 0.14 (0.05; 0.32)

species 0.006 (0.001; 0.02)

nest ID 1.1 (0.83; 1.43)

time of observation 0.008 (0.005; 0.01)
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mean (figure 1a and table 2), but this effect depended on
male provisioning to chicks (interaction term in table 2).
Specifically, when males delivered more food, the effect of
brooding duration on number of P. downsi was stronger
(figure 1b). Also, this effect was attenuated with increasing
age of the chicks and disappeared after the chicks were
older than 6 days (figure 2; interaction term, electronic sup-
plementary material, table S4), a period in which females
brooded less (electronic supplementary material, figure S3).
We found the same relationship between brooding duration
and P. downsi on both islands (electronic supplementary
material, table S5, and figure S4).

The effect of brooding on the number of P. downsi
remained statistically meaningful while accounting for the
date of nesting onset (electronic supplementary material,
table S6) and the date of nesting onset was not associated
with female brooding duration and/or the number of para-
sites in the nest (electronic supplementary material, table
S7). Finally, we found no evidence for shifts in parental be-
haviour (i.e. female brooding duration, male food
deliveries, female food deliveries) across the years (electronic
supplementary material, table S8).
4. Discussion
The temporal window for ectoparasite oviposition behaviour
can be influenced by parental care, which may alter the
course of age-specific costs to offspring survival from ecto-
parasites. If temporal patterns of host parental care differ
across the sexes—for example, in systems with uniparental
male or female in-nest attendance—the threat of parasite ovi-
position may increase sex-specific costs of parental care to the
attending parent [59,60]. In this study on Darwin’s finches
parasitized by P. downsi (Diptera: Muscidae), longer female
brooding duration during the first days post-hatch was
associated with fewer P. downsi. Increased male food delivery
to chicks strengthened the effect of longer brooding duration
on fewer P. downsi, irrespective of male age or species. There
was no effect of nesting date on patterns of parental care or
number of P. downsi, and no effect of parental care during
the incubation phase on number of P. downsi.

We found no effect of year on parental care variables in
this study, which is perhaps surprising given strong natural
selection by P. downsi. There are several possible reasons
why female brooding duration did not lengthen over time
due to directional selection. Opposing environmental factors
such as resource quality and abundance, thermal risk and
predation risk, which we did not measure, can potentially
impact parental care decisions in a given year [3]. Further,
there is no evidence in birds that brooding duration or food
delivery are heritable traits [61,62]. Finally, given that Dar-
win’s finches can live to approximately 17 years, our
generational sampling time window may be too shallow to
detect such an evolutionary change should it occur, as the
parents survive P. downsi but the offspring die [63].

Understanding mechanisms related to the timing of par-
ental care and temporal windows of costs and benefits from
parental care that increase or reduce parasite burden will
shed light on evolutionary pressures that favour parental
care traits. For example, in non-social Ammophila wasps,
larvae may be parasitized by cuckoo flies (Diptera: Milto-
gramminae) that gain access to the wasp larvae when
females open the nest to tend the larvae [64]. Female wasps
that progressively provision offspring and abandon parasi-
tized offspring lose less investment than females that mass
provision each larva at oviposition [64]. The Ammophila
wasp study provides experimental evidence for an adaptive
value of progressive provisioning across the nesting cycle,
as well as benefits of nest guarding to avoid costs of parasit-
ism in a uniparental carer. Our study provides evidence in
some songbirds that coordinated female and male parental
care may be favoured when longer in-nest attendance by
females and increased food provisioning by males deters
ectoparasites from entering the nest.

We acknowledge that longer in-nest attendance could
have many functions, including thermal insulation of chicks
[65], defence against nest predators [66] and removal of ecto-
parasites via nest sanitation [23,24]. We consider female nest
sanitation an unlikely explanation for our consistent finding
of fewer P. downsi in nests with longer female brooding dur-
ation, for two reasons. Firstly, the 1st instar P. downsi larvae
reside inside the nares of chicks and emerge to feed externally
on the chicks from d2 to d4 onwards [53]. We may expect an
increase in brooding (and nest sanitation) later in the nesting
cycle (i) after P. downsi have emerged from the chicks’ nares
around d3 and (ii) when there are more P. downsi in the
nest from d3 onwards (electronic supplementary material,
figure S3). However, rather than finding an increase
in female brooding duration after d3 as the number of
P. downsi increased, we found a stronger impact of early
female brooding duration on fewer P. downsi (figure 2), and
as observed generally in songbirds, a decrease in female
brooding duration with chick age (electronic supplementary
material, figure S3). We suggest that female presence at the
nest early post-hatch deters P. downsi from entering the nest
to oviposit. Further, we predict that the fitness benefit
should be maximized when females prevent parasites from
ovipositing on the youngest chicks, which are small, defence-
less, and still unable to self-preen. Our statistical analysis,
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Table 2. Effect of brooding behaviours on P. downsi parasitism. The response variable number of P. downsi was modelled with a Poisson error distribution.
Estimates of fixed (β) and random (σ2) parameters with their 95% CrIs are shown in brackets. Statistically meaningful effects are those where the CrI do not
overlap cero (i.e. posterior p greater than 95%) and are marked in italics.

fixed effects
no. of P. downsi
β (95% CrI)

intercept 2.27 (1.98; 2.48)

brooding duration (%) −0.33 (−0.45; −0.22)

no. of female food delivery to chicks 0.11 (−0.004; 0.21)
no. of male food delivery to chicks −0.03 (−0.12; 0.06)
brooding duration (%) × no. of female food delivery 0.01 (−0.10; 0.08)
brooding duration (%) × no. of male food delivery −0.09 (−0.17; -0.01)

no. of male food delivery × no. of female food delivery 0.003 (−0.08; 0.07)

random effect σ2 (95%CrI)

year 0.06 (0.03; 0.11)

species 0.00 (0.00; 0.00)a

nest ID 0.69 (0.57; 0.83)

time of observation 0.09 (0.06; 0.11)
a0.00 indicates value smaller than 0.0001.
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which controlled for the potential confounding effect of chick
age on brooding duration and number of P. downsi, supports
this view.

If in-nest attendance buffers against ectoparasites entering
the nest to oviposit, then we predict stronger selection on
coordination of male and female behaviour to enhance nest
guarding. The mechanism by which choosy females could
predict within-pair coordination is unknown, but future
research could explore signals of male quality, such as rhyth-
micity of song or other pre-mating interactive behaviour
between the male and female [67–71]. Across systems,
females have been shown to increase parental care when
paired with a high-quality male [72,73], whereby older
males may signal quality because of experience and capacity
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to survive [74]. The minimum longevity of 12–17 years in
Darwin’s finches [48] is rather long for small songbirds (13–
18 g). Females paired with older males could receive direct
benefits, including a safer nest site, increased male vigilance
and/or increased food delivery to the female [47,75,76].
Females paired with older males may also receive indirect
benefits, including good genes for their offspring or increased
male provisioning of offspring [74,77]. In this study, there was
a mix of results for direct and indirect benefits to females
paired with older males. For example: (i) in hybrid nests,
older males provided more food deliveries to the incubating
female (direct benefit) and females paired with older males
had longer brooding duration (indirect benefit; see electronic
supplementary material, figure S2); (ii) in C. parvulus nests,
females paired with older males had longer incubation dur-
ation (indirect benefit, see electronic supplementary
material, figure S2) and (iii) in G. fuliginosa nests, older
males provided more food deliveries to chicks (indirect
benefit; see electronic supplementary material, figure S2).

Reduced ectoparasite burden from longer female in-nest
attendance may create evolutionary incentives for males to
provide more food deliveries to attending females, or for
increased male incubation, brooding and/or helper care.
For example, male Moustached Warblers (Acrocephalus mela-
nopogon) contribute to incubation even though they do not
possess fully developed brood patches; they prevent egg
cooling and provide a form of nest guarding [66,78], and
helper males provide extra incubation and supplemental
feeds to chicks [79,80]. Helper behaviour was also observed
at Darwin’s finch nests during 1979 on Daphne Major
Island. At 11 of 21 Cactus Finch (G. scandens) nests, chicks
were fed 1–10 times per day by a visiting conspecific male;
these helper males provided between 1.7% and 24.9% of all
food regurgitations at a nest per day, had comparable feeding
rates to the paternal male and, in four cases, also removed
faecal sacs from the nest [81]. Thus, there exists behavioural
plasticity in parental feeding care in some Darwin’s finch
groups that could be the target of selection should helper be-
haviour become advantageous.

Cooperative breeding in birds is widespread in systems
that experience high levels of brood parasitism [82]. Helper
birds in cooperatively breeding groups may provide
additional nest guarding that deters brood parasites from
entering the nest to oviposit [83], a form of frontline defence
[84–86]. Future research could explore proximate and ulti-
mate explanations for nest guarding against brood parasites
and ectoparasites [87]. Since female P. downsi flies probably
use visual or olfactory cues from the nest to locate and
infect avian hosts, nest guarding has the potential to be an
effective strategy to prevent infection by P. downsi, but exper-
imental studies are required to unveil this causal relationship.

Although both islands showed the same relationship
between female brooding duration and number of P. downsi,
the Santa Cruz data were collected from 2000 to 2004 and
the Floreana Island data were collected from 2004 to 2020.
Since 2004, there have been measurable shifts in P. downsi
and host behaviour on both islands. Philornis downsi ovipos-
ition and hatching have shifted towards earlier in the host
incubation period on Santa Cruz Island, whereas P. downsi
hatching (and perhaps oviposition) occurs during chick
feeding on Floreana [35,52,88]. On Floreana Island, the
proportion of hybrid tree finches in the population increased
to 55% in 2006 and has since remained at approximately
40% [43,45], and higher admixture (e.g. greater introgression
among C. parvulus and C. pauper) was associated with fewer
P. downsi per nest [44,89] and different patterns of parental
care (this study). All P. downsi life stages measured on Santa
Cruz and Floreana Island between the years 2004 and 2020
have become approximately 20–30% smaller [52], pointing to
coevolutionary dynamics. This current study identifies effects
of parental care that may be associated with changes in fly ovi-
position behaviour and success, which could produce new
host and parasite equilibria across islands and time [90].

In conclusion, the results of this study show that the
number of P. downsi in nests was not related to the number
of host visits, but was negatively related to female in-nest
attendance during the brooding period. This case study pre-
sents evidence that an introduced ectoparasite may select for
longer in-nest attendance by host females to physically pre-
vent parasites from ovipositing (with potentially higher
costs to host females than males) and leads to the prediction
that there may be selection for coordinated host male and
female behaviour to guard the nest when presence at the
nest safeguards the nesting contents. Using modelling
approaches, studies have found evidence for cross-scale feed-
backs between host resource abundance and parasite
transmission [91] and shifts from fluctuating to directional
selection dynamics that drive greater genetic divergence
between host populations [92]. Our study highlights the
role of host parental care behaviour as one factor that may
affect the timing of parasite oviposition behaviour and may
therefore play a role in shaping selection dynamics in an
emerging host–parasite system.
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