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Objectives: The genetic prediction of phenotypic antibiotic resistance based on analysis of WGS data is becom-
ing increasingly feasible, but a major barrier to its introduction into routine use is the lack of fully automated
interpretation tools. Here, we report the findings of a large evaluation of the Next Gen Diagnostics (NGD)
automated bioinformatics analysis tool to predict the phenotypic resistance of MRSA.

Methods: MRSA-positive patients were identified in a clinical microbiology laboratory in England between
January and November 2018. One MRSA isolate per patient together with all blood culture isolates (total n = 778)
were sequenced on the Illumina MiniSeq instrument in batches of 21 clinical MRSA isolates and three controls.

Results: The NGD system activated post-sequencing and processed the sequences to determine susceptible/re-
sistant predictions for 11 antibiotics, taking around 11 minutes to analyse 24 isolates sequenced on a single
sequencing run. NGD results were compared with phenotypic susceptibility testing performed by the clinical
laboratory using the disc diffusion method and EUCAST breakpoints. Following retesting of discrepant results,
concordance between phenotypic results and NGD genetic predictions was 99.69%. Further investigation of 22
isolate genomes associated with persistent discrepancies revealed a range of reasons in 12 cases, but no
cause could be found for the remainder. Genetic predictions generated by the NGD tool were compared with pre-
dictions generated by an independent research-based informatics approach, which demonstrated an overall
concordance between the two methods of 99.97%.

Conclusions: We conclude that the NGD system provides rapid and accurate prediction of the antibiotic
susceptibility of MRSA.

Introduction

There is growing evidence for the potential of pathogen
sequencing to transform infection control practice and outbreak
investigation.1–6 As a result, sequencing technologies are becom-
ing increasingly employed in diagnostic and public health
microbiology laboratories for surveillance, outbreak investigation
and transmission tracking of hospital and foodborne-associated
outbreaks and emerging pathogens. The reuse of such sequence
data to also detect genetic mutations and acquired genes associ-
ated with phenotypic antibiotic resistance could provide a rich
source of surveillance information at little or no additional cost.
Accuracy of the genetic prediction of phenotypic resistance

depends on access to a comprehensive reference database but, if
made available, sequence data could be used to support clinical
care and provide an additional mechanism for the quality control
(QC) of routine phenotypic testing.

As the cost and turnaround time of sequencing technologies
fall and the databases necessary for genetic prediction expand,
genome sequencing will also become adopted as the primary
method to detect genetic determinants of resistance. This is al-
ready the case for Mycobacterium tuberculosis, with sequencing
having entered into routine practice for prediction of resistance
and outbreak investigation in several countries.7 This change in
methodology is readily justified as susceptibility testing is laborious
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and requires considerable expertise, whilst sequencing is cost-ef-
fective and potentially more rapid.8 The case for using sequencing
as a primary method to detect resistance genes in rapidly growing
bacteria includes the detection of MDR pathogens that are currently
evaluated using directed molecular methods such as PCR.9,10

Furthermore, genome sequencing has the advantage of providing
information on the entire genetic repertoire, compared with amplifi-
cation methods that target a small number of specific genes.

Although rapid progress has been made to develop pathogen
sequencing for use in routine diagnostic and public health
microbiology, a critical rate-limiting step is the lack of fully auto-
mated interpretation tools for use by those with limited informat-
ics training. Here, we report the findings of a large prospective
evaluation of the Next Gen Diagnostics (NGD) automated bioinfor-
matics tool to predict the phenotypic resistance of MRSA.

Materials and methods

Ethics approval, study setting, patients and sample
identification

The study was conducted under ethics approval from the National
Research Ethics Service (ref: 11/EE/0499) and the Cambridge University
Hospitals NHS Foundation Trust Research and Development Department
(ref: A092428). The study setting was the Clinical Microbiology and Public
Health Laboratory at the Cambridge University Hospitals NHS Foundation
Trust (CUH) in the UK. MRSA-positive patients with samples submitted
between 24 January 2018 and 1 November 2018 were identified using
the hospital IT system [EPIC EMR (HyperspaceVR 2014; Epic Systems
Corporation)]. From 24 January to 2 April 2018, isolates were retrieved from
the frozen archive in the clinical laboratory. From 3 April to 1 November
2018, putative or confirmed MRSA-positive culture plates were retrieved
prospectively by the research team. The species was confirmed as
Staphylococcus aureus using the Staph Latex kit (Pro-Lab Diagnostics).
Freezer archive samples were plated onto Columbia Blood Agar (CBA) and
incubated overnight at 37�C. For samples obtained prospectively, a single
colony, where possible, was selected from the clinical plate (several colo-
nies or a 1 lL loopful was taken where colonies were smaller than 2 mm or
growth was confluent), plated onto CBA and incubated overnight at 37�C.
A 10lL loopful was then stored at #80�C in Microbank vials (Pro-Lab
Diagnostics). The first available isolate from each patient was selected, to-
gether with all blood culture isolates. Laboratory data were collected on
type of specimen, sampling date and location (hospital or GP). Patients and
samples were recoded with an anonymous study number prior to further
evaluation. We identified 786 MRSA isolates (from 782 patients) that were
cultured from samples submitted to the laboratory during the study period,
but 8 isolates (8 patients) were subsequently excluded from the study be-
cause of laboratory error (n = 3) or contamination (n = 5). The 778 study iso-
lates are listed in Table S1 (available as Supplementary data at JAC Online).

Susceptibility testing was performed by the clinical laboratory using the
disc diffusion method and EUCAST breakpoints (http://www.eucast.org/fil
eadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2019_man
uals/Manual_v_7.0_EUCAST_Disk_Test_2019.pdf), with a panel of 6, 9 or
12 antibiotics based on standard laboratory protocols. The 12-antibiotic
panel (cefoxitin, chloramphenicol, ciprofloxacin, erythromycin, fusidic acid,
gentamicin, linezolid, mupirocin, neomycin, rifampicin, trimethoprim/sulfa-
methoxazole and tetracycline) was used to test isolates from blood cultures
and/or patients either not known to be MRSA-positive or without a 12-anti-
biotic panel in the prior year. The 9-antibiotic panel (cefoxitin,
chloramphenicol, ciprofloxacin, gentamicin, linezolid, mupirocin, neomycin,
trimethoprim/sulfamethoxazole and trimethoprim) was used to test
MRSA-positive urine cultures. The 6-antibiotic panel (cefoxitin, erythromycin,
tetracycline, rifampicin, fusidic acid and gentamicin) was used to test

isolates from non-invasive infections from GP surgeries. A minority of MRSA
cultured from multisite screens of known MRSA patients were confirmed
as cefoxitin resistant but had no further susceptibility testing performed.

Repeat disc diffusion testing, Etests and broth microdilutions for the
discrepant isolates were performed in the research laboratory from frozen
stocks, which were plated onto CBA and incubated at 37�C for 24 h. A single
colony was selected for susceptibility testing according to the EUCAST
guidelines. For fusidic acid (for which there was no Etest available) repeat
testing was performed using the broth microdilution method. For some iso-
lates (see the Results section), we undertook a combination of repeat
phenotypic testing and sequencing from a single colony. Frozen stocks
were plated onto CBA and incubated at 37�C for 24 h, after which a single
colony was plated onto CBA and incubated at 37�C for 24 h to create a sin-
gle-colony purity plate. One colony was taken from this purity plate for
sequencing and a second was used for disc testing.

WGS and QC
Frozen stocks were plated onto CBA and incubated at 37�C for 24 h, then a
single colony taken for DNA extraction. DNA extraction, library preparation
and sequencing were performed as described previously.11 In brief, DNA
was extracted using the QIAGEN DNA Mini Extraction Kit, sequencing libra-
ries were made using the Illumina Nextera DNA Flex Kit and sequencing
was performed on an Illumina MiniSeq with a run time of 13 h using the
high-output 150 cycle MiniSeq cartridge and the Generate FASTQ workflow.
Each run contained 21 clinical MRSA isolates and three controls [no tem-
plate (water), positive control (MRSA MPROS0386) and negative control
(Escherichia coli NCTC 12241)]. The study sequences are available in the
European Nucleotide Archive (https://www.ebi.ac.uk/ena) under the acces-
sion numbers provided in Table S1. Controls were required to pass prede-
fined quality metrics. The positive control was required to: have the highest
match to S. aureus using Kraken; be assigned to ST22; have mec detected
(>70% identity, >90% length); and have a minimum mean sequence depth
of 20% and minimum 80% mapping coverage of the MRSA reference gen-
ome (HO 5096 0412). The negative control was required to: have the high-
est species match to E. coli using Kraken; not have mec detected; and have
no S. aureus ST assigned. The ‘no template’ control was required to have
less than 1% contamination from any bacterial DNA. In addition, each
sequenced isolate was subjected to the following QC assessment: highest
match to S. aureus using Kraken; mec detected; minimum sequence depth
of 20% and minimum 80% coverage of the MRSA reference genome (HO
5096 0412).

Sequence data analysis using standard bioinformatics
pipelines
Bacterial species were determined using Kraken version 1 (https://ccb.jhu.
edu/software/kraken/) and the miniKraken database (https://ccb.jhu.edu/
software/kraken/dl/minikraken_20171019_8GB.tgz). STs were identified for
MRSA using ARIBA version 2.12.1, as described at https://github.com/sang
er-pathogens/ariba/wiki/MLST-calling-with-ARIBA. We used a database
of genes and mutations described previously as conferring resistance in
S. aureus (Table S2).12,13 Presence of genes and mutations was determined
using ARIBA version 2.12.1 run using the default settings. The output was
filtered using a custom script (10.6084/m9.figshare.11316665), with a
gene classified as present if there was >90% identity match, >90% of
the gene length was assembled and the coverage depth of the reference
gene was less than 2 SD below the average genome coverage. If a gene did
not pass these parameters then the isolate was classed as genotypically
susceptible by our research pipeline.

Sequence data analysis using an automated system
The NGD automated bioinformatics tool version 0.1.0 beta predicts antibiot-
ic resistance/susceptibility for a total of 32 antimicrobial agents (Table S3)
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and provides details of the genes or genetic mutations used as the basis for
resistance prediction. The system self-activated on upload of the MiniSeq
output file and processed the 24 pairs of FASTQ files. The raw reads were
trimmed with Trimmomatic version 0.36.414 to remove low-quality bases
from the ends of each read and filter out reads with low average base-pair
quality. Genomes were flagged as passed or failed based on having 20%
coverage over at least 80% of the mapping reference. Each MRSA genome
was assessed for the presence of predefined genes and mutations that are
known to confer resistance, utilizing a proprietary resistance database,
which was compiled from available public literature and datasets, curated
and validated internally. The database includes annotations for minimum
identity, gene length and absolute/relative depth required for each individ-
ual gene and/or mutation. Resistance and susceptibility predictions were
automatically generated. The speed of the tool was determined based on
the time it took to generate the susceptible/resistant prediction report from
the uploaded MiniSeq output file for a single run of 24 isolates in triplicate
(11 min 11 s, 11 min 0 s and 10 min 53 s, respectively) and three independ-
ent sequence runs of 24 isolates (11 min 11 s, 9 min 54 s and 11 min 20 s,
respectively). These resulted in a range of 9 min 54 s to 11 min 20 s, with an
average of 10 min 52 s. Isolates were classified as ‘uncertain’ by the NGD
analysis tool in the event that the sequence data did not pass internal QC
metrics. These were defined as ‘inconclusive results’ and excluded from
the primary analysis. This occurred for 19 out of a total of 7147 possible iso-
late–antibiotic combinations that could be evaluated (0.27%), the cause of
which was determined as gene coverage and/or gene coverage depth
below the required threshold (Table S4). These underwent repeat testing
to determine the cause of the failure, the findings from which are described
in the Results section.

Results

We evaluated 778 isolates from 774 MRSA-positive individuals
that were cultured from samples submitted to the laboratory
between January and November 2018 from wards and clinics at
three hospitals (n = 639) and 65 GP surgeries (n = 139). The major-
ity of samples were multisite screens (swabs of nose, throat and
groin, n = 524), the remainder being diagnostic specimens includ-
ing swabs (n = 221), tissue (n = 10), respiratory samples (n = 9),
blood cultures (n = 7), urine (n = 5) and other body fluids (n = 2).
In silico MLST prediction demonstrated that the 778 isolates
belonged to 66 different STs, including 16 isolates with a novel ST.
The most common STs were ST22 (47%), ST45 (10%) and ST59
(8%) (Table S1 and Figure S1).

The clinical laboratory undertook phenotypic susceptibility test-
ing against a total of 13 antibiotics. Twelve antibiotics were tested
for the majority of isolates (n = 687, 88.3%), the remainder being
tested against nine or six antibiotics (5 and 31 isolates, respective-
ly) or cefoxitin alone (55 isolates; see methodology for rationale of
variable testing). The number of isolates tested per antibiotic was
as follows: cefoxitin (n = 778), erythromycin (n = 719), tetracycline
(n = 718), rifampicin (n = 718), fusidic acid (n = 718), gentamicin
(n = 723), chloramphenicol (n = 692), mupirocin (n = 692), linezolid
(n = 692), neomycin (n = 692), trimethoprim/sulfamethoxazole
(n = 692), ciprofloxacin (n = 692) and trimethoprim (n = 5). Two
antibiotics (neomycin and trimethoprim/sulfamethoxazole) were
excluded from further analysis because the resistance determi-
nants were not included in the NGD reference database and so the
NGD tool could not predict resistance for these. The proportion of
isolates with resistant, intermediate and susceptible phenotypes
varied by drug (Figure S2). Antibiotics with the highest proportion
of resistant isolates were ciprofloxacin (60%, 412/692),

erythromycin (46%, 330/719) and fusidic acid (32%, 228/718).
There were 7128 possible isolate–antibiotic combinations that
passed the NGD tool QC and could be evaluated for the accuracy of
phenotypic antibiotic susceptibility prediction. We excluded 99
results (1.4%) associated with intermediate resistance from fur-
ther analysis because the NGD tool provides resistant or suscep-
tible predictions.

A total of 7029 isolate–antibiotic combinations were used to
evaluate the accuracy of the NGD tool. This demonstrated that
NGD tool predictions were concordant with the clinical laboratory
phenotype results in 6895/7029 (98.09%) instances. The 134 dis-
cordant pairs involved 10 antibiotics, the most common of which
was ciprofloxacin (Figure S3). These were further evaluated by the
retesting algorithm shown in Figure 1, which resolved the majority
of discrepancies (112/134, 83.6%) (Table S5). Recalculation of the
concordance between the actual and predicted phenotypic using
the NGD tool gave a concordance of 99.69% (7007/7029), with a
very major error rate of 0.72% and a major error rate of 0.15%. The
final comparison metrics are shown in Table 1.

Investigation of the 22 isolate genomes associated with per-
sistent discrepancies between phenotypic testing and predicted
phenotype by NGD revealed an explanation in 12 cases (Table 2).
Seven isolates with phenotypic susceptibility to mupirocin were

Persistent discrepancies
N= 22 (21 isolates)

Discrepancies between genotype and phenotype
N= 134 (111 isolates)

Persistent discrepancies
N= 33 (32 isolates)

Persistent discrepancies
N= 24 (23 isolates)

Repeat
disc testing

Etest

Discrepancies resolved
N= 101 (82 isolates)

Discrepancies resolved
N= 9 (9 isolates)

Discrepancies resolved
N= 2 (2 isolates)

Single-colony culture followed
by phenotypic disc testing and
sequencing

Figure 1. Algorithm used for retesting of discrepancies between results
of phenotypic testing performed by the clinical laboratory and genetic
prediction of susceptible/resistant status using the NGD tool.
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predicted as resistant by the NGD tool based on the presence of an
isoleucine t-RNA synthetase gene (ileS-2 or mupA). However, all
seven isolates had a frameshift mutation at the 93rd codon of
ileS-2 that would be predicted to cause functional inactivation of
the mupA gene and a susceptible phenotype. Four isolates with
phenotypic resistance to chloramphenicol carried fexA, which
encodes chloramphenicol resistance15 but this gene was missing
from the NGD database and the isolates were predicted as being
susceptible. One isolate with phenotypic susceptibility to fusidic
acid was predicted as resistant by the NGD tool based on a M453I
mutation in fusA, but this mutation has not been described
previously as conferring resistance.16 One isolate (HICF0659)
with phenotypic resistance to trimethoprim was predicted as
susceptible by the NGD tool, but the isolate carried dfrA, which con-
fers resistance.15 Reasons for the remaining nine discrepancies
could not be identified.

Nineteen NGD tool prediction results (0.27%) were excluded
prior to primary analysis because of failure to pass QC metrics and
were assigned as inconclusive (see the Materials and methods sec-
tion). These were re-evaluated by repeat phenotypic testing and
sequencing from a single-colony purity plate (17 isolates). After
retesting, 18 results were concordant between the phenotypic
testing and the predicted phenotype, while one isolate (HICF0321)
was phenotypically resistant to trimethoprim but no resistance
gene was detected by the NGD tool.

Finally, we compared the performance of the NGD tool with a
research pipeline in predicting the correct phenotypic susceptibil-
ity/resistance for the 7029 isolate–antibiotic combinations, using
the dataset containing the 112 resolved discrepancies. The two
pipelines were concordant for 99.97% (7027/7029) results. One
isolate (HICF0659) with phenotypic resistance to trimethoprim
was predicted to be susceptible by the NGD tool but the research
pipeline detected dfrA, encoding trimethoprim resistance. One

Table 1. Evaluation of the genetic predictions of antibiotic susceptible/resistant phenotype made by the NGD tool for 778 MRSA isolates after repeat
testing for discrepancies

Drugs
True

positives
True

negatives
False

positives
False

negatives
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
Very major
errors (%)

Major
errors (%)

Cefoxitin 778 0 0 0 100 100 NA 0 NA

Erythromycin 324 384 1 1 99.72 99.69 99.74 0.31 0.26

Tetracycline 101 609 0 0 100 100 100 0 0

Rifampicin 8 699 0 0 100 100 100 0 0

Fusidic acid 220 494 1 1 99.72 99.55 99.79 0.45 0.21

Gentamicin 53 668 0 0 100 100 100 0 0

Chloramphenicol 4 684 0 4 99.42 50 100 50 0

Mupirocin 31 571 6 0 99.01 100 98.96 0 1.04

Linezolid 0 692 0 0 100 NA 100 NA 0

Ciprofloxacin 398 289 0 5 99.28 98.76 100 1.24 0

Trimethoprim 0 0 0 3 0 NA NA NA NA

Overall 1917 5090 8 14 99.69 99.27 99.84 0.72 0.15

Definitions: True positive, both phenotype and genotype are resistant; True negative, both phenotype and genotype are susceptible; False positive,
phenotype is susceptible but genotype is resistant; False negative, phenotype is resistant but genotype is susceptible.
NA (not applicable) refers to cases where a particular value could not be calculated because of insufficient data (for example, no cases of resistance).

Table 2. Twenty-two discrepancies between the result from phenotypic
testing and NGD tool predictions that were not resolved by repeat testing

Strain ID Drug Phenotype
NGD tool

prediction
Gene

detected

HICF0228 chloramphenicol R S —

HICF0465 chloramphenicol R S —

HICF0561 chloramphenicol R S —

HICF0696 chloramphenicol R S —

HICF0214 ciprofloxacin R S —

HICF0413 ciprofloxacin R S —

HICF0441 ciprofloxacin R S —

HICF0525 ciprofloxacin R S —

HICF0941 ciprofloxacin R S —

HICF0441 erythromycin R S —

HICF0065 fusidic acid R S —

HICF0838 fusidic acid S R fusA M453I

HICF0006 mupirocin S R ileS-2a

HICF0099 mupirocin S R ileS-2a

HICF0201 mupirocin S R ileS-2a

HICF0366 mupirocin S R ileS-2a

HICF0401 mupirocin S R ileS-2a

HICF0828 mupirocin S R ileS-2a

HICF0890 mupirocin S R ileS-2a

HICF0659 trimethoprim R S —

HICF0372 trimethoprim R S —

HICF0802 trimethoprim R S —

S, susceptible; R, resistant; a dash indicates no detection of a known
gene or genetic mutation associated with resistance.
aA frameshift mutation at the 93rd codon in these genes was detected
that would be predicted to lead to gene inactivation, which would result
in a susceptible phenotype.
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isolate with phenotypic resistance to fusidic acid was predicted as
resistant by the NGD tool but susceptible by the research tool ini-
tially because although the fusC gene was detected in the research
pipeline, it was below a QC cut-off metric. This discrepancy was
resolved by repeat sequencing.

Discussion

Here, we describe the outcome of a large evaluation of an auto-
mated bioinformatic system that enabled the rapid prediction of
phenotypic antibiotic susceptibility for MRSA. Prediction was
achieved with a high degree of accuracy, which is consistent with
published studies on MRSA using research-based, non-automated
informatics analyses.12,17 The advantage of the NGD tool was that
it generated data from fully automated analyses for a complete
run of 24 isolates/controls in the absence of bioinformatics expert-
ise. Information was provided in a clinically relevant format (sus-
ceptible/resistant) together with details of the genes or genetic
mutations used as the basis for resistance prediction. Processing
time from DNA extraction to the generation of resistance predic-
tions can be completed within 24 h, which brings the use of gen-
omic technologies closer to clinical use for MRSA.

The final concordance between phenotypic susceptibility and
predicted susceptibility/resistance was 99.69%, following retesting
of 134 discordant pairs and resolution of discrepancies for 112 of
these pairs. The very major error rate of 0.72% and major error
rate of 0.15% falls well within the acceptable limits set by the FDA
(<1.5% for very major errors and <3% for major errors). The NGD
tool database did not contain two genes (dfrA and fexA) that con-
fer resistance to trimethoprim and chloramphenicol, respectively.
These have now been added to further increase the accuracy of
prediction; this underlines the importance of an ongoing process
of updating the supporting resistance database.

Our systematic study design was specifically used so that we
could evaluate MRSA in a real-world clinical setting and avoid
selection bias, whereby consecutive isolates were tested over
9 months from a single hospital. A limitation of this, however, is
that the rate of resistance for some antibiotics (rifampicin, chlor-
amphenicol, linezolid and trimethoprim) were very low in our set-
ting, which impacts on the robustness of sensitivity and specificity
calculations. This could be addressed by a future laboratory-based
study in which collections are biased towards a higher proportion
of resistant isolates. A study of S. aureus that also included
methicillin-susceptible isolates (rather than only MRSA as in this
study) would also confirm the accuracy of the tool for the predic-
tion of cefoxitin resistance although the tool detects mec genes,
which is an established approach for the prediction of resistance.
The evaluation was limited to the analysis of Illumina paired-end
data and we recognize that other sequencing technologies could
become increasingly adopted in clinical laboratories over time.

Based on the output from each step of the retesting algorithm,
most of the discrepancies identified during the initial assessment
of concordance between disc diffusion test results and the NGD
tool prediction were due to an erroneous disc diffusion test result,
with 101/134 discrepancies (in 82 isolates) corrected after repeat
disc diffusion testing. The direction of change in result after repeat-
ing the same assay was most commonly from resistant to suscep-
tible (n = 74), which is consistent with inaccuracies in clinical
laboratory testing relating to the inoculum. The scale of the error

rate (based on 101 errors out of 7029 individual results, 1.4%) is
relatively low, but the findings from our study confirm that
genome prediction can be more accurate overall than phenotypic
testing. Furthermore, detection of laboratory errors based on the
results of genetic predictions represents an additional mechanism
for audit and quality improvement. One possibility that we took
account of in our retesting algorithm was that picking a different
colony for phenotypic testing and sequencing could lead to
discrepant results if samples contain more than one strain, each of
which had differing patterns of resistance. However, testing of per-
sistently discrepant pairs from the same colony indicated that a
change in result following this variation in methodology was the
exception, suggesting that this does not represent a problem in
practice.

An investigation of 22 persistently discrepant pairs after retest-
ing provided important insights into mechanisms for this. Seven
isolates contained mupA, encoding for mupirocin resistance, but
analysis detected a frameshift mutation in this gene, which is likely
to explain the susceptible phenotype. Incorporation of such muta-
tions into the database will further improve the prediction accur-
acy, once the association between the mutation and susceptibility
has been verified by relevant experimental testing. We also identi-
fied nine isolates that were apparently resistant but had no identi-
fiable genetic cause based on current knowledge, which provides
new avenues for the exploration of the basis of resistance. We
excluded a small proportion of isolates with putative phenotypic
intermediate resistance or issues relating to an intermediate re-
sistance phenotype, including 10 isolates with mutations in the
ileS-1 gene that we knew would be predicted to confer full resist-
ance by the NGD tool, but which confers intermediate resistance.18

The latter can be reconfigured in future versions.
There are several alternative analysis tools that predict resist-

ance using MRSA genomes, the majority of which are used by
researchers and require considerable informatics expertise.
Nullarbor (https://github.com/tseemann/nullarbor) is a command
line-based pipeline that requires basic computational expertise for
its installation and use. The Center for Genomic Epidemiology in
Denmark has developed an open-access web-based tool for resist-
ance prediction,19 which utilizes the ResFinder database, but the
output requires further informatics processing to infer resistance
for individual drugs. Pathogenwatch (https://pathogen.watch) and
the bioMérieux EpiSeqTM system (https://www.biomerieux-episeq.
com/) are the most comparable to the NGD tool. Pathogenwatch is
an open-access tool developed by the Centre for Genomic
Surveillance, which can predict drug resistance in an automated
manner and has recently allowed upload of the raw FASTQ files.
However, the concordance of this tool with phenotype has not yet
been determined. The bioMérieux EpiSeqTM system also requires
data files (FASTQ or assembled FASTA) to be uploaded, which are
then analysed in a cloud service. Fee-for-service analysis includes
fully automated resistome characterization. EpiSeqTM has been
evaluated to investigate an increased incidence of S. aureus blood-
stream infections in a neonatal ICU in France.20 In addition,
machine-learning approaches such as AdaBoost have been devel-
oped that support upload of the assembled genome or sequence
reads to detect antimicrobial resistance-conferring genes.21 The
platform can be used to detect genes encoding resistance for a
number of bacterial species including S. aureus. Since there are
multiple online tools and databases of genetic determinants of
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resistance for S. aureus, a comparison of the predictive perform-
ance of the NGD tool with these tools will be important.

Conclusions

The provision of rapid, accurate tools that can predict phenotypic
drug susceptibility and output data in a format that can be readily
used and interpreted by staff provides the opportunity to evaluate
the impact of this for antibiotic stewardship and patient care, and
determine whether these tools could be implemented into routine
clinical care.
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