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The microbiota of gut is the community of microbes living in an individual’s gastrointestinal tract.
Several bacterial genera and species act in a concerted manner to establish metabolic interactions
with the host (1). Although there is a general high interest in the study of metabolite flow across the
microbe-host, at present, only some studies are targeting specificmetabolites produced by intestinal
microbiota such as polyamines (PAs) (2).

POLYAMINES AND GUT MICROBIOTA

Polyamines can be defined as small polycationic molecules with a wide array of biological functions
including gene regulation, stress resistance, cell proliferation and differentiation, and are associated
to both eukaryotic and prokaryotic cells (3).

In human cells spermine, spermidine, and putrescine are the main PAs. Putrescine is produced
in the cytoplasm of cells by decarboxylation of ornithine catalyzed by the enzyme ornithine
decarboxylase (ODC). Spermine and spermidine are synthesized by S-adenosyl-methionine
decarboxylase (AdoMetDC) and a transferase enzyme, catalyzing the transfer of the aminopropyl
group to the primary amine group of putrescine or spermidine, respectively (4). The ingested food
is the major source of PAs in the lumen, and the upper parts of intestine adsorb the majority of
these compounds for growth processes throughout the body (5). The gut microbiota is considered
the main responsible of PAs level in the lower part of intestine (6). Polyamines in the colonic
lumen are transferred into the bloodstream via the colonic mucosa (7). Intracellular PAs levels are
regulated by endogenous biosynthesis, degradation and exogenous transport. Both endocytic and
solute carrier-dependent mechanisms have been described for polyamine uptake in the gut lumen
(8). In eukaryotic cells they are involved in several physiological functions since they are able to
bind to several anionic macromolecules such as DNA, RNA, proteins, and acidic phospholipids (9).
The PAs involvement in maintaining chromatin structure and membrane stability and regulating
ion-channels and scavenging free radicals has also been reported (10), as well as their role as second
messengers in protein and nucleic acid synthesis for normal cell division and growth (11). In
particular, cellular PAs availability contributes to tissue homeostasis of the gastrointestinal mucosa,
the rates of epithelial cell division and apoptosis, by modulating the expression of various growth-
related genes (12). In general, PAs are involved in several important cellular processes and their
disregulation can affect growth, aging and several diseases such as cancer, neurodegeneration and
metabolic disorders (13). To maintain good intracellular PAs contents, biosynthetic and catabolic
processes are activated and highly regulated. For example, a high intracellular PAs levels are related
with cell growth, whereas the inhibition of ODC decreases cellular PAs (12). On the contrary, its
overexpression induces an increased level of PAs in human gut, a result that has been related with
gastrointestinal cancers (14).

As regards bacteria, new putative phyla (134) other than the traditional ones (30) have been
identified using culture-independent metagenomic sequencing and single-cell sequencing (15).
However, the studies of PAs distribution in bacteria have been limited to culturable species and
few bacterial species have been studied (16).
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The bacterial PAs include spermidine, homospermidine,
norspermidine, putrescine, cadaverine, and 1,3-diaminopropane
with putrescine and spermidine being the most common PA
(17, 18). Furthermore, because of high bacterial diversity,
some microorganisms produce sym-homospemidine rather than
spermidine or produce only a diamine and some bacteria do not
produce PAs, such as Staphylococcus aureus (19).

Different bacterial species, up to 1,000, constitute the
intestinal microbiota. This community of microorganisms
(bacteria, archaea, fungi, protozoa, viruses) is responsible for
the metabolism of non- digested food components and it can
supply to the host nutrients such as amino acids and vitamins
and other biologically active substances (20). In general, this
microbial consortium is subject to fluctuations due to different
factors such as environment, diet, disease states and many others
(21). The microorganisms colonizing the gut can contribute to
the overall health of the host or be pathogenic, invading the host,
and causing diseases under certain conditions (22).

The majority of the studies on gut microbiota are focused
on bacteria, even if all the biota plays important roles in
host health and disease (23). The high-throughput sequencing
techniques based on the amplification of the 16S rRNA identified
more than 120 different prokaryotic phyla with only 31 phyla
included cultured species (24). Moreover, the majority of species
that constitute the gut microbiota belong mainly to four
phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
and among these Firmicutes and Bacteroidetes are dominant
phyla in agreement with the high-throughput sequences carried
out the last 10 years. The dominant species belong to
the families Bacillaceae, Enterobacteriaceae, Corynebacteriaceae,
and Bacteroidaceae, with a prevalence of anaerobic species,
uncultured yet (25). Culturomics is a new strategy that could
improve the study of microorganisms of the human gut
microbiota (26).

As regards Archaea, non-methanogenic and methanogenic
species are present in human gut microbiota, with the latter
producing methane during anaerobic fermentations. These
species belong to Euryarchaeota phylum. A very small fungal
community is present in the human gut with three major phyla:
Ascomycota 63%, Basidiomycota 32%, and Zygomycota 3%.

Putrescine, cadaverine, spermidine, and spermine are the
main PAs encountered in bacteria (Figure 1). Their synthesis
is highly regulated at molecular level through a concerted
biosynthesis and uptake mechanisms, as well as by degradation
and efflux processes. Their production relies on the presence
of amino acidic precursor or other intermediates which are
then converted into functional PAs (28). Besides de novo
synthesis pathways, PAs uptake can be controlled through
specific transport systems. They are highly conserved among
bacteria. The best-known examples are two ABC transporters
described in Escherichia coli that are specific for either putrescine
or spermidine and two antiporters, exchanging putrescine for
ornithine and lysine for cadaverine (29).

Recent studies highlighted the involvement of PAs in bacterial
pathogenesis. A clear example is Shigella spp. an intracellular
pathogen associated to enteric syndrome in humans (30).
For instance, due to mutations and deletions, cadaverine is

lost from Shigella spp., improving the pathogenicity process,
because cadaverine has a protective effect on intestinal mucosa
from enterotoxins. Spermidine accumulation increases Shigella
resistance to oxidative stress and its survival in macrophages [for
a review see (28)].

CONTRIBUTION OF GUT MICROBIOTA TO
PAs FORMATION

Almost all foods contain PAs; they are abundant in soybeans,
mushrooms, wheat germ, beef, pork, chicken livers, oranges,
turban shell viscera, and green tea leaves. A great part of PAs
introduced by foods is absorbed in the small intestine, whereas
microbiota produce these compounds in great amounts in the
large bowel (2). Little is known about the production and
degradation of biogenic amines (BAs) by gut microbiota and in
particular PAs. Recently, isolates from the human gut, belonging
to many different species, were found to produce and degrade
BAs at different levels depending on the strains (16). Putrescine
and spermidine, important metabolites of intestinal bacteria, are
present in the intestinal lumen in concentrations ranging from
0.5 to 1mM in healthy humans (6). Gut microorganisms can
synthesize putrescine, spermine and spermidine, that are present
at millimolar concentrations, and play a major role in providing
PAs for the high demand of these compounds in intestine.
Bacteria use PAs for cell to cell communication, cellular signals
and cell differentiation and the bacterial metabolism of these
compounds determines the PAs intestinal content. The main
studies were performed in E. coli, even if it is a minor microbial
component in the human intestine and its PAs biosynthetic
pathway seems to be different from those present in dominant gut
microbiota (31). Few studies report data onmetabolites produced
by intestinal microbiota and their functions, in particular short
fatty acids (32) and PAs (33, 34). In addition, Bacteroides spp. and
Fusobacterium spp. can synthesize putrescine and spermidine in
vitro and in vivo (35). Recently Nakamura et al. (20) found that
in colonic lumen putrescine is produced by different bacteria
from collective biosynthetic pathways depending on a complex
exchange of metabolites.

The environmental stimuli can modulate the gut microbiota
metabolism as well as the absorption and release of PAs. Noack
et al. (36) reported that indigestible polysaccharides pass into the
large intestine and are fermented with the production of short-
chain fatty acids and lower pH, that can modify the intestinal
microbiological metabolism and composition, and stimulate
intestinal PAs content synthesis. In general, the fermentable
carbohydrates present in the large bowel contribute to increase
the bacterial PAs formation with consequent beneficial effects
on the gut mucosa. In addition, by using in silico analysis,
novel PAs biosynthetic and transport proteins have been found.
There are few studies on PAs biosynthetic pathway carried
out by dominant intestinal microorganisms. In fact, great
part of gut bacteria utilizes carboxyspermidine dehydrogenase
and carboxyspermidine decarboxylase (CASDC) for spermidine
biosynthesis, whereas E. coli utilizes S-adenosylmethionine
decarboxilase and spermidine synthase (8). The species in
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FIGURE 1 | Main polyamine metabolic pathways modified from Linsalata et al. (27). The abbreviations used are as follows: ODC, ornithine decarboxylase; SAMDC,

S-adenosylmethionine decarboxylase; SSAT, spermidine-spermine-N-acetyl transferase; PAO, polyamine oxidase; AZ, antizyme; SMO, spermine oxidase. AZ

inactivates ODC, increases polyamine efflux and decreases polyamine uptake.

the genus Bacteroides, which is predominant in intestine of
humans with 20 of 56 most abundant species, harbors CASDC
homologs (31) that are essential for spermidine biosynthesis
contributing to the normal bacterial growth (37). Sugiyama et al.
(8) evaluated the capacity of 32 bacterial species dominant in
human gut to produce PAs in the cell and in supernatants,
suggesting the presence of new genes and transporters. As many
colonic microbial species do not possess complete synthetic
pathways to produce PAs (38), it is possible to suppose the
existence of metabolic interactions among bacterial species in
the gut. Kitada et al. (39) showed that putrescine concentration
produced by a mixed culture of different microbial species
from gut microbiota was higher than that obtained with the
single cultures. They demonstrated that a mixed culture of E.
coli and Enterococcus faecalis produced the highest quantities
of putrescine when the pH of the medium drops to neutral,
suggesting the involvement of bacterial acid resistance system
(40). A new pathway for putrescine formation was identified,
from arginine to agmatine, with the cooperation of these two
species. In presence of low pH, the acid resistance system of
E. coli produces agmatine from arginine, and an arginine—
agmatine antiporter exchanges extracellular arginine for the
intracellular end product of decarboxylation, agmatine (41).
Enterococcus faecalis, through an agmatine/putrescine antiporter,
metabolizes the agmatine to putrescine by agmatine deiminase
pathway, yielding ATP, CO2, and NH3 (42). The presence of
other bacteria, such as Bifidobacterium spp. producing acid
compounds in gut, favors the induction of this new pathway for
putrescine production (39, 43, 44). In fact, many intestinal species

do not possess a complete synthetic pathway for putrescine
production from arginine (45) and therefore, it is possible to
suppose the existence of a metabolic pathway spanning multiple
bacterial species in the gut (8, 39). However, the knowledge about
the contribution of gut microbiota to PAs formation is scarce
and not sufficient.

THE NEXT-GENERATION PROBIOTIC
BACTERIA AND POLYAMINES

There is an enormous amount of research on probiotics and their
beneficial impact on human health. Probiotics are defined by
Boirivant and Strober (46) as “live microorganisms that, when
administrated in adequate amounts, confer a health benefit on the
host.” The main sources of probiotics are gut or some fermented
foods, such as kefir grains and yogurts, with Lactobacillus spp.
and Bifidobacterium spp. being the most used microorganisms.
Saccharomyces boulardii, Bacillus spp., E. coli, enterococci, and
Weissella spp. are also included. With the development of new
methodologies, a new era in probiotic research is started and
the new probiotics are referred to next generation probiotics.
In fact, there is an increasing interest in the use of gut
commensal bacteria as potential probiotics, such as the genera
Bacteroides, Clostridium, Bifidobacterium, and Faecalibacterium
that predominate in the human gut microbiome (47). The
mechanisms of probiotics activity are not clearly understood,
even if many studies have been carried out (48). The potential
biological effects of probiotics are characterized by an extremely
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diverse range, such as the new functional activities that are
currently studied (49).

The species of colonic PAs-producing bacteria are several
and different. The PAs concentration in the gut depends on
the high or low presence of PAs-producing bacteria and also
of PAs-absorbing bacteria. However, the presence of probiotics
can increase the concentration of PAs in intestinal lumen as
reported after the consumption of yogurt added with probiotics
such as Bifidobacterium animalis subsp. lactis LKM512 (34).
The consumption of yogurt containing the probiotic strain B.
animalis subsp. lactis LKM512, increases the PAs concentration
in human gut, favoring several positive effects for improving
intestinal health, increasing lifespan and quality of life (33, 50,
51). PAs have been associated with cancer risk and represent a
specific marker for neoplastic proliferation. The administration
of probiotic Lactobacillus rhamnosus strain GG has been found
to affect the synthesis of PAs in gut and the proliferation rates
of gastric cell cancer. A relationship between PAs biosynthesis
and probiotic action in carcinogenesis and cancer growth
was found (52).

The consumption of probiotic strain B. animalis subsp. lactis
LKM512, colonizes the colon and alters the intestinal microbiota,
producing PAs. This alteration in intestinal microbiota favors
some bacteria and suppress others, such as Enterobacteriaceae
species, and Enterococcus spp. The produced PAs induce
maintenance and/or recovery of intestinal barrier function
and other beneficial activities such as longevity (53). The
activation of PAs biosynthesis is performed by indigenous gut
microbiota stimulated by environmental acidification induced by
Bifidobacterium. In fact, these microorganisms do not possess
enzymes involved in PAs biosynthesis (39).

A study carried out with a cocktail of probiotics,
administered for 60 days, enhanced the PAs biosynthesis

in canine inflamed colonic mucosa, regulating PAs levels
(54). The administration of mixed probiotic cultures of
Lactobacillus spp. strains has been described to induce positive
health effects (55). Therefore, the positive effects have been
proved in live and dead probiotic preparations [for a review
see Adams (56)].

CONCLUSION

Microbiota-generated metabolites are an essential part of
human physiology and are generated through microorganism–
microorganism and host–microorganism interactions, with
profound effects on human health and disease. Among the
metabolites generated by bacteria in human gut PAs exhibit
various beneficial effects, such as increased longevity, recovery
of injured mucosa, and favorable effects on cognitive function.
However, there is limited knowledge of how microorganisms
interact with each other to synthesize metabolites in gut
such as PAs. To obtain these tools it will be important
to analyse the individual species and strains within these
communities including uncultured microorganisms. Future
researches on next-generation probiotics and/or mixed
cultures of probiotic species should be investigated in
order to better understand human health problems in the
intestinal tract and find new strategies to face them. PAs
modulation by gut microbiota and probiotic consortia
could be a good strategy to achieve beneficial effects for
human health.
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