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Phase-controlled propagation of surface plasmons

Basudeb Sain*, Roy Kaner* and Yehiam Prior

Directional emission of electromagnetic radiation can be achieved using a properly shaped single antenna or a phased array of indi-

vidual antennas. Control of the individual phases within an array enables scanning or other manipulations of the emission, and it is

this property of phased arrays that makes them attractive in modern systems. Likewise, the propagation of surface plasmons at the

interface between metal films and dielectric materials can be determined by shaping the individual surface nanostructures or via the

phase control of individual elements in an array of such structures. Here, we demonstrate control of the propagation of surface plas-

mons within a linear array of nanostructures. The generic situation of plasmonic surface propagation that is different on both sides

of a metal film provides a unique opportunity for such control: plasmons propagating on the slower side feed into the side with the

faster propagation, creating a phased array of interfering antennas and thus controlling the directionality of the wake fields. We fur-

ther show that by shaping the individual nanoantennas, we can generate an asymmetric propagation geometry.
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INTRODUCTION

Surface Plasmon Polaritons (SPPs) are promising candidates for the
next generation of photonic circuits. Similar to photons, they can carry
information; they are directional and coherent, and they have the
advantage of occupying a space much smaller than the diffraction limit
of light. Because of this, much effort has been made to control the
directionality of SPPs. In particular, there has been a focus on creating
small plasmonic devices that can efficiently couple light to SPPs and
guide them to regions of interest.
These plasmonic structures include gratings, ridge-grating

structures1 and slits2, which are parallel for directing or curved for
focusing. Some devices use an asymmetric geometry to achieve
directionality, such as aperiodic grooves3,4, asymmetric nanoslits5,6

and tilted gratings7,8. Many of the devices utilized relative phase
control to route plasmons. The idea is to use multiple radiation
sources with phase discontinuities, the sum of which creates direc-
tional SPPs. Generally, there are two main mechanisms of creating
phase discontinuities. One is the use of a phased array antenna9, in
which each radiation source is driven at the same frequency, but with
a slight phase shift toward its neighbors. This is very common in radio
frequencies and is also used for microwaves10 and optics11,12. The
other mechanism is holography, in which each of the antennas is
excited with the same frequency and phase, but due to the different
response engineered for each antenna, a phase shift is created.
The holography mechanism is vastly used in plasmonics. For

example, it has been used to couple light to SPPs with specific
directionality by using two compact detuned antennas13, each reacting
differently to the incoming light, or by using arrays of grooves with
different alignments14 or positions15 on a metallic surface. Holography

has even been used to create plasmonic airy beams16. It has also been
used to steer far-field light in the linear17,18 and nonlinear regimes19.
Lately, it has also been used by Genevet et al20. to create plasmonic
wake fields. Prior to that work, the creation of plasmonic optical wake
fields was demonstrated only by using the Smith–Purcell effect21, in
which wake fields are created due to the passing of a charged particle
nearby a grating, an effect that has been demonstrated in photonic
crystals22 and is enhanced in plasmonic systems23. On the other hand,
hardly any work has been reported regarding directional SPPs using a
plasmonic phased array.
Our scheme is based on the polarization-dependent24 coupling of

nanocavities by propagating plasmons. We excite a single cavity, and
the energy is carried from that point to the other antennas by SPPs25,26

over a 1D array2. Using this method, only a very small structure (spot)
needs to be illuminated, and one can couple light efficiently to
directional SPPs; thus, the excitation can even be done using fiber
optics. In addition, the direction of the outgoing SPPs is independent
of the angle of illumination, making this method very robust.

MATERIALS AND METHODS

The experimental system consists of a thin gold film, in which a linear
array of nanocavities is fabricated with varying cavity spacing. The
metal film is deposited on a glass substrate so that the surface
plasmons above and below the film propagate at different velocities. A
linearly polarized laser beam at 632.8 nm (HeNe) was focused from
the glass-side on the first cavity of the array, and the near field above
the cavities was measured27 by using a Near-field Scanning Optical
Microscope (NSOM; Nanonics Imaging Ltd. Multiview 4000;
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Figure 1a). The propagation of the SPPs was set to be along the array
by adjusting the laser polarization.
In the NSOM measurements28 we used a tapered optical fiber,

coated with metal (Cr/Au in this work) and mounted on a tuning fork
(Figure 1c). In the aperture NSOM method, the background is almost
negligible because the signal is collected through the optical fiber
(here, a multimode fiber), which is positioned a few tens of
nanometers above the surface, and the light reaches the APD single
photon detector (Excelitas SPCM-AQRH-14-24504) directly, the
scanning software of which produces the NSOM image. The bending
of the tip(≈30° between the tip apex and the sample surface normal)
enables the detection of the normal force in the tuning fork feedback.
The tips were cut by using Focused Ion Beam (FIB) for better accuracy
of the aperture size and shape (Figure 1c) and for the tip surface to be
parallel to the sample surface. As a tradeoff between higher spatial
resolution (smaller tip size) and higher signal levels, we selected
100 nm tips with a maximum laser power of 10 mW.
Gold films of typical thickness (350 nm) were e-beam evaporated

on thoroughly cleaned 300 micron-thick borosilicate glass slides
(Waldemar Knittel Glasberbeitungs GmbH). Linear arrays of rectan-
gular nanocavities with individual dimensions of 100× 500 nm
(Figure 1b), with different lattice constants, were milled by using a
FIB (FEI, Helios Nano Lab 600i) with a Ga ion and electron source.
The thickness of 350 nm was chosen so that the transmission of the
red light through the gold film would be very low.
Detailed numerical simulations of the fields above and below the

sample were performed by means of the finite-difference time-domain
(FDTD) method using the commercial Lumerical Numerical Solutions
package29. The optical constants of gold were taken from Johnson and
Christy30, while the optical constants of SiO2 were taken from Palik31.
The light source was a plane wave, polarized along the axis of the array
(x-axis) traveling in the z direction perpendicular to the plane of the
film. To compare the results with the NSOM measurement, the

magnitude of the electric field, |E|2, was calculated at a height of 50 nm
above the gold film.
In addition to the numerical simulations, and to gain a better

physical understanding of the results, we developed a simplified
physical model based on the uncoupled source point approximation.
Independent dipoles were assumed to be located on the edge of each
rectangular nanocavity, each one modeled as a source point radiating
at the same frequency, as determined based on the excitation light.
The amplitude and phase of each source point were as if the source
point was excited by an uninterrupted propagating plasmon. There-
fore, the amplitude is only a function of the distance from the
excitation hole and the plasmon decay length, whereas the phase is a
function of the distance from the excitation hole and the plasmon
wavelength, both of which are properties of the metal and the
interface.

RESULTS AND DISCUSSION

Figure 2 depicts the simulated and calculated results of the near field
excited above a gold film under two different conditions: as a free-
standing film with air on both sides, and as a thin film deposited on a
glass substrate. The differences are pronounced. For the free-standing
film (Figure 2a), the illuminated cavity radiates a dipole emission in
both the right and left directions, with uninterrupted propagation to
the left and with propagation to the right that is disturbed by the other
cavities, namely, the simple dipole pattern is locally affected by
interference from the individual cavities. In Figure 2b, the situation
is very different: while the radiation to the left is similar, very
prominent side lobes are generated to the right. The origin of these
side lobes, which appear as propagating wakes, is the main focus of the
present work. The model calculations (Figure 2c and 2d) show
qualitatively equivalent results—a simple uninterrupted propagation
for the free standing film and the generation of side lobes for the air/
gold/glass configuration.

a b

≈ 60°

Y
: 8.0 μm

X : 8.0 μm

c

Figure 1 Experimental configuration. (a) Artist’s view of the arrangement. A laser beam illuminates the first cavity from below, and the excited field above the
gold film is measured using the NSOM probe. (b) SEM image of a one-dimensional array of eleven rectangular nanocavities of dimensions 100×500 nm with
a 300 nm gap milled in a high-quality gold film 350 nm thick. The topography was measured simultaneously with the near-field measurements using the
same NSOM probe. (c) SEM image of Nanonics NSOM tip showing the bending of the tip and its connection to one arm of the tuning fork. The inset shows
the tip after cutting its apex using the Focused Ion Beam (see text for details).
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The physical explanation for these side lobes, which is elaborated
below, is as follows: the laser excitation of the first cavity generates two
propagating plasmons: one at the gold–air interface and one at the
gold–glass interface. These two surface plasmons propagate at different
velocities, with the one at the gold–glass interface being slower. This
slower wave propagates through the other cavities, feeding into the
upper surface at each one. Due to the velocity difference between the
two propagating plasmons, phase retardation (phase array of the
emitters) is created, which is felt by the plasmon propagating on the
gold–air surface. Like with any phase antenna, scattering of the side
lobes is generated with angles that depend on the location and phase
of the other cavities. In the following section, we investigate this
phenomenon experimentally and analyze the observations by numeri-
cally solving the wave equations and by using our conceptual model,
which is based on placing a properly phased radiating dipole in each
cavity.
The side lobes are generated differently for arrays with different gaps

between the cavities. Figure 3 depicts some typical results. At the
300 nm gap, the lobes spread from each individual nanocavity in a
direction that is almost perpendicular to the array axis. At larger gaps,
various branches are seen in the propagation, with two dominant lobes
evolving at larger gaps. As a general observation, two dominant side
lobes propagate at angles that vary with the gap between the antennas,
with additional, less pronounced, lobes that seem to originate at every
individual scattering cavity. The propagation to the free space on the

left side is hardly affected. Overall, what is observed is the scattering
from a phase array of antennas whose phase delay is dictated by the
gold–glass plasmon and the gap between the cavities.
In Figure 4, the simulated results for the same set of arrays are

shown. While the numerical simulations are expected to capture the
qualitative nature of the physical observations, they cannot be expected
to yield quantitative agreement with the measured results. The
dimensions of the fabricated cavities are not exactly as designed, the
sharpness of the facets and corners is not perfect (as is assumed in the
simulations), surface imperfections are not accounted for, metal grains
and layer thickness fluctuations are ignored, and several other such
‘technical’ imperfections are found to affect the details of the simulated
results.
The refractive index of the glass determines the plasmon propaga-

tion velocity at the gold–glass interface. To characterize this effect, the
scattering from an array of cavities with a gap of 900 nm is simulated
for different substrate refractive indices between 1.0 and 2.0, and
significant differences between them are found (Figure 5). This strong
dependence on the refractive index is the origin of the proposal to use
variable index interfaces to control the side-lobe propagation, as
described below.
As mentioned, to elucidate the physical picture, we developed a

simplified model to explain the results. Individual dipoles are placed
around each nanocavity location, with intensity defined based on the
decaying ‘top’ plasmon and the phase defined according to the arrival
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Figure 2 Near field above a gold film. (a) Simulated near field above a free-standing film (air on both sides) for excitation of the first cavity by a HeNe laser
beam. (b) The same as in (a) but for a gold film that is deposited on a glass substrate. Field distributions calculated by the simplified model for the free-
standing film (c) and for the air/gold/glass film (d) (see text for details).
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time of the ‘bottom’ plasmon. The electric field at any point away
from the array is given by:

X11

u¼1

X5

v¼�5

X1
2

w¼�1
2

exp i
2p
l1

� L�1

� �
d u;wð Þ

� �
Edipoleðl2; d; 50vÞ

ð1Þ
where Edipole is the dipole radiation with a wavelength of λ2, positioned
at (d, 50v), u represents the running number of the hole in the array, v
is the vertical position along each hole, w refers to the right or left side
of the hole, λ1 is the bottom plasmon wavelength, L is the plasmon
decay length, and d is the distance between the source point and the
first hole in the array such that:

d ¼ gapð Þ � uþ w � 100½nm� ð2Þ
where ‘gap’ is the distance between the centers of two neighboring
holes. As noted, the top and bottom plasmons propagate at different
velocities. When only the top plasmon (gold–air) is included (λ1= λ2),
no wakes appear (Figure 2c). Similarly, no wakes are generated when
only the bottom plasmon is calculated. However, wakes are generated
(Figure 2d) when the phase of each source point is determined by the
wavelength of the gold–glass plasmon, but the dipole radiation
wavelength fits the gold–air plasmon. This case represents a physical
situation where plasmons propagate at the gold–glass interface, and
when they reach a nanocavity, they couple to localized surface
plasmons (LSPs) at each cavity, which, in turn, couple to top
propagating surface plasmons. Thus, it is the mismatch of the dipole’s
phase with its location that gives rise to the appearance of the wakes.
Consequently, the wakes pattern varies with the change in the
refractive index of the substrate, as demonstrated in the simulated
results shown in Figure 5.

Near-field distributions using this dipole model were calculated for
the different gaps, and the results for four different gaps are shown in
Figure 6. The model describes the essence of the physical character-
istics, but as explained earlier, the model is not expected to provide a
quantitative fit to the observed or to the simulated results.
To further elucidate the contribution of the plasmon propagation

on both sides of the film and to better understand the unique
configuration resulting from the illumination of only a single hole, we
considered the case of a first cavity that is blind, namely, light cannot
pass from one side of the sample to the other. Figure 7 depicts the
comparison between open and blind first cavities. For the case of a
blind first cavity (shown at the inset), the plasmons on the gold–air
side are generated at each hole by the excitation passing from below
through the hole; thus, their phases are determined by the propagation
delay on the gold–glass side. The wakes generated in the blind first
hole configuration are essentially identical to the ones generated in the
open first hole configuration (up to some intensity variations) but are
shifted to the right by one hole. This observation strengthens the
interpretation of the origin of the wakes and suggests that what we are
seeing is the radiation from a phased array of plasmonic sources. In
other words, the bottom (glass–gold) plasmon is responsible for the
phase delay, and the propagating top plasmons originating from this
phased array interfere, thus generating the wake configuration.
Based on the interference between the upper and lower propagating

plasmons, any array of nanocavities in a metal film will generate wakes
irrespective of their shape (circular, triangular and so on). The
visibility and other details of these wakes depend on the geometry
and shape of the individual cavities. We have tested various geometries
and have mostly observed intensity differences stemming from the
different scattering efficiencies of the different shapes (triangle, square
or circle). As discussed, the physical mechanism leading to this effect is
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Figure 3 Near fields above the film, measured for different gaps when only the first cavity is excited. The excitation is produced using a linearly polarized
He–Ne (632.8 nm) beam from the glass side, with polarization along the array long-axis to ensure plasmonic propagation along the array. The gap between
the cavities is given in each panel.
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the coupling between the upper and lower SPPs. Naturally, both SPPs
should exist (that is, none has decayed), and the film thickness and
cavity dimensions should be such that transmission through the cavity
is possible.
Previously, Genevet et al20. reported the observation of plasmonic

wakes from specially designed 1D rotated apertures in a gold film,
under the excitation of a circularly polarized light beam at oblique
incidence. The oblique incidence generates SPPs that propagate faster
than the surface plasmon phase velocity, which interfere to form
wakes the two-dimensional analog of Cherenkov radiation. In the
current work, the different velocities on both sides of the film give rise
to a phased array that is retarded when compared to the surface
propagating plasmon at the gold–air interface, thus generating
scattering from the phased antenna array that appears as wake fields.
To control the wakes, one can choose the lattice constant of the array
or the dielectric constant of the substrate, but these cannot be done
interactively and require specific fabrication for each configuration.
The potential approaches to dynamic control are presented below.
In general, wakes generated by a moving object are symmetric

around the propagation direction. The same holds in the present case:
the two-dimensional plasmonic wakes are observed to be distributed
symmetrically on both sides of the cavity array. However, as we show
below, it is possible to break the full symmetry by introducing
asymmetry to the shape of the individual nanocavities. To test this
possibility, we stamped a ‘V’-shaped flaw into one side of each
rectangular cavity in the array. The field distribution above the surface
for a single imperfect rectangle was calculated numerically for various

shapes, and indeed, the degree of asymmetry strongly depends on the
geometry of the individual cavity. We determined that the best
‘symmetry breaker’ is a ‘V’-shaped addition extending to a quarter
of the total length of the rectangle. Figure 8a and 8b, depict the
calculated and measured field distributions around a standard
rectangle, and Figure 8c and 8d, depict the field around the
asymmetrical one.
The measured and simulated near-field distributions around an

array of these asymmetric cavities are shown in Figure 8e–8h, with
clear asymmetry of the wake field around the array. The length of the
‘V’ shape is very crucial in making the wakes fully asymmetric with a
zero field on one side. We determined that a blemish with a depth that
is one quarter of the total length of the rectangle is optimal for
maximal asymmetry. In most measurements, however, the asymmetry
is less than perfect, and we attributed the residual field on the other
side to fabrication imperfections due to the resolution-limited
fabrication done via the FIB method.
The propagation of the SPP wakes is determined by the phases at

the individual cavities along the array. As discussed, for a different
refractive index of the substrate layer below the gold film, the
propagation of the lower SPPs will be different, leading to a changed
phased array of antennas and thus to an altered wake field. Moreover,
different input wavelengths will yield different scattering patterns,
providing another measure of control. This physical phenomenon
leads to several potential applications, as detailed below.
Figure 9a depicts, in artificial color, the calculated wake field for

different input wavelengths. In an array of 100× 500 nm rectangular
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cavities separated by 900 nm (marked in the panel), the first cavity is
illuminated by a white light pulse, and the field above the gold film is
plotted, where the plasmonic fields at 646 and 580 nm are colored red
and green, respectively. The strong yellow region in the center is a
result of both colors being present there. This configuration itself,
without any further processing, may serve as an in-plane spectrum
analyzer, alleviating the need for some distance propagation in the
standard use of a grating for spectral analysis.
To simulate observations in the far field, we placed a small

‘numerical detector’ 1 μm above the gold film at point A (Figure 9a)
and integrated the light intensity over the detector area. Figure 9b
depicts the intensity of the far-field emission (as measured by the
numerical detector) for substrate refractive indices of 1.5 and 1.6. The
spectra in Figure 9b indicate a large variation in the plasmonic
response as a function of the substrate refractive index (or, for that
matter, of a cover layer), based on which the index can be extracted via
far-field spectral measurements. To estimate the sensitivity of the
device, we performed the following procedure for the analysis, as
described in Figure 9c:

1. The emission ratio (at 646 and 580 nm) was numerically calculated
for the ‘unknown’ substrate material (the value of 1.505 was
arbitrarily selected).

2. Maps similar to Figure 9a were calculated over the range of 1.500–
1.509, but at each pixel, 50% random noise was added.

3. The value of the 646 nm/580 nm ratio over observation area ‘A’ was
calculated and was normalized to the value of the ‘measured’

(calculated) result at 1.505. Now, the goal is to see how accurately
we can extract the value of 1.505 from the noisy calculations.

4. In Figure 9c, a horizontal line was drawn from 1 until it intersected
the noisy curve, and then two vertical lines were drawn downward
to identify the level of uncertainty of the derived index.

5. In the current example, the value of 1.505± 0.0004 is identified,
providing an uncertainty level of 0.0004 in the determination of the
refractive index of the unknown substrate.

CONCLUSIONS

We report the observation of plasmonic wake fields that are generated
by the interference of two propagating plasmons with different
velocities. The effect is observed for a gold film on a glass substrate
and is based on the different effective refractive indices for SPP on the
glass-side and the air-side of a metal film. The coupling between the
top and bottom SPPs through the holes creates an array of phased
antennas that causes the appearance of wake fields. The scattering of
the wakes is not dependent on the illumination angle, and, in
principle, the same mechanism should apply whenever two SPPs
interfere. Owing to the strong dependence of the phases on the
refractive index of the substrate, controlled change of this index will
enable control of the directional propagation of the wake fields,
opening options for directing, splitting and routing surface plasmons.
A methodology is proposed for the determination of the substrate
index of refraction with high accuracy. Several proposals for controlled
refractive index changes have been published in recent years32–38, and
further experiments are underway to utilize these proposals.
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